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Probabilistic and Possibilistic Analyses of the Strength of a Bonded Joint

W. Jefferson Stroud1, T. Krishnamurthy1 and Steven A. Smith2

Abstract: The effects of uncertainties on the predicted
strength of a single lap shear joint are examined. Proba-
bilistic and possibilistic methods are used to account for
uncertainties. A total of ten variables are assumed to be
random, with normal distributions. Both Monte Carlo
Simulation and the First Order Reliability Method are
used to determine the probability of failure. Triangular
membership functions with upper and lower bounds lo-
cated at plus or minus three standard deviations are used
to model uncertainty in the possibilistic analysis. The
alpha cut (or vertex) method is used to evaluate the pos-
sibility of failure. Linear and geometrically nonlinear fi-
nite element analyses are used calculate the response of
the joint; fracture in the adhesive and material strength
failure in the strap are used to evaluate its strength.

Although probabilistic and possibilistic analyses provide
significantly more information than do conventional de-
terministic analyses, they are computationally expensive.
A novel scaling approach is developed and used to sub-
stantially reduce the computational cost of the probabilis-
tic and possibilistic analyses. The possibilistic approach
for treating uncertainties appears to be viable during the
conceptual and preliminary design stages when limited
data are available and high accuracies are not needed.
However, this viability is mixed with several cautions
that are discussed herein.

keyword: Bonded joint, Probabilistic analysis, Possi-
bilistic analysis, Fracture.

1 Introduction

In the final stages of the design of future advanced
aerospace vehicles, the design procedures will need to
account for uncertainties by calculating the risk or relia-
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bility. These calculations will involve probabilistic anal-
ysis. While probabilistic methods may be required in the
final stages of design, methods that merely bound a re-
sponse quantity and provide the most likely value may
be adequate for early stages of design. Such methods,
referred to herein as possibilistic methods, have the po-
tential for allowing a large number of design options to
be evaluated rapidly during the conceptual and prelimi-
nary design stages when there may be little data and little
need for precision.

When compared with traditional factor-of-safety meth-
ods, both probabilistic and possibilistic methods require
additional inputs but provide more and higher quality
outputs. Variables in these methods can be classified
as either certain or uncertain. For probabilistic methods,
each uncertain variable is assumed to have a probability
density function. In turn, probabilistic methods provide
a probability density function for each response quan-
tity. Similarly, possibilistic methods require a member-
ship function for each uncertain variable, and they pro-
vide a membership function for each response quantity.

The general objective of this paper is to study the dif-
ferences between probabilistic and possibilistic methods
by exploring their application to a simple and yet com-
monly encountered structural component. The selected
component is a single lap shear joint. The specific ob-
jective of the paper is to study how uncertainties affect
the predicted strength of a single lap shear joint. The
study considers two ways to account for uncertainties
(probabilistic and possibilistic), examines the effect of
a geometrically nonlinear analysis, shows the effect of
two failure modes (fracture in the adhesive and material
strength failure in the strap), shows the effect of corre-
lated random variables, and illustrates several computa-
tional techniques.

2 Description of Lap Joint Problem

The single lap shear joint consists of lap and strap ad-
herends bonded with an adhesive as shown in Fig. 1.
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Figure 1 : Single lap shear joint.

This configuration has been analyzed extensively [Brus-
sat, Chiu, and Mostvoy (1977); Johnson (1987); Lai,
Rakestra, and Dillard (1996); Tong and Steven (1999);
Mall and Johnson (1985)]. The strap is subjected to a
tensile load F that is reacted at the x=0 plane. The ad-
hesive is assumed to contain a crack of length c situ-
ated centrally within the adhesive. Boundary conditions
at the left end of the joint are u(0,y) = 0 and v(0,0) =
0. These boundary conditions represent symmetry con-
ditions. Boundary conditions at the right end of the strap
are u(l1,y) = constant and v(l1,0) = 0. These boundary
conditions correspond to zero rotation of the face of the
strap at the right end and approximate the restraints pro-
vided by the grips in a testing machine. Various con-
figurational and material properties that define the single
lap shear joint analyzed in this paper are given in Tab.
1. The lap and strap adherends are taken to be 2024 T3
aluminum.

To study the effect of uncertainties, ten of the quantities
in Tab. 1 were taken to be independent random variables
with normal distributions and with specified means and
standard deviations. Two failure modes were considered
– fracture in the adhesive due to an existing crack and
material strength failure due to yielding in the strap.

3 Analysis Approach

This section describes the two approaches that were used
to treat uncertainty, the structural analysis method used
to analyze the joint, and the two approaches that were
used to evaluate failure. Probabilistic and possibilistic
approaches were used to treat uncertainty. A commercial
finite element code – ABAQUS – was used to analyze the
joint. The two failure modes that were used are fracture
in the adhesive caused by an existing crack and material
strength failure caused by yield in the strap.

3.1 Accounting for Uncertainties

In the probabilistic approach for accounting for uncer-
tainties, ten quantities were assumed to be independent
random variables with normal distributions. The ran-
dom variables and their statistics are given in Tab. 1.
With these ten random variables, Monte Carlo simulation
(MCS) [Melchers (1999); Elishakoff (1999)] was used to
calculate the probability of failure of the joint for vari-
ous values of the load F . (A brief description of MCS
is presented in Section 4.2.3.) Convergence of the MCS
calculations was evaluated by using 100, 1000, and 5000
trials and by comparing these results with results from a
FORM analysis. FORM is described in Melchers (1999).
The probabilistic analysis code ProFES [Cesare and Sues
(1999)] was used for all these calculations.

In the possibilistic approach [Dong and Shah (1987);
Nikolaidis, Cudney, Chen, Haftka, and Rosca (1999)],
membership functions were assigned to the ten random
variables indicated in Tab. 1. An example of a mem-
bership function is shown in Fig. 2. The parameter α
indicates the possibility of an uncertain quantity taking
on a given value. The objective is to use the membership
functions of the input parameters (e.g., dimensions) to
determine the corresponding membership functions for
the response quantities (e.g., stress, buckling load). Tech-
niques for calculating with membership functions are
given in Dong and Shah (1987). The membership func-
tions for the response quantities are then compared with
the membership functions of the allowable responses to
determine the possibility of failure. In this paper, the
membership functions for the ten random variables are
taken to be isosceles triangles with the most likely value
(MLV in Fig. 2) equal to the mean value given in Tab.
1. The most likely value corresponds to α = 1.0. The
absolute upper and lower bounds (UB and LB in Fig. 2)
are equal to the mean value plus/minus three standard
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Table 1 : Values of quantities that define the single lap shear joint

Variable Symbol

Probabilistic Analysis
(normal distributions)

Possibilistic Analysis
α = 0

Mean Standard
Deviation

Lower
Bound

Upper
Bound

Thickness, strap – in.
Thickness, lap – in.
Length, strap – in.
Length, lap – in.
Thickness, adhesive – in.
Length, crack – in.
Modulus, metallic strap – 106 psi
Modulus, metallic lap - 106 psi
Poisson’s ratio, metallic lap and strap
Modulus, adhesive – psi
Poisson’s ration, adhesive
Critical value of G (total) – in. lb/in.2

Yield stress 2024 T3 – psi
Crack Growth Increment – in.

t1
t2
l1
l2
ta
c

Em1

Em2

vm

Ea

va

Gc

σyield

∆C

0.125
0.125
12.0
10.0

0.0050
4.00
10.5
10.5

0.3125
336,000

0.40
5.50

44,000
0.00125

0.005
0.005

0
0.16

0.0005
0.08
0.105
0.105

0
16,800

0
0.66
880

0

0.11
0.11
12

9.52
0.0035

3.76
10.185
10.185
0.3125
285,600

0.4
3.52

41,360
0.00125

0.14
0.14
12

10.48
0.0065

4.24
10.815
10.815
0.3125
386,400

0.4
7.48

46,640
0.00125

deviations. The absolute upper and lower bounds corre-
spond to α = 0.0 (Tab. 1). A brief discussion of member-
ship functions together with an example that illustrates
techniques for calculating with membership functions are
presented in Appendix A. Comparisons between proba-
bilistic and possibilistic methods are given in Nikolaidis,
Cudney, Chen, Haftka, and Rosca (1999).

1.0

α

0
LB MLV

Variable
UB

Figure 2 : Example of membership function.

To examine the effect of correlated random variables (in
contrast with independent random variables), probabilis-
tic calculations were also made under the assumption that
t1 and t2 are fully correlated and that Em1 and Em2 are
fully correlated. In Appendix B, results obtained using
these correlated random variables are compared with re-
sults obtained using independent random variables.

3.2 Finite Element Analysis of Joint

The ABAQUS finite element (FE) structural analysis pro-
gram [ABAQUS (1998)] was used to analyze the joint.
The two-dimensional FE model of the joint (Fig. 3) had
1692 plane strain, 8-node, biquadratic elements (denoted
CPE8) with 5331 nodes. These CPE8 elements were
used throughout the model, including at and near the
crack tip. Near the crack tip, fine mesh modeling is used
(Fig. 3(c)), and equal size elements with aspect ratios
1 are maintained on either side of the crack tip to facil-
itate strain energy release rate calculations. Linear and
geometrically nonlinear analyses were carried out. The
nonlinear analysis was carried out to study the effects of
eccentricity of the loading and the resulting rotation of
the joint.
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Figure 3 : FE model of single lap shear joint.

3.3 Failure Analysis

3.3.1 Fracture in the Adhesive

The strain energy release rates for self-similar crack
growth are used to evaluate fracture in the adhesive due
to an existing crack. The evaluation consists of calcu-
lating values of the total strain energy release rate G T

and comparing these values with the experimentally de-
termined value of the critical strain energy release rate
GC [Reeder, (1992); Reeder (1993)]. Failure is assumed
to occur when the total strain energy release rate is equal
to or greater than the critical strain energy release rate.
Details of the approach used to calculate failure in the
adhesive are given in Appendix C.

3.3.2 Material Strength Failure in the Strap

Failure in the strap is assumed to occur when the stress
in the strap exceeds the yield stress of the material. The
stress was examined in the region denoted “Stress check”
in Fig. 3. That region does not include the loaded end,
where the boundary conditions may cause local stress
perturbations. In the region examined for stress failure,
the bending stress is small compared with the extensional
stress. (For example, by using a geometrically nonlinear
FE analysis it was determined that the bending stress is
less than 1% of the extensional stress at x = 10 in., less
than 2% at x = 11 in., and less than 6% at x = 11.5 in. The
load F is applied at x = 12 in.) Therefore, after setting to
unity the depth of the strap, the stress σx is taken to be

σx =
F
t1

(1)

Note that the calculation of σx does not require a FE anal-
ysis.

4 Results and Discussion

Results of customary deterministic analyses obtained us-
ing the mean values of the variables are presented first.
Then, results showing the effects of uncertainties are pre-
sented.

4.1 Deterministic Analyses

The deformed shape of the FE model for a load of 6000
lb is shown in Fig. 4. In the figure, deflections are scaled
up by a factor of 10 for visualization purposes. The joint
undergoes significant bending.
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Figure 4 : Deformed shape of the lap shear joint obtained
using a geometrically nonlinear analysis.

The manner in which the total strain energy release rate
GT varies with F 2 (the square of the applied load F) is
shown in Fig. 5. Results for both a linear and a geomet-
rically nonlinear analysis are shown. For perspective, the
bounds for the two failure modes – fracture of the adhe-
sive and yield of the strap – are also shown. The value of
F2 corresponding to yield of the strap is given by
(t1 × σyield)2. A detailed discussion of the results from
the linear and nonlinear analyses is presented in Ap-
pendix D.

Figure 5 : Total strain energy release rate GT as a func-
tion of the square of the applied load. Failure bounds are
also shown.

4.1.1 Linear Analysis

As explained in Appendix C, for a linear analysis the
forces and displacements that appear in the expressions
for the components of the total strain energy release rate
GT are linear in F . GT is calculated from the sum of the
products of these quantities and hence is proportional to
F2. Thus, the straight line shown in Fig. 5 for the linear
case is expected.

4.1.2 Nonlinear Analysis

At first glance, the nonlinear analysis curve in Fig. 5 ap-
pears to be a line with a slope different from the slope
of the line that defines the linear solution. For that rea-
son, further studies were undertaken to examine the non-
linear solution in detail. These studies are presented in
Appendix D. It was concluded that at F=0 the slope of
the nonlinear analysis curve is equal to the slope of the
line for the linear solution. For values of F between zero
and 2000 lb, the slope of the nonlinear analysis curve be-
comes smaller as the joint straightens and stiffens. The
nonlinear analysis accounts for that straightening and
stiffening. For values of F greater than about 3000 lb,
GT is nearly linear in F 2 with a slope that is smaller than
that calculated from the linear analysis.

4.2 Analysis with Uncertainties

Two distinctly different approaches for treating uncer-
tainties are used – probabilistic and possibilistic. The ef-
fects of a geometrically nonlinear analysis and the effects
of two failure modes – fracture of the adhesive and yield
of the strap – are also considered. First, the convergence
for a Monte Carlo simulation (MCS) and a technique
for greatly reducing computational effort are presented.
Then, results are presented for various combinations of
probabilistic and possibilistic analysis, linear and nonlin-
ear analysis, and fracture and yield failure modes. (The
headings for each of these sections have the following
format: method(s) for handling the uncertainties, failure
mode(s), type(s) of analysis.) Finally, probabilistic and
possibilistic results are presented for a nonlinear analysis
with a combination of both failure modes.

4.2.1 Convergence and Fracture Failure

The primary method that was used to study the effect of
uncertainties was MCS. Convergence of the MCS calcu-
lations was evaluated using 100, 1000, and 5000 trials
and by comparing results from MCS with results from a
first order reliability method (FORM). Results for 100,
1000, and 5000 trials are given in Tab. 2. Results are
shown for both linear and nonlinear FE analyses. In
Tab. 2, the applied load used in the linear analysis was
5000 lb; for the nonlinear analysis the applied load was
6000 lb. (The loads in Tab. 2 are different for the lin-
ear and nonlinear analyses because the objective of the
analysis was to evaluate convergence in the center por-
tion of each curve.) Based on these results, MCS with
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Table 2 : Convergence study of Monte Carlo Simulation

Analysis Type Load, F, lb
Probability of Failure by Fracture of Adhesive

Monte Carlo Simulation (MCS)
FORM

n = 100 n = 1000 n = 5000
Linear 5000 0.515 0.511 0.483 0.483
Nonlinear 6000 0.772 0.763 0.764 0.756

5000 trials was considered to be adequate for the studies
presented in this paper. Note that the objective was to ob-
tain convergence in the center portion of each curve. If
the emphasis were on an accurate representation of data
in the tails, a larger number of trials would have been
required.

4.2.2 Probabilistic, Fracture, Linear and Nonlinear

As previously mentioned, for the linear case the total
strain energy release rate GT varies linearly with respect
to F2. That is,

GT = kF2 (2)

where k is a constant. Also, for the nonlinear case, GT is
nearly linear in F 2 for large values of F . This fact can be
used to significantly reduce the computational resources
required to produce curves such as those shown in Fig. 6.
In this figure, the probability of failure from fracture of
the adhesive is plotted as a function of the applied load
F for both a linear and a nonlinear analysis. Each curve
was obtained using scaling of individual trials in a Monte
Carlo simulation (n = 5000) that was carried out at a sin-
gle value of the load F. The details of the scaling tech-
nique are presented below in Section 4.2.3. For the linear
curve, the single value of the load F was 5000 lb; for the
nonlinear curve, the single value of the load F was 6000
lb. Results obtained using FORM are included in this
figure to confirm the accuracy of the scaling technique.
Excellent agreement is obtained between the two sets of
results.

4.2.3 Monte Carlo Simulation and Scaling of Strain
Energy Release Rate

Monte Carlo simulation involves carrying out a large
number of numerical experiments, or trials, with random
values of the quantities that are selected to be random
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Figure 6 : Probability of failure by fracture of the adhe-
sive. MCS is carried out using scaling.

variables. In the trials, the randomness of each random
variable is guided by the statistics specified for that vari-
able – e.g., type of distribution, mean, and standard devi-
ation.

In the present study, for each Monte Carlo trial a statisti-
cally independent configuration of the lap joint is created
from the random values of the input variables. A finite
element model is developed for that configuration and a
finite element analysis is performed to calculate the total
strain energy release rate GT .

In a given trial, if the calculated value of GT exceeds the
experimentally determined critical value GC, the config-
uration is considered to have “failed”. For example, if the
total number of trials in a simulation is 5000 and if there
are 3000 failures, then the probability of failure is 0.6 for
this specific load.

Suppose the first Monte Carlo simulation is conducted
with F = F0. In the general case, in order to obtain the
probability of failure for a different load F1, the Monte
Carlo simulation would have to be repeated for the new
load value. However, by utilizing the fact that G T is lin-
ear with respect to F2, it is possible to substantially re-
duce the computational effort. For each trial, the value of
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GT , for all loads F = F1, can be calculated by scaling the
value of GT calculated for F = F0. The scaling is carried
out in the following way:

GT |F=F1
=

(
F1

F0

)2

GT |F=F0 (3)

The value of GT obtained through scaling for each trial is
compared with the corresponding value of GC. The num-
ber of failures is counted to calculate the probability of
failure for the current load, F = F1. Hence, it is sufficient
to perform the Monte Carlo simulation only once for an
arbitrary load. The probability of failure for any other
load can be calculated by scaling GT for each specific
trial.

In the present study, scaling of GT is used to calculate
the probability of failure for both linear and nonlinear FE
analyses.
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Figure 7 : Possibility and probability of failure by frac-
ture of the adhesive for a linear analysis.

4.2.4 Possibilistic and Probabilistic, Fracture, Linear

Fig. 7 shows the possibility and probability of failure of
the joint by fracture of the adhesive for a linear FE analy-
sis. Here and elsewhere in this paper, for a given load the
possibility of failure is always greater than the probabil-
ity of failure. Also note that, for this case, the possibility
of failure is 1.00 when the probability of failure (p f ) is
0.50. The probability of failure p f reaches 0.50 when the
load F is 5015 lb. In the next section, this value is com-
pared with the value obtained using a nonlinear analysis.

4.2.5 Possibilistic and Probabilistic, Fracture, Linear
and Nonlinear

Fig. 8 shows the possibility and probability of failure of
the joint caused by fracture of the adhesive using both lin-
ear and nonlinear FE analyses. Compared with the curves
for the linear analysis, the curves for the nonlinear anal-
ysis are shifted to the right. For a nonlinear analysis with
p f = 0.50, the load F is 5709 lb. Recall from the previous
section that the linear analysis predicts a value of 5015
lb. According to these results and the results presented
in Fig. 5, a nonlinear analysis predicts that the joint can
carry more load than a linear analysis – i.e., a linear anal-
ysis is more conservative. Further studies carried out in
this paper are based on a nonlinear FE analysis.
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Figure 8 : Possibilityand probability of failure caused by
fracture of the adhesive for both a linear and a nonlinear
analysis.

4.2.6 Possibilistic and Probabilistic, Material Strength

Fig. 9 shows the possibility and probability of failure of
the joint by material strength failure of the strap (stress σ x

greater than yield stress σyield). These results are based
on equation (1) and do not require a FE analysis. For
p f = 0.50, the value of the load F is 5500 lb, which is
less than the value of 5709 lb for the nonlinear fracture
failure mode given in the previous section. The results
shown in Figs. 7 – 9 are confirmed in Fig. 5 which shows
that, for a nonlinear analysis using mean values of the
uncertain parameters, material strength failure occurs at
a lower load than fracture failure; for a linear analysis
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using mean values of the uncertain parameters, fracture
occurs at a lower load than material strength failure.
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Figure 9 : Possibility and probability of material strength
failure of the strap.
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Figure 10 : Possibility of failure by material strength and
by fracture of the adhesive, plotted individually.

4.2.7 Possibilistic, Fracture and Material Strength,
Nonlinear

Fig. 10 shows the possibility of failure of the joint
by fracture of the adhesive (solid line) and by material
strength failure of the strap (dashed line). The possi-
bilistic failure envelope that considers both failure modes
is the maximum of the possibilities of the two failure
modes. (In the general case, the possibility of failure
is the maximum of the possibilities of all the failure
modes.) In this case, the possibilistic curve that consid-
ers both failure modes starts at α = 0 (point A) with the
fracture possibilistic curve – the solid line. It follows

that line up until the line crosses the strength possibilis-
tic curve – the dashed line – at about α = 0.75 (point B).
There, the possibilistic curve that considers both failure
modes shifts to the strength possibilistic curve (line BC)
because, for that value of the applied load F , failure by
material strength of the strap begins to have a higher pos-
sibility than failure by fracture of the adhesive. In a pos-
sibilistic approach for handling uncertainty, if a failure
mode does not have the maximum possibility for some
value of the applied load, it has no effect on the possibil-
ity of failure. In contrast, in a probabilistic approach for
handling uncertainty, secondary failure modes do affect
the probability of failure, as discussed below.

4.2.8 Probabilistic, Fracture and Material Strength,
Nonlinear

Fig. 11 shows the probability of failure of the joint by
fracture of the adhesive and by material strength failure
of the strap. Three curves are shown. The first curve
(filled circular symbols) is for failure of the joint by frac-
ture of the adhesive. The second curve (filled triangular
symbols) is for material strength. The third curve (open
square symbols) is for either of the two failure modes or
both modes – i.e., the third curve is the union of the two
failure events. In the probabilistic approach for calculat-
ing the probability of failure caused by a combination of
the two failure modes, both failure modes have an effect
on the probability of failure, not just the more critical
mode. This phenomenon can be seen in Fig. 11, where
the third curve is to the left of either of the two curves
for the individual failure modes – i.e., the third curve in-
dicates a higher probability of failure than either of the
other two curves.

The effect of two failure modes on the probability of fail-
ure is indicated mathematically as

p f (X ∪Y ) = p f (X)+ p f (Y)− p f (X ∩Y ) (4)

where X indicates failure by the first failure mode and
Y indicates failure by the second failure mode. Finally,
if there were additional failure modes, the curve that ac-
counts for all modes would shift further to the left. That
is, for a given load, that curve would indicate a higher
probability of failure than the curves for any of the indi-
vidual failure modes.
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Figure 11 : Probability of failure by material strength
and fracture, plotted individually and in combination.

4.2.9 Probabilistic and Possibilistic, Fracture and Ma-
terial Strength, Nonlinear

The results of the study are summarized in Fig. 12, which
shows the possibility and probability of failure of the
joint by fracture of the adhesive and by material strength
failure of the strap. Both curves are for a geometri-
cally nonlinear analysis. The possibilistic curve shows
the change in slope where the maximum possibility shifts
from fracture of the adhesive to material strength failure
of the strap. The possibility of failure becomes 1.0 at a
load F of 5500 lb. The probability of failure at that load
is 0.66. (In previous calculations presented in this paper,
the possibility of failure becomes 1.0 when the proba-
bility of failure is 0.50. The combination of two failure
modes causes that pattern to change.) The probability of
failure is 0.50 at a load F of 5405 lb. For all values of
the load F, the possibility of failure is greater than the
probability of failure.

5 Effect of Interchanging Distributions of Random
Variables

To insure that the differences between the probabilistic
and possibilistic results are due primarily to the differ-
ences in the methods, rather than to the differences in the
distributions of the random variables, additional studies
were carried out. In these studies, the distributions of the
random variables were interchanged. That is, the ran-
dom variables for the probabilistic analyses were given a
triangular distribution, and the random variables for the
possibilistic analyses were given a normal distribution.
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Figure 12 : Possibility and probability of failure by com-
bined material strength and fracture. (Nonlinear analy-
sis).

Some of the calculations were then rerun. The modified
distributions and results are given below.
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Figure 13 : Triangular distribution for probabilistic anal-
ysis.

The distributions for the probabilistic and possibilistic
analyses are shown in Figs. 13 and 14, respectively. The
triangular distribution (Fig. 13) for the probabilistic ran-
dom variables is the same as the distribution shown in
Fig. 2, except that the vertical dimension is scaled so that
the area under the triangle is equal to unity. The normal
distribution (Fig. 14) for the possibilistic random vari-
ables is the same as the usual normal distribution except
that the vertical dimension is scaled so that the highest
point is equal to unity. In Figs. 13 and 14, the horizontal
axis gives the value of the random variable, denoted x.
The mean value of the random variable is denoted µ, and
the standard deviation is denoted σ.



764 Copyright c© 2002 Tech Science Press CMES, vol.3, no.6, pp.755-772, 2002







µ
X

1

0

1
2e

x−µ
 σ

−
2

α

Figure 14 : Scaled normal distribution for possibilistic
analysis.

Results for the new distributions are presented in Figs.
15 and 16. Results are presented in Fig. 15 for the prob-
ability and possibility of failure caused by fracture of the
adhesive for a nonlinear analysis. For comparison, re-
sults for the nonlinear case shown in Fig. 8 are plotted as
dashed curves. Results are presented in Fig. 16 for the
probability and possibility of failure caused by combined
material strength and fracture for a nonlinear analysis.
For comparison, the results from Fig. 12 are included in
the figure.
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Figure 15 : Probability and possibility of failure by frac-
ture of the adhesive. Nonlinear analyses.

The results shown in Figs 15 and 16 indicate that for the
general position of either the probabilistic or possibilis-
tic failure curves, the exact definition of the distributions
of random variables is not critical. For example, when

comparing the loads associated with a given probabil-
ity of failure in the load range for which the probabil-
ity of failure varies from 0.1 to 0.9, the difference be-
tween the probabilistic results obtained using the triangu-
lar and normal distributions is less than 3%. Differences
are larger for the possibilistic results. Also, defining the
tails of the failure curves requires more precision.
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Figure 16 : Probability and possibility of failure by
combined material strength and fracture of the adhesive.
Nonlinear analyses.

Based on these results, it can be concluded that the differ-
ences between the probabilistic and possibilistic results
presented in this paper are due primarily to the differ-
ences in the methods, and not to the differences in the
distributions of the random variables. Furthermore, it
can be concluded that for the general position of either
the probabilistic or possibilistic failure curves, the exact
definition of the distributions of random variables is not
critical. This conclusion is important for conceptual and
preliminary design stages when there may be little data
and little need for precision. It means that approximate
distributions can be useful in early design.

6 Discussion of Probabilistic and Possibilistic Meth-
ods

Based on the discussions in the previous three sections,
the following contrasts can be drawn between probabilis-
tic and possibilistic methods. Suppose a structure has
many failure modes, any of which can cause the structure
to fail – i.e., the structure is a series system. (The single
lap shear joint with two failure modes is an example of a
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series system.) In a probabilistic analysis the probability
of failure increases with each failure mode considered.
In contrast, in a possibilistic analysis the possibility of
failure increases only if a failure mode is introduced that
has a larger possibility of failure than any other failure
mode. For example, suppose that the structure is a chain
of identical links. The probability of failure increases
with increasing chain length. In contrast, the possibility
of failure remains the same regardless of chain length. As
a result, for multiple failure modes a possibilistic analysis
may become unconservative.

Using the same reasoning, a possibilistic approach could
exhibit unexpected behavior for a structure with redun-
dancies – i.e., a parallel system. The probability of fail-
ure of the structural system is reduced as the redundancy
is increased. In contrast, the possibility of failure of the
structural system is equal to the possibility of failure of
the component having the largest possibility of failure –
regardless of the number of redundancies. As a result,
for redundant systems a possibilistic approach is conser-
vative. An excellent in-depth discussion of probabilistic
versus possibilistic methods is presented in Nikolaidis,
Cudney, Chen, Haftka, and Rosca (1999).

Possibilistic approaches for treating uncertainties may be
viable for early design. But it is not clear that possibilistic
approaches are superior to probabilistic approaches for
early design. For example, whereas the number of func-
tion evaluations for a possibilistic analysis may be small
compared with a Monte Carlo simulation, the number of
function evaluations may be comparable to that required
by some probabilistic methods such as FORM. These
probabilistic methods can provide more information than
possibilistic methods. Furthermore, even though the pos-
sibility of failure was always greater than the probability
of failure for the bonded joint example with two failure
modes, the assumption that possibilistic design is con-
servative is not a valid assumption when there are many
failure modes. In many cases, the choice of methods de-
pends upon the availability of data. Finally, the choice of
methods depends upon the designer.

7 Concluding Remarks

This paper has explored the effects of configuration and
material uncertainties on the predicted strength of a sin-
gle lap shear joint. Finite element analyses were used to
study the joint. The study contrasts two ways to account
for uncertainties (probabilistic and possibilistic), shows

the effect of two failure modes (fracture in the adhesive
and material strength failure in the strap), examines the
effect of a geometrically nonlinear analysis, shows the
effect of correlated random variables, and illustrates sev-
eral computational techniques.

Probabilistic methods have a strong mathematical back-
ground, and the results are well understood. However,
probabilistic methods require substantial data and can be
computationally expensive. To overcome these short-
comings, possibilistic methods have been proposed for
preliminary and conceptual design because these meth-
ods may have the potential for allowing a large num-
ber of design options to be evaluated rapidly during the
early design stages when there may be little data and lit-
tle need for precision. Based on studies presented here
and elsewhere, it appears that possibilistic methods are
viable for early design, but there are several qualifica-
tions. For example, possibilistic results may not be easy
to interpret, possibilistic methods can be computationally
expensive, and there can be questions about conservatism
when there are many failure modes. As a result of these
qualifications, it is not clear that possibilistic approaches
are superior to probabilistic approaches for early design.
The primary reason for using possibilistic methods ap-
pears to be that these methods require less data than prob-
abilistic methods.

For the calculations presented herein, differences in re-
sults produced by probabilistic and possibilistic methods
are due primarily to differences in the methods rather
than to differences in the distributions (normal vs. trian-
gular) used by the two methods to describe the uncertain
quantities. Furthermore, it can be concluded that for the
general position of either the probabilistic or possibilistic
failure curves, the exact definition of the distributions of
random variables is not critical. This means that approx-
imate distributions can be useful in early design.

Having two failure modes provided an opportunity to
contrast the probabilistic and possibilistic approaches for
treating multiple failure modes. In a possibilistic ap-
proach for handling uncertainty, if a failure mode does
not have the maximum possibility for some value of the
applied load, it has no effect on the possibility of fail-
ure. In contrast, in a probabilistic approach for handling
uncertainty, secondary failure modes do affect the prob-
ability of failure.



766 Copyright c© 2002 Tech Science Press CMES, vol.3, no.6, pp.755-772, 2002

Geometrically nonlinear analyses are essential for accu-
rately predicting the probability and possibility of failure
of the single lap shear joint. The failure load predicted
by the geometrically nonlinear analysis is larger than the
failure load predicted by the linear analysis.

A novel computational technique helped make the calcu-
lations tractable. For a linear analysis, the strain energy
release rates are proportional to the square of the applied
load. For a geometrically nonlinear analysis, the strain
energy release rates are almost proportional to the square
of the applied load for large values of the applied load.
These characteristics make it possible to employ scaling
to substantially reduce computational effort.
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Appendix A: Calculating with Membership Func-
tions

Let α be a parameter that indicates the possibility of an
uncertain quantity taking on a given value. The parame-
ter α takes on values between zero and one. A value of
zero indicates no possibility, while a value of one indi-
cates maximum possibility. A membership function de-
scribes the relationship between α and the possible val-
ues of the uncertain quantities. An example of a member-
ship function is shown in Fig. 2. In a possibilistic analy-
sis, each of the uncertain quantities that contribute to the
response is defined in terms of a membership function.
The objective of the possibilistic analysis is to determine
the corresponding membership function of the response
quantities. The membership functions of the response
quantities can then be compared with the membership
functions for the allowable responses to determine the
possibility of failure.

  

P = 100 lb

L = 40 in.

2 in.

1 in.

Figure A1. Cantilever beam example.

A simple example is used to illustrate how to perform
calculations using membership functions. Consider the
cantilever beam shown in Fig. A1. The tip deflection δ is
given by

δ =
PL3

3EI
(A1)

where P is the load at the tip, L is the length, E is Young’s
modulus, and I is the moment of inertia. Assume that L
and I are uncertain quantities with membership functions
similar to that shown in Fig. A2. The vertical scale is
the possibility, denoted α, which varies from zero to one.
The values of Eand P are taken to be 107 psi and 100 lb,
respectively.

The membership functions for L and I are isosceles tri-
angles with upper and lower bounds (UB, LB) shown in
Tab. A1. The bounds are for α = 0.0, 0.5, and 1.0. The
objective is to obtain an estimate of the uncertainty in δ
by calculating its membership function.

Po
ss

ib
ili

ty
, α

I, L

1.0

.5

0

Figure A2. Example membership function for moment
of inertia I and length L of cantilever beam example.
(Filled circles bounds on I and L corresponding to α =
0.0, 0.5, and 1.0.).

To obtain the upper and lower bounds for δ at α = 0.0,
calculate δ for various combinations of L and I within
their α = 0.0 bounds and select the largest and smallest
values. That is, calculate δ for several combinations of L
and I in the ranges 39.8 ≤ L ≤ 40.2 and
0.64583 ≤ I ≤ 0.68750. To obtain the upper
and lower bounds for δ at α = 0.5, calculate δ for various
combinations of L and I within their α = 0.5 bounds and
select the largest and smallest values. That is, calculate δ
for several combinations of L and I in the ranges
39.9 ≤ L ≤ 40.1 and 0.65625 ≤ I ≤ 0.67708.
The same approach is used for other values of α. To ob-
tain the most likely value of δ, which is the value corre-
sponding to α = 1.0, use the most likely values of L and
I, 40.0 and 0.66667, respectively.
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Table A1. Assumed bounds on independent variables I and L and corresponding calculated bounds for tip
deflection of cantilever beam example

α I in.4 L in. δ in.
LB UB LB UB LB UB

0.0
0.5
1.0

0.64583
0.65625
0.66667

0.68750
0.67708
0.66667

39.800
39.900
40.000

40.200
40.100
40.000

0.30567
0.31272
0.32000

0.33530
0.32752
0.32000

For this simple example it is easy to select the values of
L and I that give the upper and lower bounds on δ. The
upper bound on δ is given by a combination of the upper
bound on L and the lower bound on I. The lower bound
on δ is given by a combination of the lower bound on L
and the upper bound on I. In general, to calculate the
upper and lower bounds on a response quantity at a given
value of α it is necessary to use several combinations of
values of the independent variables at that same value
of α. These values include both the bounds and values
between the bounds. It cannot be assumed that bounds on
the response quantities can be identified by considering
only the bounds on the independent variables.

Appendix B: Effect of Correlated Variables

In the body of this paper, the random variables are as-
sumed to be independent – that is, the value of each ran-
dom variable is assumed to be independent of the values
of the other random variables. This appendix describes
probabilistic calculations that were made under the as-
sumption that some of the random variables are corre-
lated – that is, the values of these random variables de-
pend upon the values of other random variables. Results
were obtained using a nonlinear finite element analysis
described in the body of the paper.

The probabilistic calculations described in this appendix
were made under the assumption that the thicknesses of
the lap and strap (t1 and t2) are fully correlated and that
the Young’s moduli of the lap and strap (E m1 and Em2) are
fully correlated. This means that t1= t2 and Em1 = Em2.

Because material strength failure in the strap depends
only upon the force F , the strap thickness t 1, and the yield
stress of the strap σyield , the assumed correlation has no
effect on the probability of failure by material strength
failure – i.e., Fig. 9 is not affected. The assumption that
t1 and t2 are fully correlated and that Em1 and Em2are fully

correlated does have a small effect on the probability of
failure by fracture of the adhesive. That effect is shown
in Fig. B1 and in Tab. B1.
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Figure B1: Probability of failure by fracture of the
adhesive, for independent random variables and
correlated random variables.

Fig. B1 shows the probability of failure by fracture of
the adhesive for the cases of independent random vari-
ables and correlated random variables. As can be seen in
Tab. B1, the mean value of the failure load is about the
same for the correlated variable case as it is for the inde-
pendent variable case. However, the standard deviation
is smaller for the correlated variable case than it is for
the independent variable case. (There is less uncertainty
in the correlated case.)

Fig. B2 shows the probability of failure considering both
material strength and fracture and for both independent
and correlated random variables. For a given load, the
probability of failure is slightly higher if the variables are
independent.
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Table B1: Effect of correlated random variables on the statistics of failure for cases of failure by
fracture of the adhesive and by combined fracture of the adhesive and material strength of the strap.

Failure mode

Independent
random variables

Correlated
random variables

Mean Standard
deviation

Mean Standard
deviation

Fracture 5766.7 393.6 5765.2 361.3
Combined fracture

and strength
5443.0 242.9 5478.3 252.7

Table B2: Illustration of how Monte Carlo simulation is used to calculate individual and system probability of
failure for a series system. Failure by Fracture or Strength causes system failure – here denoted Combined. F
indicates failure for a trial; 0 indicates survival.

Trial No.
Case A Case B

Fracture Strength Combined Fracture Strength Combined
1
2
3
4
5
6
7

0
F
F
0
0
F
F

F
0
F
0
F
F
0

F
F
F
0
F
F
F

F
0
F
0
F
F
F

F
0
F
0
F
F
0

F
0
F
0
F
F
F

Total
Failures

4 4 6 5 4 5

P(failure) 0.57 0.57 0.86 0.71 0.57 0.71
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Figure B2: Probability of failure considering both
materials strength and fracture of the adhesive, for
independent random variables and correlated random
variables.

Fig. B3 combines the curves shown in Figs. B1 and B2
with the curve giving the probability of material strength
failure.

For loads greater than about 5800 lb, correlation slightly
increases the probability of failure by fracture. In con-
trast, if both fracture and material strength failures are
considered, correlation slightly decreases the probability
of failure. One explanation for this counterintuitive result
involves the procedure used in a Monte Carlo simulation
to calculate individual and system probabilities of fail-
ure for a series system. (See sections 4.2.3 and 6.) In
that load range, even though correlation resulted in an
increase in trials having fracture failure, correlation also
produced an even greater increase in the number of tri-
als in which both fracture and strength failures occurred.
Since strength failure was not affected by correlation, the
number of trials having system failure decreased, result-
ing in a lower probability of system failure. This situa-
tion is illustrated in Tab. B2. Compared with Case A,
Case B has a higher probability of fracture failure, but a
lower probability of failure considering both fracture and
strength.

The curves in Fig. B3 emphasize the fact that material
strength failure is the dominant failure mode and that cor-
relation of the selected random variables has only a small
effect on the probability of failure.
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Figure B3: Probability of failure considering both
material strength and fracture of the adhesive, plotted
individually and in combination, for independent
random variables and correlated random variables.

Appendix C: Approach Used to Calculate Fracture
in the Adhesive

It was stated in section 3.3.1 that the strain energy release
rates for self-similar crack growth are used to evaluate
fracture in the adhesive due to an existing crack. This
appendix provides details of that evaluation.

The evaluation consists of calculating values of the total
strain energy release rate GT and comparing these val-
ues with the experimentally determined value of the crit-
ical strain energy release rate GC [Reeder, (1992); Reeder
(1993)]. Failure is assumed to occur when the total strain
energy release rate is equal to or greater than the critical
strain energy release rate, i.e.,

GT ≥ GC (C1)

For this joint configuration, the total strain energy release
rate GT is given by

GT = GI +GII (C2)

where GI and GII are the strain energy release rates for
mode-I and mode-II failures, respectively. The critical



Probabilistic and Possibilistic Analyses 771

strain energy release rate in equation (C1) for mixed-
mode fracture is dependant on the mode-mixity [Reeder,
(1992); Reeder (1993)]. The critical strain energy re-
lease rate used in this paper is for FM-300 adhesive
tested in mixed-mode conditions with a mode-mixity,
GI/GII = 0.3 [Mall and Johnson (1985)].

The “virtual crack closure technique” (VCCT) is used
to evaluate GI and GII using the crack tip forces and
the opening and sliding displacements of the crack faces
[Rybicki and Kanninen (1977); Raju (1987); Rama-
murthy, Krishnamurthy, Narayana, Vijayakumar, and
Dattaguru (1986); Smith and Raju (1998); Krueger,
Minguet, and O’Brien (2000)]. Due to large rotations of
the model in the vicinity of the crack tip, a nonlinear for-
mulation of the VCCT that utilizes a local x

′
-y

′
system

(see Fig. C1) is used [Johnson (1987); Smith and Raju
(1998)]. The location of the nodes j and i shown in Fig.
C1(b) are used to determine a local x

′
axis of the rotated

coordinate system. The expressions for GI and GII in the
local coordinate system can be written using the notation
shown in Fig. C1 as:

GI = − 1
2∆c

[
Y

′
i (v

′
m −v

′
m∗)+Y

′
j(v

′
l −v

′
l∗)

]
(C3)

GII = − 1
2∆c

[
X

′
i (u

′
m −u

′
m∗)+X

′
j(u

′
l −u

′
l∗)

]
(C4)

where

∆c is the crack growth increment, and is equal to the size
of the elements at the crack tip,

X
′
i ,Y

′
i are the nodal forces at node i evaluated using the

elements I and J in the x
′

and y
′
directions respectively,

X
′
j,Y

′
j are the nodal forces at node j evaluated using the

element I in the x
′
and y

′
directions respectively,

u
′
m,u

′
m∗,u

′
l,u

′
l∗ are displacements in the x

′
direction at

nodes m,m∗, l, and l∗ respectively, and

v
′
m,v

′
m∗ ,v

′
l,v

′
l∗ are displacements in the y

′
direction at

nodes m,m∗, l, and l∗ respectively.

The values of the forces and displacements on the right
hand sides of equations (C3) and (C4) are extracted from
a FE analysis.

For a linear analysis, the forces and displacements X
′
, Y

′
,

u
′
, and v

′
on the right sides of equations (C3) and (C4) are

∆c

c

Crack

∆c

a) Undeformed shape.

y’, v’

y

x

x’, u’
m

m*l*

l

ij

I

J

b) Deformed shape.

Figure C1: Model and notation used in virtual crack
closure technique.

linear with respect to the applied load F . The total strain
energy release rate GT is calculated from the sum of the
products of these quantities and hence is proportional to
F2.

Appendix D: Linear vs. Nonlinear Analysis of
Bonded Joints and Computational
Techniques Used for Calculating
Derivatives of GT

In Fig. D1, the derivative of GT with respect to F 2 (the
slope in Fig. 5) is plotted as a function of the applied
load F . Note that for the linear case the derivative is a
constant, while for the nonlinear case the derivative is
not a constant. The derivatives for the linear case and
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Nonlinear Analysis
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Figure D1: Derivative of GT with respect to F 2.

nonlinear case are the same at F = 0, but the derivatives
differ for other values of F.

Fig. D2 provides a more dramatic contrast between the
linear and nonlinear analyses. In this figure, the second
derivative of GT with respect to F 2 is plotted as a func-
tion of the applied load F. For the linear case, the second
derivative is zero for all values of the load F. For the
nonlinear case, the second derivative is relatively large
near F = 0, then drops by three orders of magnitude near
F = 2000 lb.

Nonlinear Analysis
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Figure D2: Second derivative of GT with respect to F 2.

Based on the results presented in Figs. D1 and D2, the
nonlinear analysis curve in Fig. 5 can be interpreted as

follows. At F = 0 the slope of the nonlinear analysis
curve is equal to the slope of the line for the linear so-
lution. For values of F between zero and 2000 lb, the
slope of the curve becomes smaller as the joint straight-
ens and stiffens. The nonlinear analysis accounts for that
straightening and stiffening. During straightening, G T is
not linear with respect to F 2. For values of F greater than
about 3000 lb, GT is nearly linear in F 2 with a slope that
is smaller than that calculated from the linear analysis. In
summary, the geometrically nonlinear analysis accounts
for the joint rotation, straightening, and stiffening, while
the linear analysis does not account for these phenom-
ena. Because of the scale, the progress of the rotation,
straightening, and stiffening cannot be seen in Fig. 5, but
the changes can be seen clearly in Figs. D1 and D2.

The data in Figs. D1 and D2 were obtained using a com-
bination of chain rule differentiation and finite difference
approximations. The chain rule differentiation provided
expressions containing derivatives of G T with respect to
F rather than F 2. That change was made because the val-
ues of GT were calculated at equal increments in F (100
lb increments) rather than equal increments in F 2. As a
result, multipoint finite difference approximations could
be more accurate for derivatives with respect to F than
for derivatives with respect to F 2.

For example, for Fig. D2, chain rule differentiation pro-
vides the following expression

d2GT

d(F2)2 =
1

4F2

d2GT

dF2 − 1
4F3

dGT

dF
(D1)

The values of the derivatives on the right hand side in
equation (D1) were calculated using 4- and 5-point fi-

nite difference approximations. The value of d 2GT
d(F2)2 at

F ≈ 70 lb was calculated with a 2-point central differ-
ence formula. The computational technique described

above was most valuable in calculating d 2GT
d(F2)2 for small

values of F where that derivative is changing rapidly.


