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Computational Simulations of Micro-Indentation Tests Using Gradient Plasticity

Jian Chen1, Huang Yuan2 and Folker H. Wittmann3

Abstract: Experimental observation confirms that
micro-hardness of metallic materials depends signifi-
cantly on the indentation depth. In the present paper
we discuss simulations of micro-indentation tests based
on the gradient plasticity model using the finite element
method. The role of intrinsic material length parame-
ters in the gradient plasticity model is investigated. The
computational results confirm that the gradient plastic-
ity model is suitable to simulate micro-indentation tests
and predicts the depth-dependent hardness in micro- and
nano-indentations. Variations of micro-hardness is cor-
related with the intrinsic material length parameters.

keyword: Gradient-dependent plasticity, intrinsic ma-
terial length, plastic strain gradients, size effects, micro-
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1 Introduction

Increasing experimental evidence indicates that the plas-
tic flow strength of materials depends on the absolute size
of specimens, so-called size-effect. In torsion tests Fleck
and Hutchinson (1993) found that the torque normalized
by the twist of a thin wire of copper with a diameter of 12
microns was as high as three times of that of a wire with
a diameter of 120 microns, whereas in uniaxial tension
the material strength becomes scalable by the geometry
factor. This observation implies that the material strength
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depends on strain gradients. In order to make an accurate
prediction of structural integrity, it is important to know
how the strain gradients affect strength of materials and
how to quantify these effects.

Recently, experiments on micro- and nano-indentation
hardness tests have been extensively adopted for deter-
mining material characteristics in micro-dimension [Ma,
Clarke (1995); McEkhaney, Vlassak, Nix (1998); Poole,
Ashby, Fleck (1996); Stelmashenko, et al. (1993)]. It has
been found that the micro-hardness of materials is signif-
icantly higher than the macro-hardness by a factor of two
or more in the range of the indentation depth from about
10 microns to 0.1 micron. Generally, it can be said the
smaller the scale, the stronger will be the solid. Based
on experimental observations Nix and Gao (1998) pre-
dict a linear relation of the square of the micro-hardness,
H, and the inverse of the indentation depth, 1/h, that is,

(
H
H0

)2 = 1+
h∗

h
, (1)

where H0 is the macro hardness and h∗ is a material spe-
cific parameter depending on indenter angle as well as
on the mechanical property of materials. Nix and Gao
(1998) suggest h∗ = 3(cosβ)2/(16bρs), where b is the
Burgers vector, ρs is the statistically stored dislocation
density and β stands for half of the indenter’s angle. The
statistically stored dislocations are related to the plastic
strain. In this way the micro-hardness is related to the
indentation depth through the statistically stored dislo-
cations ρs. It has been verified that equation (1) can be
applied to predict the size effect of micro-hardness for
many kinds of materials.

Conventional continuum mechanics assumes that the
solid is homogeneous and does not contain hetero-
geneities. It follows that the stress state is determined
by the deformation history of a material point itself. Al-
though the conventional continuum mechanics is quite
sufficient for many engineering applications, experimen-
tal evidences indicate that the inhomogeneity on the ma-
terial micro-structure level may induce a strong depen-
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dence on the strength prediction and therefore the micro-
structure has to be considered in a suitable way in contin-
uum models. A variety of methods which take effects of
strain gradients into account has been proposed in recent
years. Fleck and Hutchinson (1993), (1997) introduced
the strain gradient plasticity theory in which additional
strain quantities and the work conjugated couple stress
quantities enter the continuum model. This strain gradi-
ent plasticity theory as well as its alternative form [Gao,
Huang, Nix, Hutchinson (1999)] have been used to ana-
lyze the size effects of micro-indentation tests [Begley,
Hutchinson (1998); Huang, et al. (2000); Shu, Fleck
(1998)]. The strain gradient plasticity theory generates
a new theoretical frame for continuum mechanics by in-
troducing new field variables to meet the microstructural
characteristics. One problem of such models is that the
strain gradient effects in pure tension become small due
to vanishing rotations and, furthermore, it is still an issue
whether or not such models may predict a physical mean-
ingful shear band result due to strain localizations. From
the view point of finite element computations, effects
of the introduced gradient regulators may be too weak
to overcome the mesh-dependence in numerical analysis
due to strain softening.

Aifantis (1987) suggested a simple form of plasticity
model depending on plastic strain gradients which is
termed the gradient plasticity theory. In his model Aifan-
tis simply assumes that the actual flow stress is linearly
related to the gradients of the equivalent plastic strain.
The consistence of such gradient plasticity models has
been discussed in the frame of thermodynamics by Vala-
nis (1997) and Polizzotto, Borino (1998). In computa-
tional work by de Borst and his co-workers [deBorst,
Mühlhaus (1992); Pamin (1994)] the flow stress is only
related to the second order gradient (Laplacian) of the
equivalent plastic strain. This model is successfully ap-
plied to failure analysis of concrete structures. It has been
confirmed that the gradient plasticity provides a mesh-
independent shear band for strain-softening materials.
This formulation is extended to finite strain problems by
Mikkelsen (1997) and Ramaswamy, Aravas (1998). A
gradient plasticity theory coupled with damage mecha-
nism is reported in [Chen, Yuan (2000); Sverberg, Runes-
son (1998)]. However, due to the analytical and compu-
tational difficulties [Yuan, Chen (2001)], most numerical
efforts are limited in analysis of the shear band.

Recently, a modified low-order gradient plasticity model

is proposed based on the Aifantis’ gradient plasticity idea
and Gao’s flow stress formulation, in which the gradient
of effective plastic strain |∇ εp| is introduced into the flow
stress, σ = σ0

√
f 2(εp)+ l|∇ εp|, with a material length

parameter l. This model is used to analyze the size effect
of ductile materials [Yuan, Chen (2000)] and provide re-
sults verified by known experimental observations. In
micro-indentation simulation, the computational data of
this model successfully fitted the correlation proposed by
Nix and Gao (1998). However, the analysis of the strain-
softening shear band is still open issue for this model.

According to the authors’ knowledge, no results on the
depth-dependent micro-indentation using high order gra-
dients of plastic strains have been reported. The aim of
the present paper is to investigate the effect of strain gra-
dients in micro-indentation simulations. It is to be shown
whether or not the phenomenological gradient plastic-
ity model suggested by Aifantis (1987) can capture the
depth-dependence of the micro-hardness correctly. Fur-
thermore, we are going to examine the relationship be-
tween the micro-hardness and the indentation depth as
observed with equation (1). In this sense the parameter
h∗ is used as a fitting parameter in the gradient plasticity
model based on suitable assumptions. Finite element im-
plementation of this gradient plasticity theory is used to
analyze the size-dependent micro-hardness. The role of
the first-order and the second-order derivatives of equiva-
lent plastic strain is systematically investigated. Compu-
tational results confirm that the second-order gradient of
equivalent plastic strain overestimates the hardness varia-
tion. The first-order gradient of plastic strain can be used
to fit the known experimental prediction in [McElhaney,
Vlassak, Nix (1998); Nix, Gao (1998)].

2 Computational gradient-dependent plasticity

The size effect of plastic flow strength is related to ac-
cumulations of dislocations generated by non-uniform
straining. In plasticity the stress and strain state of a ma-
terial point is influenced by distortions of its neighbor,
i.e., plastic deformations are generally nonlocal. To con-
sider the nonlocal effects in plasticity, the plastic strain
gradient of a point should be introduced into a consti-
tutive relationship under certain circumstances [Aifan-
tis (1987)]. In this section we follow the framework of
gradient plasticity and formulate the finite element equa-
tions. The model has been implemented into commercial
finite element code ABAQUS using the user-element in-
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terface [ABAQUS User Manual].

2.1 Governing equations

We assume that the uniaxial stress-strain relation can be
described by a power-law hardening as

σ = σ0

(
Eεp

σ0

)N

, (2)

where E is Young’s modulus, N ≤ 1 is the plastic strain
hardening exponent, σ0 is the initial yield stress and ε p is
the equivalent plastic strain. In the frame of continuum
mechanics the strain rate, ε̇i j, is related to the deforma-
tion velocity u̇i by

ε̇i j = (u̇ j,i + u̇i, j)/2, (3)

where the index comma in mathematical equations indi-
cates the partial derivative in the spatial Cartesian coor-
dinate system and a repeated suffix denotes summations
over 1 to 3. It is assumed that the strain rate can be de-
composed into elastic and plastic parts as following:

ε̇i j = ε̇el
i j + ε̇pl

i j . (4)

The objective Jaumann stress rate according to plasticity
theory can be expressed as

σ∇
i j = Ce

i jkl ε̇
el
kl (5)

with the elasticity matrix Ce
i jkl. The choice of the Jau-

mann stress rate is by no means unique or even neces-
sary according to the opion of Atluri (1984). It is, how-
ever, necessary to make use of ABAQUS interface in our
work. For isotropic solids the elasticity matrix can be
simplified into

Ce
i jkl = (K − 2

3
G)Ii jIkl +2GI′i jkl, (6)

where K and G are the elastic bulk and shear moduli,
respectively. Ii j is the second order identity tensor, and
I′i jkl is the fourth order symmetric identity tensor with
Cartesian components I ′i jkl = (IikI jl + IilI jk)/2. Substi-
tuting equation (4) into (5), it follows

σ∇
i j = Ce

i jkl ε̇kl −Ce
i jklni jε̇

p
. (7)

In the equation above ni j = 2si j/3σ denotes the plastic
flow tensor, with si j as deviatoric stress tensor. The stress
rate can be calculated from the Jaumann stress as

σ̇i j = σ∇
i j +σikΩk j −σ jkΩik (8)

with Ωi j = (u̇i, j − u̇ j,i) as the spin rate matrix due to finite
rotation.

As suggested by Aifantis (1987), yield stress depends on
both equivalent plastic strain and its gradients as

σy(εp, |∇ εp|, ∇ 2εp) = σ(εp)+g1|∇ εp|−g2∇ 2εp, (9)

where σ(εp) denotes the yield stress expressed as a func-
tion of the equivalent plastic strain as in (2) and g 1, g2 are
positive coefficients. In this paper, g1, g2 are defined as:

g1 = σ0c1 f1(εp), (10)

g2 = σ0c2
2 f2(εp), (11)

where c1 and c2 are intrinsic material length scale param-
eters and f1 as well as f2 are dimensionless functions of
equivalent plastic strain in general. Then the strain gra-
dients were introduced into the constitutive equation by
the flow stress and it follows

Φ(σ(εp), |∇ εp|, ∇ 2εp) = φ(σ(εp))+g1|∇ εp|−g2∇ 2εp,

(12)

where φ(σ(εp)) is the classical J2 yield condition. Should
both g1 and g2 vanish, the gradient plasticity turns to clas-
sical J2 plasticity.

The presence of the gradient terms in the constitutive
equation needs additional boundary conditions for the
equivalent plastic strain in the forms as

δ(ε̇p) = 0 or δ(
∂ε̇p

∂v
) = 0. (13)
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Equation (13) is assumed in [deBorst, Mühlhaus (1992);
Mikkelsen (1997); Mülhaus, Aifantis (1991); Pamin
(1994); Polizzotto, Borino (1998); Ramaswamy, Aravas
(1998); Sverberg, Runesson (1998)], where v is the out-
wards normal vector. During plastic flow, the stress point
must remain on the yield surface in the stress space

Φ̇(σ(εp, |∇ εp|, ∇ 2εp)) = 0, (14)

which can be re-written as

∂Φ
∂σi j

σ̇i j +
∂Φ
∂εp ε̇p +

∂Φ
∂|∇ εp| |∇ ε̇p|+ ∂Φ

∂∇ 2εp ∇ 2ε̇p = 0. (15)

For the von Mises plasticity, it is known that ε p = λ
where λ is the plastic multiplier. Then the consistency
condition takes the form as

ni jσ̇i j +
∂Φ
∂λ

λ̇ +
∂Φ

∂|∇λ | |∇ λ̇|+ ∂Φ
∂∇ 2λ

∇ 2λ̇ = 0. (16)

with ni j = ∂Φ/∂σi j . Let V and V p denote the volume
occupied by the body and the plastic part volume of the
body, respectively. Let S be the surface bounding this
volume and Sp be the so-called elastic-plastic boundary
surface. Following the suggestion of Mülhaus and Aifan-
tis (1991), de Borst and Mülhaus (1992), the generalized
variational formulation can be expressed as

Π(ui,εp,δu̇i,δλ̇) =
∫

V
(σi j, j +bi)δu̇idV +

∫
S

tiδu̇idS

+
∫

V p
Φ(σ(εp), |∇ ε̇p|, ∇ 2εp)δλ̇dV +

∫
Sp

∂εp

∂v
δλ̇dS. (17)

The solution is obtained as soon as the generalized vari-
ational expression Π vanishes,

Π(ui,εp,δu̇i,δλ̇) = 0. (18)

To solve the above nonlinear integral equation, the New-
ton iteration method can be used. It follows two basic
weak form equations as

∫
V p

δλ̇(ni jσ̇i j +
∂Φ
∂λ

λ̇ +
∂Φ

∂|∇λ | |∇ λ̇|+ ∂Φ
∂∇ 2λ

∇ 2λ̇)dV

= −
∫

V
δλ̇Φ0(σ(εp, |∇ εp|, ∇ 2εp))dV ; (19)

∫
V

δε̇i jσ̇i jdV = −
∫

V
δε̇i jσ0

i jdV. (20)

where σ0 and Φ0(σ(εp), |∇ εp|, ∇ 2εp) denote the solution
of the previous incremental step. The equations above
build the fundamentals for the finite element method.
To solve the integral equations above a discretization
method must be used to turn the partial differential equa-
tions to algebraic equations.

2.2 Finite element formulations

The element with the 8-nodal serendipity interpolation
of displacement and 4-nodal Hermitian interpolation of
equivalent plastic strain with 2× 2 Gaussian point inte-
gration is the most reliable C1-continuous element, as re-
ported by Pamin (1994). Mikkelsen (1997) extended this
element type to finite strain states and simulated neck-
ing of uniaxial tension test of ductile metallic materials.
Due to the explicit Hermitian shape function which is
introduced to satisfy requirements of the C 1 continuity,
the element is constrained to be rectangular. Ramswamy
and Aravas (1998) introduced the C0 element by using
the Gauss theorem in integration. Such formulation as-
sumes a vanishing normal derivative of the equivalent
plastic strain at all boundaries, ∂λ̇/∂v = 0. The C0 el-
ement formulation is attractive for general robust finite
element computations, however, useful only for a model
linearly depending on the equivalent plastic strain gradi-
ent as in equation (12). As soon as the gradient terms
appear in a nonlinear form in the constitutive equation,
as suggested by Nix and Gao (1998), the C0 formulation
becomes not applicable.

In this paper, we use the C1-continuous finite element
formulation in which the implicit Hermite interpolation
functions suggested by Petera and Pittman (1994) are
used for interpolating the equivalent plastic strain. The
element can be transformed to an arbitrary quadrilateral
form. Our computational analysis of the shear band sup-
port that such interpolation gives numerically reliable re-
sults [Chen, Yuan (2000)]. More recently, an alternative
numerical method based on the meshless local Petrov-
Galerkin technique is attractive [Atluri, Shen (2002);
Kim, Atluri (2000)], which easily leads to C 1 type of in-
terpolations in the local coordinate system. This is be-
yond the scope of the present paper. The reader who
is interested in this topic is referred to the recent papers
by Atluri and his co-workers [Atluri, Shen (2002); Kim,
Atluri (2000)].

Using the two governing equations (19) and (20), we
have two kinds of node degrees of freedom, i.e. the dis-
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placement u and the equivalent plastic strain measure ε p.
They are interpolated as

u(x) = [N(x)]unode, (21)

εp(x) = λ = [H(x)]ΛΛΛnode, (22)

where [N(x)] is the standard 8-nodal serendipity interpo-
lation function vector for displacement and [H(x)] is the
C1-continuous implicit Hermitian interpolation function
vector for equivalent plastic strain. For details of such
interpolation the reader is referred to the work of Petera
and Pittman (1994). The two governing equations (19)
and (20) can be re-written as
∫

v
[B]T σ̇̇σ̇σdv = −

∫
v
[B]Tσ0σ0σ0dv (23)

∫
vp

[H]T (nT σ̇σσ+
∂Φ
∂λ

λ̇ +
∂Φ

∂|∇λ | |∇ λ̇|+ ∂Φ
∂∇ 2λ

∇ 2λ̇)dv

= −
∫

vp
[HT ]Φ0dV (24)

In the incremental finite element algorithm, one must get
the consistent tangent stiffness matrix for every incre-
ment to achieve a quadratic convergence rate of Newton’s
iteration algorithm. So the variation of stress status at the
end of one increment is defined by the backward Euler
integration algorithm,

σ̇i j = Ci jkl ε̇kl −Ci jklni j ε̇p +σikΩk j −σ jkΩki, (25)

where Ci jkl = [(Ce
i jkl)

−1 +∆λ∂Φ2/∂σ2
i j]

−1 and ∆λ is the
increment of effective plastic strain in current incremen-
tal step. Substituting Equation (25) and expressions
of ∂Φ/∂λ, ∂Φ/∂|∇λ | and ∂Φ/∂∇ 2λ into the equations
above, we can get the final equations of the finite element
computations [Chen, Yuan (2000)].

3 Modeling

To simplify computational modeling the indenter is as-
sumed to be axisymmetric conical. The half angle of the
axisymmetric indenter is taken to be 72◦, which corre-
sponds to Berkovich indenter (Fig. 1). This assumption
has been adopted by many previous micro-indentation
simulations based on different gradient plasticity mod-
els [Begley, Hutchinson (1998); Nix, Gao (1998); Yuan,
Chen (2001)]. 3D effects to such simplifications have
been discussed in [Larsson, et al. (1996)]. The contact
radius is defined as a and the depth of penetration of the

2 �
d h

2 a

Original free
surface position

2 a0

Indenter

Specimen

Figure 1 : Axisymmetric micro-indentation model used
in the present computations. β denotes the half angle of
indenter, h is the indentation depth and δ the displace-
ment of indenter, a the radius of the contact area of the
indentation, a0 a global measurement of the specimen.

indenter is δ. The indenter is assumed to be rigid. The
contact between the indenter and the substrate is postu-
lated frictionless.

To make use of the contact element technique in
ABAQUS and to visualize the finite element results us-
ing ABAQUS we embed an additional sheet of conven-
tional isoparametric elements on the user element mesh
with vanishingly small strength. It makes also possible
to evaluate the reaction forces and strain distributions in
the specimen.

The contact radius of indentation, a, can be determined
by the vanishing contact force computed by ABAQUS.
Due to the scattering of the a value proportional to the
element size near the indenter tip, the final radius value
must be smoothed. As soon as a is known, the indenta-
tion depth is calculated as

h =
a

tanβ
. (26)

The force applied on the indenter, P, is used to compute
the hardness as:

H =
P

πa2 . (27)

This method can be taken for all possible indenter angles
and different indentation depths.

To non-dimensionalize computations we introduce the
remote radius a0. a0 should be large enough in compar-
ing with a to obtain the macro hardness value. When
the mesh used for computations is fine enough, the final
conclusions are independent of a0.
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Figure 2 : A typical finite element mesh with C1 continuity, with 650 elements and 3700 nodes, used for compu-
tations. All elements have 8 nodes for interpolation of displacement and 4 additional nodes for the effective plastic
strain. The indenter is simulated with a rigid surface. (a) The full mesh. (b) The elements near to the indenter tip.

In this paper different finite element meshes are used to
study the mesh-(in)dependence. It is confirmed that com-
putational results under finite strain assumption are nu-
merically mesh-insensitive when the contact surface is
discretised by more than 10 elements. The scattering
due to the discrete element size is limited to 5 % for per-
formed computations. In this paper we just report numer-
ical results with a kernel mesh 30×20 8-nodal elements
with 4 node for interpolation of effective equivalent plas-
tic strain near to the indenter tip. It means that only in
this kernel mesh the gradient plasticity theory is applied.
The conventional 8-nodal displacement element is used
in the outer mesh due to the small plastic strain and its
gradients. The mesh is shown in Fig. 2. In computations
the absolute element size near the indenter tip varies with
the given intrinsic material length scale proportionally.
The final computational step just reaches half of the ker-
nel. The whole mesh has a size as large as ten times the
size of the kernel and the overall mesh size is defined as
a0 in our computations.

In most computational work on gradient plasticity pub-
lished by de Borst and co-workers [deBorst, Mühlhaus
(1992); Pamin (1994)], only the Laplacian of equivalent
plastic strain was introduced into the constitutive rela-
tionship and flow stress, namely σy = σ(εp)−g2∇ 2εp. In
the analysis of strain-softening, Pamin (1994) suggested
the gradient parameter f2 = −σ′(εp), where −σ′(ε) is
the slope of the stress-strain curve measured in uniaxial
tests. Such assumption makes a smooth increase and de-
crease of the gradients of plastic strain in computations.

It is specially of importance as soon as the strains are lo-
calized increasingly. Ramaswamy (1998), Sverberg and
Runesson (1998) and Mikkelsen (1997) use f 2 = 1 as
constant in the shear band analysis for strain-hardening
material. As stated by Pamin (1994), in the shear band,
where intensive shearing occurs, ∇ 2εp is negative, thus
the gradient term will arise the flow stress there, while
∇ 2εp becomes positive near the elastic-plastic bound-
ary, which makes it possible for the localization zone to
spread out the plastic zone due to the decrease of the flow
stress. Furthermore, from torsion solutions one may con-
duct that the parameter g2 must be a function of the plas-
tic strain to avoid singular strain distribution.

In the numerical analysis of micro-indentation, we found
in the area near the indenter tip, the Laplacian of the
equivalent plastic strain oscillated strongly and were over
hundreds times of the strain itself. Similar phenomena
can be found in crack tip field analysis of ductile mate-
rial. It implies that using constant parameter g2 makes
numerical computations difficult.

Generally we assume that, when the equivalent plastic
strain is small, the influence of ∇ 2εp should not be very
strong on the strength of material in the area near the
indenter tip. For large plastic strain the amplitude of g 2

should be limited and positive, i.e.

f2(εp) =




(
εp

εp
0

)n

if εp ≤ εp
0

1 if εp > εp
0

(28)
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Above we introduce two parameters, the exponent n and
the range εp

0 . Computations with 1 < n < 3 show a stable

numerical convergence. The final computational results
are very slightly affected by n and εp

0 values. In com-
putations reported in the present paper we set n = 2 and
εp

0 = 0.1. This assumption will not change our conclu-
sions.

4 Results and discussions

The initial input data adopted in the present computa-
tions are taken from the paper of Begley and Hutchin-
son (1998), with plastic strain hardening exponents N =
1/3, N = 1/5 and N = 1/10. Furthermore, we assume
Young’s modulus E = 300σ0 and Poisson’s ratio ν = 0.3.
For these parameters the finite element computations pre-
dict macro-hardness of H0 = 7.89σ0, 5.28σ0 and 3.89σ0

for N = 1/3, 1/5 and 1/10, respectively, under finite
strain and plastic flow theory assumptions. These pre-
dictions agree with the results of Begley and Hutchinson
(1998).

It is worth noticing that to avoid artificial effects in nu-
merical fitting, we did not take any additional fitting algo-
rithm in hardness evaluation. The scattering of the data
is caused by finite element discretization. The contact
area is directly evaluated from the contact elements and,
therefore, spreads discontinuously. This scattering grows
with the strain exponent N. For materials with higher
plastic strain hardening, the scattering is larger.

4.1 The role of the second-order derivative (Lapla-
cian) of plastic strain

In this subsection we assume c1 = 0 and study the ef-
fect of the second-order derivative (Laplacian) of equiv-
alent plastic strain, c2, only. The assumption in (28) is
introduced. The micro-hardness H over macro-hardness
H0 is plotted as a function of indentation depth h in Fig.
3. In the figures the symbols denote the computational
results and the solid lines are fitted according to a sug-
gestion of Nix and Gao (1998). Variations about c 2 are
shown for N = 1/10 in Fig. 3(a). The gradient regulator
c2 increases the strength of the continuum model and so
the hardness. For the same macro-hardness, the micro-
hardness for small h from the finite element computations
is significantly larger than Nix and Gao prediction.

In Fig. 3(b) the depth is normalized by the intrinsic mate-
rial length c2. This figure verifies that the micro-hardness

explicitly depends on h/c2, i.e. H = H0ψ(h/c2). The in-
fluence of the parameter c2 can be scaled if the horizontal
axis is normalized by c2.

From Nix and Gao (1998) we know H 2 is a linear func-
tion of 1/h. In Fig. 4 the normalized hardness is plotted
as function of c2/h. Figure 4(a) shows that the correla-
tion between H 2 and 1/h is nonlinear. The solid lines are
a least square fitting of the computational results. The
Aifantis’ model with Laplacian gradient regulator pro-
vides a significant overestimate in comparison with ex-
perimental fitting for some metals in [Nix, Gao (1998)].

It is interesting to find from Fig.4(b) that the present
results are similar to those obtained using Fleck-
Hutchinson strain gradient plasticity model in Begley
and Hutchinson (1998). The computational prediction of
micro-hardness is approximated by a linear function, that
is,

H
H0

= 1+c∗
(

n,
σ0

E

) c2

h
,

where c∗(n,σ0/E) is a coefficient depending on mechan-
ical property of materials. For the present computations
the linear fitting is valid only for c 2/h ≥ 1.

4.2 The role of the first-order derivative of plastic
strain

In discussion of the last section the gradient regulator is
related with the second gradient of the plastic strain. It is
not suitable for simple bending tests in which the strain
is distributed linearly. In the four-point-bending experi-
ment of mild steel beams, Richard (1958) observed the
size effect of yield initiation (upper yield stress) and in-
terpreted it using statistical model. To catch this effect
one must include the first order of plastic strain gradient
into the constitutive model.

We set f1(εp) = 1 in Equation (10) and g2 = 0. The flow
stress is defined as σy = σ(εp)+σ0c1|∇ εp|. Due to the
positive value of ∇ ε p, the strength of material is ’hard-
ened’ when the strain gradient exists.

Micro-hardening from finite element computations, H, is
shown in Fig. 5 as a function of the indentation depth
h. The diagrams are non-dimensionalized by the macro-
hardness H0 and by a0 or c1, respectively. The symbols
are finite element computations and the solid lines are
predictions of Nix and Gao (1998). Significant increase
of micro-hardness is restricted near h → 0. As in Yuan,
Chen (2001) variations about the intrinsic material length
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Figure 3 : Depth-dependence of the micro-hardness. The symbols stand for computational finite element results.
Lines are predictions of Nix and Gao (1998). Only the Laplacian of plastic strain is considered into the formulation
of the flow stress (c1 = 0). (a) Effects of intrinsic material length c2. (b) Effects of strain hardening exponent N.

in Fig. 5(a) can be scaled by the material length, as plot-
ted in Fig. 5(b).

The present computational results using the first order
gradient of equivalent plastic strain agree reasonably
with the prediction of Nix and Gao (1998), as shown
in Fig. 5(a). A plot of (H/H0)2 over c1/h of Fig. 6
confirms, furthermore, that this agreement is limited to
c1/h ≤ 6. Beyond this region the finite element com-
putation under-estimates the micro-hardness, in compar-
ison with Nix and Gao (1998). This has been reported
in an other systematic study of micro-hardness simula-
tion using a different flow stress equation [Yuan, Chen
(2001)]. It is reasonable that as the depth h decreases,
the micro-hardness cannot increase to infinity, as h → 0,
and should have a maximum value depending on mate-
rial length scales, that means, the linear relations between
H/H0 and 1/h should be satisfied only in an appropriate
range. Then gradient plasticity theory, using the first-
order derivative only in the constitutive formulation can
give a reasonable approximation for small c1/h to the
prediction of Nix and Gao (1998).

It is interesting to see that in the micro-indentation sim-
ulations, the first-order derivative of equivalent plastic
strain, |∇ εp|, is more suitable to model the known hard-
ness variations than the Laplacian of plastic strain, ∇ 2εp,
whereas in shear band analysis, only ∇ 2εp can prevent
strain localizations. R
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Figure 6 : Micro-hardness as a function of the inverse
of indentation depth. The symbols stand for computa-
tional finite element results. The solid lines denote the
least square fitting using a square function. Only the first-
order derivative of plastic strain, |∇ ε p|, is included in the
constitutive equations (c2 = 0).
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4.3 The role of the two material length scales

From the discussions above one can see the model with
the Laplacian of plastic strain may only give a strong ef-
fect on micro-hardness variations, while the first gradient
of equivalent plastic strain leads to moderate increase of
the predicted hardness. To fit different hardness varia-
tions in different materials, one may adjust both material
length parameters. From this point of view, both param-
eters have to be determined by experimental data.

In Fig. 7(a) three curves are depicted with different c1

and c2 for N = 1/10. This figure indicates that to fit the
linear relationship, the length scale c2 is far smaller than
the length scale c1 since ∇ 2εp has a much stronger ef-
fect on the increase of micro-hardness. In Fig. 7(b) the
data are depicted with different c2 and constant c1 for the
same plastic strain exponent. It shows that using different
values of length scale c2, the effect of ∇ 2εp increases or
decreases strongly and the micro-hardness deviates grad-
ually from the linear relation. From these figures and
the numerical calculation we find when c1 = 3c2 ∼ 8c2

the computational results do produce the linear relation
between H/H0 and 1/h over the whole computational
range.

5 Conclusions

In the present paper we discussed simulations of
micro-indentation tests using Aifantis’ gradient plasticity
model. Both gradient terms of equivalent plastic strain in
the gradient plasticity model are considered.

Computations confirm that the micro-hardness predicted
by the gradient plasticity varies with indentation depth,
as soon as the gradient regulators differ from zero.
Depth-dependence of micro-hardness can be simulated
using gradient plasticity models.

Variations of micro-hardness is correlated with the in-
trinsic material length parameters. In comparison with
experimental results of Nix and Gao (1998), the Aifan-
tis’ model using the Laplacian term of equivalent plastic
strain provides an overestimate, whereas the first gradient
term under-estimates the hardness variations.

Based on extensive computations one can figure out a
correlation between the intrinsic material length, me-
chanical property and micro-hardness, as discussed in
Yuan, Chen (2001). Micro-hardness tests provide a
method to determine the intrinsic material length in the
gradient plasticity models.
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Figure 7 : Interaction of both intrinsic material length
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fitting using a square function. (a) c2 = 0.00316a0. (b)
c1 = 0.01a0.
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