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Computational Aeroelasticity Using a Pressure-based Solver

Ramji Kamakoti1, Yongsheng Lian1, Sean Regisford1, Andrew Kurdila1 and Wei Shyy1

Abstract: The non-linear fluid-structure interaction
problem is studied for two different wing configurations
based on moving grid techniques. These configurations
demonstrate the interaction between a rigid structure and
fluid, as well as the interaction between a flexible struc-
ture and fluid. A closely-coupled approach is used to per-
form the combined fluid and structure interaction com-
putations. The flow solver is an unsteady, implicit, three-
dimensional, multi-block, pressure-based Navier-Stokes
solver. The structure solver for the AGARD wing model
is based on a linear, time-invariant model derived via
classical structural finite elements whereas the flexible
structural solver is based on a non-linear dynamic mem-
brane model with the material obeying the hyperelastic
Mooney’s model. Suitable interfacing techniques are in-
corporated to couple and synchronize the flow and struc-
ture solvers. We present unsteady computations per-
formed on both rigid and membrane wings to highlight
the computational characteristics.

1 Introduction

The interaction of aerodynamic forces and inertial forces
within elastic structural systems is a well-known and
difficult problem. In a coupled system, the external
forces acting on a structural system such as a wing leads
to a deformation in the wing geometry, and this struc-
tural deformation thereby leads to modified aerodynamic
loads. While computational methods that study differ-
ent aspects of aeroelastic response have been studied for
some time, numerous open research issues remain to be
resolved. For example, many approaches in computa-
tional aeroelasticity seek to synthesize independent com-
putational approaches for the aerodynamic and the struc-
tural dynamic subsystems. This strategy is known to be
fraught with complications associated with the interac-
tion between the two simulation modules. Some of the
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issues arise from the fact that the computational fluid dy-
namic (CFD) and the computational structural dynamic
(CSD) mesh systems are quite different. Frequently, the
former uses a Eulerian or spatially fixed coordinate sys-
tem while the latter uses a Lagrangian or material fixed
coordinate system. Hence, care must be taken to develop
a suitable interfacing technique between the two mod-
ules. Also, since the time scales are different for the
two modules, synchronization of the flow and structure
solvers are no longer straightforward.

Computational aeroelasticity (CAE) can be classified
into two major classes. They are coupled analysis and
uncoupled analysis. The coupled analysis can be further
divided into fully coupled and closely-coupled analysis.
In an uncoupled analysis, the fluid domain and struc-
tural system are treated as two separate modules with
only external interaction between them. This method
is limited to small perturbations with nominally linear
structural models. In fully coupled analysis, the govern-
ing equations for fluids and structures part are combined
into one set of equations and these equations are sub-
sequently solved and integrated in time simultaneously.
Since the matrices associated with structures are an order
of magnitude stiffer than those associated with fluids, it
is virtually impossible to solve the entire system using
a monolithic numerical scheme. However, some meth-
ods have been developed using fully coupled methods,
but are mainly restricted to 2-D problems. In the closely-
coupled approach, the fluid domain and structural system
are modeled in separate domains but they are unified into
one module. The exchange of information between the
fluid and structure modules takes place at the interface.
The coupling is integrated thereby allowing efficient ex-
change information at the interface. Several models have
been developed over the years to solve various problems
in aeroelasticity addressing several issues discussed thus
far. A few of them are discussed next.

Cunningham et al. (1988) developed a computational
scheme for transonic aeroelastic analysis using the tran-
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sonic small disturbance (TSD) formulation. The equa-
tions of motion were based on the natural vibrational
modes of the aircraft. Robinson et al. (1991) developed
a model along the same lines but made use of deform-
ing mesh scheme for re-meshing the CFD domain. This
technique of using TSD formulation fails when there is
a strong shock or when viscous effects dominate. To
overcome this, Schuster et al. (1990) came up with a
model that used a 3-D flow solver coupled with a linear
static structure model to study the aeroelastic analysis of
a fighter aircraft. Grid deflection method was used to up-
date the grid after each time step. This method was lim-
ited to static analysis. Lewis and Smith (1998) extended
this method using shell finite element structures to study
flutter in an engine liner.

Guruswamy and Byun (1993, 1995) developed a method
by directly coupling Euler/Navier-Stokes equations for
fluids with plate/shell finite element structures. A do-
main decomposition method, wherein fluids and struc-
tures modules were solved in separate modules, was used
in this regard. The transformation of loads from CFD
mesh to CSD mesh was done by bilinear interpolation
and virtual surface methods. Bhardwaj et al. (1998) de-
veloped a coupling procedure that combined a variety of
CFD and CSD codes. Patil et al. (1999, 2000) devel-
oped a theoretical as well as computational non-linear
aeroelastic model for high aspect-ratio wings. They used
the mixed variational formulation of beams in moving
frames. Garcia and Guruswamy (1999) developed a cou-
pled model of Navier-Stokes flow model with beam fi-
nite element model to perform static aeroelastic analysis
of high aspect-ratio wings. Farhat and Lesoinne (2000)
developed a serial as well as a parallel algorithm for
nonlinear transient aeroelastic problems. They used the
Arbitrary Lagrangian Eulerian (ALE) formulation with
a deforming mesh algorithm for grid movement. On a
similar note, Rugonyi and Bathe (2001) used a direct as
well as partitioned solution procedure using the ALE for-
mulation to solve fluid-structure interaction problems for
incompressible flows. Soulaimani (2000) developed a
FEM based solver for 3-D Euler and Navier-Stokes flow
equation coupled with a commercial FEM code for non-
linear CAE. A brief summary of a few models explaining
the salient features like the flow solver, structural solver
used, etc and the test cases used to relate the models is
presented in Table 1.

Our model makes use of the closely-coupled approach

that synthesizes a multi-block 3-D CFD solver and a lin-
ear, time-invariant structural model. The CFD code ad-
dresses the full 3-D Navier-Stokes equations along with
well-validated turbulence models. The solver also has
the capability to include effects for multi-block moving
boundary treatment. We use linear interpolation and ex-
trapolation techniques to carry out the interfacing be-
tween the two modules. The motivation for this work
is to expand our well-validated CFD approach to study
coupled aeroelastic models and consider the complexity
of coupling procedures in 3-D wing models.

The main objective of this work is to study the fluid-
structure interaction problem for 3-D wing geometries.
We consider the AGARD 445.6 wing (Yates, 1987) and
a membrane wing motivated by micro-air vehicle appli-
cations (Ifju et al., 2002) to demonstrate our methodol-
ogy. In this work, we focus on the meshed approach
with moving grid techniques. It should be noted that re-
cent development in meshless methods (for comprehen-
sive reviews, see e.g., Atluri and Shen (2002a,b), and Li
and Liu (2002)) has also been extended to treat flexible
structure problems, such as that presented by Cho and
Atluri (2002).

Numerous papers have been published about the vari-
ous computations done for the AGARD wing (Bennet
and Edward, 1998). A brief description of the existing
methods and the features addressed in our model for the
AGARD case is shown in Table 2. As can be seen from
the table, our model incorporates all the key features that
go into a CAE model viz., well-defined flow solver with
moving mesh techniques and turbulence models, a sep-
arate structural solver and an interfacing technique that
combines these two. Most of the models, until recently,
used the same grid for both CFD and CSD computa-
tions. Recently, Liu et al (2000) developed a model for
the AGARD wing, which uses separate grids with a cor-
responding interfacing between them and presented so-
lutions using the Euler equations for flow module. We
choose this as our benchmark model but we use the full
Navier-Stokes solutions, neglecting compressibility ef-
fects, for our flow module. We present the interfac-
ing techniques developed thus far using the linear time-
invariant structure model for the AGARD wing model as
well as the membrane model on a µAV wing.
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Table 1 : Table of a few existing aeroelastic models
Author’s Name Description of work Main Results
Cunningham,
Batina, Bennett
(1988)

• Computational scheme for transonic aeroelastic
analysis to perform flutter analysis
• Flow: Transonic small disturbance formulation
• Structure: Lagrange Equations of motion based on
the natural vibrational modes
• AGARD configuration with 45 deg sweep angle and
M=0.338-1.141

• Aerodynamic forces and flutter
characteristics obtained using linear
formulation compared well with ex-
periment.
• Non-linear flutter results compared
well with expt but not so with linear
results
• Can treat configurations with arbi-
trary lifting surfaces

Schuster,
Vadyak, Atta
(1990)

• A 3-D flow solver coupled with linear static struc-
tural model to study aeroelastic response of aircraft
• Grid deflection method is used to update the grid
after each time step
• CFD solver: ENS3D
• Swept, tapered wing with constant cross-section
with M=0.9 and α = 9 deg was used
• Wing mesh: 92 x 32 x 32 points

• Aeroelastic analysis compared well
with experiment with respect to pres-
sure coefficient and twist
• Flexible wing/body configuration
gave better results compared to rigid
body configuration
• Separation on the upper surface was
not predicted

Guruswamy
Byun
(1993)

Guruswamy
Byun
(1994)

• Compute aeroelasticity by direct coupling using
time-integration method
• Fluid: Euler equations/N-S equations
• Structure: Plate finite elements
• Aerodynamic loads are transferred by bilinear inter-
polation and by virtual surface methods
• CFD grid (151 x 30 x 35)
• FEM grid (36 plate elements)
• Fighter type wing with M=0.854 and α =1 deg.

• Validity of coupling plate elements
with Euler equation
• Virtual surface method transfers
loads more accurately than bilinear
interpolation technique

Bhardwaj,
Kapania,
Reichenbach,
Guruswamy
(1998)

• Static aeroelastic solutions using a linear structural
model.
• Flow solver: NASTD
• FEM solver: NASTRAN
F-18 wing with M=0.95 and α =1 deg.
• CFD and CSD gird points are matched directly
• CFD grid (800,000 points)
• FEM grid (2000 nodes)

• Maximum deflection compares
well with prev. analytical results
• Increased accuracy of direct finite
element displacement data compared
to modal analysis
• Aeroelastic coupling is not as ef-
ficient as a completely integrated
scheme

Lewis
and Smith
(1998)

• External aeroelastic simulation for internal aerody-
namics and shell structures
• Coupled set of structure and flow equations
• Predictor-corrector scheme for structural integration
• Solver used: ENS3DAE
• Tested on an engine liner to study flutter with M=0.7
in inner region and M=0.4 in the annular region

• Results showed the engine liner to
be dynamically stable
• Inner flow mach no. had little effect
on aeroelastic response
• Effect of pressure loadings on the
shell structures were not considered
in this method
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Table 1 : (Cont.) Table of a few existing aeroealstic models
Author’s Name Description of work Main Results
Patil, Hodges,
Cesnik
(1999)

• Non-linear aeroelastic model for complete aircraft
model for high AR wings
• Mixed variational formulation of beams in moving
frames
• Finite-state airloads for deforming airfoils on fixed
wings
• Linear and non-linear analysis were considered for
comparative study
• Rigid and flexible wings were compared
• High-altitude, low-endurance aircraft is considered
for performing tests

• Linear analysis produced almost
identical results for frequencies of the
beam for flutter calculations
• Flutter speed and freq was found to
be less than that predicted by linear
model
• Flight dynamics changed consider-
ably for flexible wings
• The steady state solution and the
frequency modes were affected by
wing flexibility

Patil, Hodges
(2000)

• Theoretical non-linear aeroelastic analysis of high
AR wings to investigate effects of geometrical non-
linearity
• Structural solver: nonlinear mixed variational for-
mulation
• Aero solver: 3-D nonplanar double lattice theory
• Rigid slender wing with semi-span AR=16 and flex-
ible wing with α =10
• Grid: steady: 16 x 1; unsteady: 48 x 6

• Structural nonlinearity, nonplanar
geometry and 3-D effects have little
effect on a rigid wing
• Nonplanar geometry and structural
nonlinearity have negligible effect on
flexible wings too
• A decrease in flutter speed with in-
crease in wing loading was noted for
flexible wings

Garcia,
Guruswamy
(1999)

• Model for coupled nonlinear beam FEM model with
N-S solver for static aeroelastic analysis of high AR
wings
• Flow solver: ARC3D fluids module of ENSAERO-
WING code
• Structural code: NASTRAN
• Aeroelastic research wing (ARW-2) @ M=0.85 and
α =2

• FEM results are accurate except for
deflections which were smaller than
modal results
• Nonlinear and linear beam models
predicted similar pressure coefficient
results
• Geometrical nonlinearity was
found to be negligible

Soulaimani
(2000)

•Methodology for non-linear computational aeroelas-
ticity
• Flow solver: FEM based 3-D Euler and N-S eqns.
For unstructured meshes with ALE formulation for
moving grids
• Structure: Commercial FEM code
• Coupling: Partitioned solution procedures for time
integration
• M=0.96 and α =0 on a AGARD-445.6
• Unstructured Grid (84946 points)

• The FEM based scheme developed
is found to be qualitatively similar to
the finite volume schemes

Farhat
and
Lesoinne
(2000)

• Serial and Parallel methodologies for nonlinear tran-
sient aeroelastic problems
• Arbitrary Lagrangian-Euler equations are incorpo-
rated into the unstructured flow solver
• Deforming mesh algorithm was used to enable grid
movement
• M=0.901 on an AGARD wing

• Partitioned algorithms were found
to be efficient than monolithic
schemes
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Table 1 : (Cont.) Table of a few existing aeroealstic models
Author’s Name Description of work Main Results
Rugonyi
and Bathe
(2001)

• Partitioned and Direct methodologies for fluid-
structure interaction problems using FEM
• Flow: Finite element ALE formulation
• Structure: Lagrangian equations of motion
• Cases considered

− Pressure wave propagation in a tube
− Collapsing channel
− Fuel pumps and analysis of lamps

• Effectiveness of using FEM to ob-
tain response of fluid flows and struc-
tures were enlightened
• Direct and Staggered methods were
compared

Table 2 : Description of existing CAE methods for an AGARD wing

Author CFD solver
Deforming mesh

algorithm
Structural solver Interfacing technique

Cunningham et al
(1988)

TSD None Modal Analysis none

Robinson et al.
(1991)

Euler Spring analogy Modal analysis none

Lee-Rausch and
Batina (1993)

Navier-Stokes Spring analogy Modal analysis none

Soulaimani (2000) FEM based ALE formulation Commercial code none

Liu, et al. (2000) Euler TFI method Modal equations of
motion from FEA

Spline methods

Farhat and
Lessoine (2000)

Unstructured
Navier-Stokes

ALE formulation Finite element
based solver

Conservative method

Present approach Full Navier-Stokes TFI like method
Bernoulli-Euler
beam equations

Linear
interpolation
extrapolation

2 Numerical Procedure

2.1 Flow Solver

A pressure-based numerical procedure presented (Shyy,
1994; Shyy et al. 1997) for curvilinear coordinates is
adopted as the flow solver (STREAM). It solves the full
Navier-Stokes equations for 3-D incompressible flows.
The continuity equation and u-momentum equation are
given below. The v and w-momentum equations can be
written along similar lines.

∂ (Jρ)
∂ t

+
∂ (ρU)

∂ξ
+

∂ (ρV)
∂η

+
∂ (ρW)

∂γ
= 0 (1)

∂ (Jρu)
∂ t

+
∂ (ρUu)

∂ξ
+

∂ (ρVu)
∂η

+
∂ (ρWu)

∂γ

=
∂

∂ξ
[
µ
J

(q11uξ +q12uη +q13uγ)]

+
∂

∂η
[
µ
J

(q21uξ +q22uη +q23uγ)] (2)

+
∂
∂γ

[
µ
J

(q31uξ +q32uη +q33uγ)]

− [
∂

∂ξ
( f3p)+

∂
∂η

( f6p)+
∂
∂γ

( f9p)]+G1(ξ ,η ,γ).J

where ξ , η ,γ are time dependent curvilinear coordinates,
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e.g., ξ = ξ (x,y, z, t). Here, u is the Cartesian velocity
component, p is the pressure, µ accounts for both lam-
inar and turbulent viscosity. U , V , and W , are the con-
travariant velocity components and they read as follows:

U = f11(u− ẋ)+ f12(v− ẏ)+ f13(w− ż) (3)

V = f21(u− ẋ)+ f22(v− ẏ)+ f23(w− ż) (4)

W = f31(u− ẋ)+ f32(v− ẏ)+ f33(w− ż) (5)

where fi j,qi j are the metrics of the conversion from
Cartesian coordinates to curvilinear coordinates and ẋ, ẏ,
and ż are the grid velocities which are approximated by a
first order backward time difference

ẋ =
x−x0

∆t
(6)

where ∆t is the fluid solver time step and the superscript
refers to the previous time level. The determinant of the
transformation matrix between Cartesian and curvilinear
coordinates is given by

J = xξ yη zζ +xζ yξ zη +xη yζ zξ −xξ yζ zξ −xζ yη zξ −xη yξ zζ

(7)

More detailed discussion about these equations can be
found in Shyy (1994).

The solver incorporates many of the modern tech-
niques for handling complex flow problems including
multi-block methods and controlled numerical diffusion
schemes for convection and pressure terms. A combined
Cartesian-contravariant velocity formulation is adopted
to facilitate a conservative, finite-volume formulation.
The convection terms are treated using second-order up-
wind scheme, while the unsteady terms are treated using
first order implicit Euler method. The remaining terms
are treated using second-order central difference scheme.
More details about the code can be found in Thakur and
Wright (1999).

2.1.1 Turbulence modeling

We use the most widely employed two-equation model
viz., the κ − ε model for turbulent computations. Since
the standard κ − ε model is only valid in fully turbulent
regions, it requires additional modeling near wall regions
or in the no-slip regions. We use wall functions tech-
nique (Launder and Spalding, 1974) to model the near
wall region. This technique uses the law of the wall as

the constitutive relation between the velocity and the sur-
face shear stress. The detailed formulation of the model
can be found in Shyy et al. (1997).

2.1.2 Updating Jacobian Values

While formulating the above-mentioned flow solver for
the moving boundary problem, we need to make sure that
the geometric conservation law is satisfied. This was en-
sured by updating the Jacobian values after every time
step. This satisfies the geometric conservation law given
by

J−J0

∆t
+ U |ew + V |ns + W |tb = 0 (8)

where J0 is the Jacobian from the previous time step and
e, w, n, s, t ,b represent the six faces of the control volume
which are named east, west, north, south, top and bottom
respectively.

2.2 Linear Time-invariant Structural Model

A general, linear, time-invariant structural model is used
in the coupled CFD-CSD method. Thus, the equations of
motion that govern the structural dynamics of the wing
take the well-known form:

[M]q̈(t)+[C]q̇(t)+[K]q(t) = Q(t) (9)

where [M] is the mass matrix, [C] is the damping ma-
trix, [K] is the stiffness matrix, Q(t) is a vector contain-
ing the generalized forces associated with aerodynamic
loads, and q is a vector containing the generalized dis-
placements. The structural solver integrates these equa-
tions of motion in time for one time step given the time
step size, the pressures on structural nodes at the initial
time for the time step, and the initial geometry of the
wing.

The pressures are provided as scalar pressures located
at structural grid points that were obtained and interpo-
lated from a CFD calculation on a finer fluid grid. The
geometry of the wing is defined in terms of the spatial
global coordinates of each structural node, a list of point-
ers that show the relationship between nodes and surface
elements, a list of pointers that show the relationship be-
tween surface elements and nodes, and a list of pointers
that show the relationship between surface elements and
super-elements.
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Now, the structural model will be described in order
to demonstrate how the structural solver integrates the
equations of motion for a single time step. The scalar
pressures, obtained from an interpolation of the pres-
sures from a CFD calculation, are converted to pressure
forces (P1,P2,P3) acting at each node of the structural
grid. These pressure forces are the ones used to gener-
ate the aerodynamic loads (Qw and Qθ) on the wing, as
illustrated by the equations:

∫ T

o
Q(t)δq(t)dt =

∫ T

0

∫
S

P ·δrdSdt (10)

Qw =
∫

S
P3Nw (y)dldy (11)

Qθ =
∫

S
[P1 (−ξ (y, l)sinθ (y)+η (y, l)cosθ (y)) (12)

−P3 (ξ (y, l)cosθ (y)+η (y, l)sinθ (y))]Nθ (y)dldy

Here, N’s are the shape functions, y is the spanwise loca-
tion and l is the Chordwise location of the element.

Furthermore, the evaluation of the aerodynamic loads is
accomplished by the use of single point quadrature over
each surface element. Using these aerodynamic loads,
the translation and twist of each super element is ob-
tained with respect to the elastic axis of each super el-
ement. This is illustrated in Figure 1.

Figure 1 : Displacements measured with respect to the
Elastic Axis

The above model is used for the AGARD wing case
where the cross-section is assumed to be rigid. However,
for the membrane case, we cannot use the same model.

We formulate the membrane model based on the assump-
tion that the membrane material considered obeys the
hyperelastic Mooney-Rivin model. The Green-Lagrange
strain tensor is used for the description of large strains.
The dynamic response of such a membrane is described
by a system of second-order time-dependent equations

given by

[M] D̈(t)+Fint = Fext (13)

where [M] is a positive definite mass matrix, D(t) repre-
sents the nodal displacement vector, F int is the internal
force and Fext is the external load. These equations are
integrated in time using a second-order explicit scheme.
An implicit method has also been developed. More de-
tails of the membrane model can be found in Lian et al.
(2002).

2.3 Moving Grid Techniques

For fluid/structure problems, we must account for grid
movement along the deformed surface. Since the struc-
ture moves after every time step, we need to accommo-
date this movement in the CFD domain. This is usu-
ally done with some type of dynamics related mesh al-
gorithm. For example, Robinson’s (1991) spring anal-
ogy method deals with every grid point like a point mass
connected with spring whose stiffness is inversely pro-
portional to the length of the connecting points. More re-
cently, to attack the complex multi-block case, Hartwich
and Agrawal (1997), Wong et al. (2000), and Reuther et
al. (1996) proposed their own methods. Although they
have different forms, they all belong to the transfinite in-
terpolation class. In our computation, we use Hartwich’s
method to deform the surface points and Reuther’s per-
turbation method to regenerate the volume grid (Lian et
al. 2001)

We use the master/slave concept to move the multi-block
edges, where master nodes denote the list of all nodes on
the moving boundary and slave nodes are all the nodes
on the multi-block edges. The slave nodes are moved
based on the deflection of the master nodes given by the
following expression

x̃s = xs +θ(x̃m −xm) (14)

where the subscripts m and s represent master and slave,
respectively, tilde (∼) indicates the new position and gθ
is the decay function that controls the movement of the
slave nodes, given by

θ = exp{−β min[FACTOR,dv/(ε +dm)]} (15)

where

dv = (xv−xm)2 +(yv −ym)2 +(zv − zm)2 (16)

dm = (x̃m −xm)2 +(ỹm −ym)2 +(z̃m − zm)2 (17)
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Figure 2 : Figure depicting the effect of the 2 parameters, FACTOR and beta on the re-meshing.

FACTOR is some minimum value assigned to handle
stiffness issues at far away grid points and ε is an ar-
bitrary small number to eliminate division by zero.

As can be seen from Eq. (15), the decay function itself
is controlled by two parameters: β and FACTOR. The
second of these parameters matter only when dv/dm is
greater than FACTOR. This is usually the case for small
displacements i.e., when dm is very small compared to
dv or for slave points away from the master nodes when
dv becomes large compared to dm. The parameter, β is
used to control the nature of grid movement like a soft
body or a rigid body. Lower value of β correspond to
higher value of θ implying a more rigid movement of
blocks and higher value of β correspond to lower value
of θ implying a movement like a soft ball. The effect
of these parameters on grid movement on a simple three-

block grid is shown in Figure 2. The initial grid is just a
rectangular domain and we treat the entire bottom surface
as our moving boundary and give an arbitrary sinusoidal
displacement to study the effects of these parameters.

Here, the master nodes are the nodes in the bottom sur-
face of the domain, which we arbitrarily perturb. Note
that all four figures have the same amount of perturba-
tion. The slave nodes are all other block edge nodes that
are in bold.

It can be seen from Fig. 2 that smaller values of both β
and FACTOR correspond to a movement like a rigid body.
This is desirable near the boundary where there are sharp
corners and the grid quality needs to be preserved. This
will automatically take care of the value of y+, which is
an important factor while employing turbulent flow mod-
els with wall-functions.
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2.4 Interfacing technique

Developing an interfacing technique to interact back and
forth between the fluid-structure models poses the great-
est challenge in the field of CAE. The most difficult
part of handling numerically the fluid/structure coupling
stems from the fact that the structural equations are usu-
ally formulated with material (Lagrangian) coordinates,
while the fluid equations are expressed using spatial (Eu-
lerian) coordinates. As the two grids are different, one
being a finite volume grid and other being a finite ele-
ment grid, the two types of grid are not likely to coincide
at the same points. The CFD grid is typically finer than
the CSD grid as the flow properties are likely to change
a lot in vicinities of large gradients. Hence, some kind
of interpolation needs to be done between the grids to
map the aerodynamic forces from the CFD grid onto the
CSD grid. Along the same lines, once the displacement
field is obtained from structure solver, data needs to be
extrapolated from the CSD grid to the CFD grid. Several
methods have been formulated thus far for the interfac-
ing technique. Smith et al. (2000) provides an excellent
review of a few interface methods.

We will now describe in detail the computational proce-
dure used to perform fluid/structure interaction calcula-
tions.

3 Computational Procedure

In this section, we will discuss the various computational
procedures associated with our aeroelastic computations
and discuss at length the coupling issues that need to
be addressed while formulating the model. The overall
computational procedure can be divided into the follow-
ing major steps.

• Geometry definition along with the necessary bound-
ary conditions and initial condition.

• Perform CFD computation to obtain aerodynamic
forces on the surface of the wing

• Interpolate aerodynamic forces onto the structural
mesh

• Perform CSD computation to obtain the deformation
of the geometry

• Extrapolate the deflection and twist to obtain the new
CFD surface grid

• Re-mesh CFD grid based on the deformation obtained
from the CSD calculations using the moving boundary
module

These steps are repeated as we march in time. This pro-
cedure can be put in the form of a flow diagram as shown
in Figure 3. Now we will take a closer look at the above-
mentioned steps along with the grid generation details.

Geometry

Definition: Initial

and boundary

conditions

CFD

Analysis

Exchange Stress

information

CSD

Analysis

Post-processing

Exchange Surface

deformation

Moving

grid

module

Interface

Figure 3 : Computational Aeroelasticity analysis block
diagram for time-domain analysis

3.1 Geometry definition

We use the well-validated AGARD 445.6 wing (Yates,
1987) as our geometry for testing purposes. This is the
first AGARD standard aeroelastic configuration (Yates et
al. 1967). The AGARD 445.6 wing is a swept back wing
with a quarter-chord sweep angle of 45o with a NACA
65A004 airfoil cross-section. It has a panel aspect ra-
tio of 1.65 and a taper ratio of 0.66. The root chord of
this model was 1.833 feet and it has a semi-span of 2.5
feet. The wing tested at NASA Langley was a semi-span,
wall-mounted model made with laminated mahogany. A
schematic of the AGARD wing is shown in Figure 4.

We will now look at the computational grids used by the
fluid and structure solvers.
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Figure 4 : Schematic of teh AGARD 445.6 wing used in
the wind tunnel (Yates, 1967)

3.2 Computational Grids

3.2.1 CFD grid

We generate a CFD mesh around an AGARD 445.6 wing
by placing the wing in the middle of the computational
domain, which has dimensions of 10c x 5c x 5c as shown
in Figure 5. Here c is the chord length at the root of
the wing. The geometry could be generated by using
the CAD module of any commercial mesh-generating
softwares such as ICEMCFD or PATRAN, the latter be-
ing easier for simple geometries. We used PATRAN for
generating the wing geometry along with the computa-
tional domain and ICEMCFD was used to generate the
multi-block CFD grid containing 10 blocks. Since this
is a very thin wing, care must be taken while generating
mesh around the wing tip and trailing edge to avoid any
negative Jacobian values. As a first step, we use a mesh
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Y
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Z

Figure 5 : Overview of the CFD computational domain

which has 4838 points distributed over the wing surface
(118 points in the chordwise direction and 41 points in
the spanwise direction).The entire CFD domain has a to-
tal of 322,622 points. The CFD surface grid along with
the meshing system at the leading and trailing edges are
shown in Figure 6 for clarity.

Figure 6 : CFD surface grid along with grid distributions
at the leading and trailing edges.

3.2.2 CSD grid

For the structure solver, we need to generate grid only on
the surface as the structure only inside the wing matters
for computational purposes. Since we use linear beam el-
ements, this eliminates generating mesh inside the wing.
The finite element surface mesh is generated using
PATRAN and has 2501 points on the surface (61 along

X

Y

Z

Figure 7 : Schematic of the FEM grid on the AGARD
wing
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the chordwise direction and 41 along the spanwise direc-
tion) of the wing. The grid is shown in Figure 7. As can
be seen, it contains far less points than that of CFD mesh
which clarifies the need for an interfacing technique.

3.3 Coupling procedure

Having generated the necessary computational grids, our
focus shifts towards specifying the boundary and initial
conditions necessary for starting the computations. We
will now discuss at length how the different computa-
tional issues are tackled.

First, we run the flow solver based on the initial guess
to obtain surface pressures on the CFD grid of the wing.
These scalar pressures are then interpolated onto the CSD
grid by employing a bilinear interpolation procedure.
This is done by treating the top and bottom surface of the
wing as two-dimensional surfaces and mapping the pres-
sures from the CFD surface grid to the respective CSD
surface grid. This is done by locating the four CFD grid
points engulfing a given CSD grid point and employing a
straightforward interpolation procedure. This is demon-
strated via Figure 8.

(p,q)

(i,j)

(i,j+1)

(i+1,j)

(i+1,j+1)

(1)

(2)

                  CFD grid lines

                  FEM grid lines

(i, j)  : CFD grid locations

(p,q) : FEM grid location

Figure 8 : Schematic to demonstrate interpolation tech-
nique

Once we locate the points engulfing (p, q), we calculate
intermediate pressures at points (1) and (2) by a linear
interpolation procedure and these intermediate pressures
are further used to evaluate pressure at point (p, q) by
linear interpolation. Such a scheme gives an order of ac-
curacy between one and two.

Now that we have obtained surface pressure distribution
on the CSD grid, we now have to convert these scalar
pressures into pressure forces by computing the unit nor-
mal and surface area for each element. We divide the
CSD grid shown in Figure 7 into ten strips or super el-
ements or beam elements along the spanwise direction.

Each super element has 4 surface elements in the span-
wise direction and 60 surface elements in the chordwise
direction as shown in Figure 9. The net pressure force
for each super element was then calculated which acts
as the loading for solving the equations of motion. The
mass and stiffness matrix for the structure are obtained
from full NASTRAN models. Since the structural solver
is limited by a critical time step size, which takes a value
of 1.8 x 10−6, we had to run the structure solver a num-
ber of times in order to make it synchronize with the flow
solver, the time step for which was taken as 9 x 10−4, as
the flow solver uses a fully implicit method.

Figure 9 : Schematic of a super element: Portion of the
entire structure

By modeling the structure as a one-dimensional beam,
we are assuming that the cross-section of the wing re-
mains unchanged or rigid. Thus we determine the motion
of the CFD grid knowing the motion of the structure by
assuming a rigid link connecting each CFD grid point to
the beam element. The links are assumed to be perpen-
dicular to the elastic axis as shown in Figure 10.

Finite element nodes

CFD element nodes

Rigid links

Figure 10 : Sample CFD mesh superimposed on the dis-
cretized beam structure

We define the state of the beam at any point along the
spanwise direction as ws = {w1 w2 w3 | θ1 θ2 θ3}T ,

where w represents the deflection and θ the twist at each
spanwise section and subscripts 1, 2, 3 denote displace-
ments in the x, y and z directions respectively. For our
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case, we assume no deflection in the x and y directions
and no rotation about the x and z axes. In other words,
the deflection of a CFD grid point P can be written as

wP = wPT +wPR (18)

where wPT is the translation component and wPR is the ro-
tational component. The translation and rotation compo-
nent corresponding to CFD spanwise grid locations are
obtained by performing a linear interpolation using the
CSD spanwise grid points.

Having obtained the new CFD surface grid from the
beam displacements, we now need to regenerate the en-
tire CFD domain by making use of the moving mesh
module. The new CFD surface grid acts as the source
of perturbation needed to enable re-meshing as explained
earlier. Once we have the new CFD grid, we need to en-
sure geometric conservation law, which was done by cal-
culating Jacobian values of the new grid based on Eq (8)
and not Eq. (7). This entire procedure is then repeated
for subsequent time steps to arrive at desired aeroelastic
results.

4 Results and Discussion

We now present the results to demonstrate the fluid-
structure interaction in two different scenarios. First,
we consider the AGARD 445.6 wing to demonstrate
the fluid-structure interaction on a 3-D wing, which un-
dergoes bending and torsion wherein the cross-section
moves like a rigid body. Secondly we demonstrate the
interaction between the fluid and flexible structure on a
flexible membrane wing used in micro air vehicles.

4.1 AGARD 445.6 wing in turbulent fluid flow

In our ongoing effort to develop a complete CAE model,
we have made advances thus far to validate our code
for performing the necessary interfacing technique. We
carry out an unsteady, viscous, turbulent flow calcula-
tion on the AGARD wing with a Reynolds number of
366,000, which is in agreement with the experimental
setup. We use a time step size of 0.0018 for the flow
solver and a step size of 1.8x10−6for the structure solver,
which is 1/1000th of the flow time step used. This choice
of structure time step arises from the fact that an explicit
central difference scheme is used for the structural solver.
In order to ensure stability, the time step, ∆t, must be
smaller than a critical time step, ∆tcr, defined to be T/π

(Bathe, 1982) where T is the period of the largest natural
frequency of the structure. Using the mass and stiffness
matrices generated for the tested model, the highest fre-
quency is found to be 1.68x105 Hz. The critical time step
for this model is found to be 1.90x10−6seconds. We it-
erate the structure solver a thousand times for every fluid
time step in order to make it synchronize with the fluid
time step.

We ran the code for a number of time steps, updating the
mesh after every time step using the deforming mesh al-
gorithm. We assigned values of 1/256 and 500 for β and
FACTOR respectively to the parameters associated with
the moving mesh module. Figure 11 shows the deflec-
tion of the wing in the spanwise direction at four differ-
ent time instances with increasing time as indicated by
the arrowhead. Displacement contours on the surface of
the wing at these corresponding time instances are also
shown in Figure 12.

Increasing

Figure 11 : Deflection of the wing in the spanwise direc-
tion at four different time instants

As can be seen from the figure, the deflection at the wing
tip increases with increasing time. A magnified three-
dimensional wing shape to clarify the dominance of two
bending modes is shown in Figure 13 (a) and (b). Figure
13 (a) depicts the transient response at t=0.012 in which
the response is dominated by the second bending mode
whereas Figure 13 (b) shows the transient response at
t=0.043 which illustrates the predominance of first bend-
ing mode. The pressure contours at the top surface of the
wing is shown in Figure 14. Corresponding pressure
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Figure 12 : Displacement contours on the AGARD wing at the corresponding time instants shown in Figure 11, (a)
through (d) represent increasing time.

Y
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Z

(a)

(b))

Figure 13 : Magnified 3-D shape of the wing at two dif-
ferent time instants demonstrating the transient response
(a) at t=0.012 s depicting dominance of second bending
and (b) at t=0.043 s depicting dominance of first bending.

X

Y

0 1 2
0

0.5

1

1.5

Figure 14 : Surface pressure contours on the AGARD
wing
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Figure 15 : Pressure coefficient distribution at different spanwise locations (25%, 50%, 75%, and 96%) on the top
surface of the wing

coefficients at different spanwise locations on the top sur-
face of the wing are also shown in Figure 15. This is in
good agreement with Lee-Rausch and Batina (1993) for
the given turbulent Reynolds number.

4.2 Membrane Wing in a laminar fluid flow

Beside the fluid and rigid structure interaction, we also
investigate the interaction between a flexible structure
and its surrounding fluid flow. In our computations we
study the performance of a flexible membrane wing in
a steady fluid flow. The computational domain for the
membrane wing is shown in Figure 16. The membrane
wing has a chord length of 13.7 cm and a span of 15 cm.
There are three carbon fibers per semi-span of the wing to
support the membrane. The overall skeleton of the wing
is shown in Figure 17.

The shaded region in the figure is assumed to be rigid
for our computation. Typically an µAV flies at an an-
gle of attack of 6o with a speed of 10 m/s. The re-
sulting chord Reynolds number is 9x10 4. To investigate
the mutual interaction between the flexible structure and
the fluid, a dynamic membrane model was proposed by

Figure 16 : Computational domain for membrane wing
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Figure 17 : Skeleton of the membrane wing showing the
carbon fibers

Figure 18 : Unstructured finite element grid for the
membrane wing

Lian et al (2002). This model can handle relatively large
displacement of the membrane wing. We use finite ele-
ment method for the membrane wing shape change and a
pressure-based flow solver to calculate the aerodynamic
load on the membrane wing. An unstructured mesh, gen-
erated for the FEM model, is shown in Figure 18. It has
1030 triangular elements and 1098 nodes on the semi-
span of the wing. Streamlines demonstrating the tip vor-
tex are shown in Figure 19. It is interesting to see that
the pressure at the leading edge, at this angle of attack,
is larger at the top than that at bottom as can be seen in
Figure 20. This will eventually cause a kink at the lead-
ing edge of the membrane wing. Even in the steady fluid
flow, the membrane wing demonstrates a self-excited vi-
bration. Due to the nonlinear dynamic behavior of the
membrane, the membrane vibrates with uneven frequen-
cies. We show the displacement of the trailing edge in

Figure 19 : Streamlines around the rigid wing at angle
of attack 6◦

Figure 20 : Pressure distribution along the streamwise
direction at t=0.22

Figure 21 at different time instances. The vertical solid
lines represent the position of the carbon fibers in the
wing which we fix in our computations.

5 Summary and Conclusions

The present work is motivated in part by our inter-
est in developing a comprehensive capability to account
for fluid and structure interactions, and to facilitate a
computation-based optimization capability for problems
involving such issues. For fluid and structure interaction
aspects, we have offered a detailed account of our stud-
ies and other representative studies. For optimization as-
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Figure 21 : Trailing edge displacement of the membrane
wing at different time steps

pects, we cite recent works by Okumura and Kawahara
(2000) and Levin and Shyy (2001) for further details.

Two kinds of fluid-structure interaction, one between
rigid wing cross-section structure and fluid and other be-
tween flexible structure and fluid, were studied. The
rigid structure-fluid interaction was demonstrated using
the AGARD wing model whereas the flexible structure-
fluid interaction was studied using the membrane wing
model of a micro air vehicle. The algorithm used for the
aeroelastic computations incorporated a deforming mesh
algorithm and a structure solver in addition to the exist-
ing pressure-based flow solver.

Unsteady aeroelastic computations were performed for
both laminar and turbulent flows. Two different mode
shapes are shown for the AGARD wing model. The pres-
sure coefficient plots for both kinds of flows illustrated
the cross over of lines near the leading edge which even-
tually lead to a kink in the membrane shape but this was
not encountered for the AGARD wing as we assumed
the cross-section to be rigid. Work is in progress to in-
clude compressibility effects in the flow code and to in-
corporate history dependent structural effects including
hysteresis and load stiffening in the structural model.
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