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Dynamic Response of 3-D Damaged Solids and Structures by BEM

G.D. Hatzigeorgiou! and D.E. Beskos!

Abstract: This paper presents a general boundary €1995) and Providakis and Beskos (1999).

ement methodology for the dynamic analysis of threghe BEM in its direct conventional form and in con-
dimensional inelastic solids and structures. Inelasticijﬁynction with the elastostatic fundamental solution of the
is simulated with the aid of the continuum damage thgroplem has been successfully used for the analysis of 2-
ory. The elastostatic fundamental solutionis employedf e|astoplastic solids and structures under static [Telles
the integral formulation of the problem and this creates §hq Brebbia (1979)] and dynamic loading [Carrer and
addition to the surface integrals, volume integrals due {@|les (1992), Kontoni and Beskos (1993), Providakis
inertia and inelasticity. Thus an interior discretization igg Beskos (1994), Telles and Carrer (1994)]. The first
addition to the usual surface discretization is necessagyp dynamic elastoplastic analysis by the BEM was very
Isoparametric linear quadrilateral elements are used ,fg&enﬂy presented by Hatzigeorgiou and Beskos (2002a).
the surface discretization and isoparametric linear hexare BEM in its symmetric Galerkin form and in con-
hedra for the interior discretization. Advanced numeric&lnction with the elastostatic fundamental solution of
integration techniques for singular and nearly singular ighe problem has also been successfully applied to static
tegrals are employed. Houbolt's step-by-step numerigifaier and Pollizzotto (1987)] and dynamic [Frangi and
time integration algorithm is used to provide the dynamigiajer (1999)] inelastic problems in a 2-D space. The
response. Numerical examples are presented to illustigga in its direct conventional form and in conjunc-
the method and demonstrate its accuracy. tion with the elastodynamic fundamental solution of the
, _problem has the advantage of restricting the interior dis-
keyword: Dynamic response, ‘?'amag_e mechani etization to those parts of the domain expected to be-
boundary element method, three-dimensional Structurgs o inelastic, but is very complicated due to the need
for satisfying causality at every time step. [Ahmad and
1 [Introduction Banerjee (1989), Telles, Carrer and Mansur (1999)]. Fur-

thermore, use of the elastodynamic fundamental solution

Dyna_\mic analysis of linear elastic structures by e'thﬁqay create problems of instability [Siebrits and Peirce
the finite element method (FEM) or the boundary elg

1997)]. Inelasticity, especially for quasi-brittle mate-
ment method (BEM) has reached a rather mature s IS can be successfully and very simply simulated by

of development [Zienkiewicz and Taylor (1991)’. BeSk_ocsontinuum damage theories [Krajcinovic (1996), Bazant
(1997), Kogl and Gaul (2000)]. In recent years, iNtensive. | b1anas (1998)]
e

research has been carried out to develop reliable numer-

ical methods for determining the nonlinear behavior gf'S Worth noticing that the applications of BEM to ana-
various types of structures under dynamic loading. Thee damag_ed strucFure_s are restnc_ted onlylto s-tatlc prob-
FEM is the most popular numerical method for the sollfMS: The f|rsr: application of BEM in gorr1|_bmat|03_W|th g
tion of dynamic inelastic problems involving two- and'2Mag€ Mechanics originated by Rajgelj, Amadio an

three-dimensional (2-D and 3-D) solids and structur®@PPi (1992) and then extented by Herding and Kuhn
[Zienciewicz and Taylor (1991)]. Recently, the BE,\11996), Sellers and Napier (1997), Cerrolaza and Garcia

has emerged as a reliable alternative method of solutld97): Garcia, Florez-Lopez and Cerrolaza (1999), to 2-
of this class of problems, as it is evident in the booR Structures under static loading. Furthermore, the first

of Banerjee (1994) and in the review articles of BeskdsP Static BEM implementation of damage analysis was
very recently established by Hatzigeorgiou and Beskos

1Department of Civil Engineering, University of Patras, 26500, p§2002b). Thus, the need for the development of an accu-
tras, Greece.
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rate and efficient BEM for the analysis of 3-D damagextetized to NV linear hexahedral volume cells (see Fig.

structures under dynamic loading is apparent. 1).
In this paper a general boundary element methodology is
developed for the analysis of three-dimensional inelastic M
solids and structures under static and dynamic loads. Th PO L
method employs the elastostatic fundamental solution of i":“;{:‘(“;::“? Volume N
the problem because of its simplicity. This creates vol- /& r—mm—> il
ume integrals due to inertia and inelasticity in addition ,\;: ‘f\:r‘:,.»:“;‘,",}!l‘ ‘ 'ﬁ;

]

I

to the boundary ones. Thus, an interior discretization is f ! )
necessary in addition to the boundary one. Inelasticity is {1y 1 ¥ QA
simulated in this work by damage theory, which is used 3.} """} ¥ Boudary E_.
for reproducing nonlinear behavior of brittle materials, N r NB elements Sl
like concrete or rock, in a simple, yet very successful
way. The matrix equations of motion are numerically
integrated in time with the aid of Houbolt’s algorithm.
Three numerical examples serve to illustrate the methoc
and demonstrate its accuracy.

% %

Figure 1 : Discretization of a general three-dimensional
. bod

2 Boundary Element Formulation y

For a three-dimensional body which is bounded by its Tan Eq. (1) becomes

surfacel’, the Somigliana identity for the dynamic in-

elastic case associated to the initial stress formulation is

defined as
NB

GuEn = 3 /ui*j(E,X)quF P (X,t) —
=L rm

B

Gjuj(§,t) = /ruf‘j(E,X)pj(X,t)dr(X)—
= (&, X)dl i(X,t) —
1 ripj(z ) e

/rpf‘j(E,X)uj(X,t)dF(X)—
Ledi@xnxodax+ @ X [ouiex@00 {0+ @
Qn

n=1
JRCTIBSEHEREIES

2 T:fMZ

NV
3 / £44(8,X)®dQ bGP (X, 1)
In the above, t is the timgy the constant mass density =1 {an

of the body, ¢ the usual free coefficient of elastostatic

analysis andt; (€, X), pij (€, X) andej; (€, X)are the fun- where® is the matrix of the shape functions. Eq. (2) is
damental solution components of the elastostatic pralewritten in a compact form as

lem representing the displacement, traction and strain,

respectively. Furthermoray;, Ui, pj andco® represent
i Uj» Pj ik 'ep

the displacements, accelerations, tractions and inelastic Nee Neg

stresses, respectively. Eq. (1) represents the equafiohi = Z Gijpj - Z Hijuj —

of motion of the body in integral form. Fgy = O this 'TM‘/:; :;1

equation reduces to the static case. In order to solve Eq. Y Mijiij+ Y QijCJPk 3)
(1), the boundary element method (BEM) is applied. The n=1 n=1

boundary of the 3-D body is discretized to NB linear
guadrilateral boundary elements and the domain is diie boundary element implementation transforms the
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system of integral equations to an equivalent algebrdfcthe current time step is then{+ 1), substitution of
system, which in matrix notation reads Eq.(6) into Eq.(4) gives

BZ(G]{Pas 1} — (B(H] + 2IM]) {1} =
(Gl {p(V)} ~ [H}{u(t)} - [MJ{~5Un + 41— U2} — A2[Q {00, ; ™)
M} {()} +[Q {0P()} = {0} @) orin a compact form

In Eq. (4) matrices [G] and [H] correspond to the boundG*]{pn+1} — [H*]{Un+1} = [M]{u*} — [Q"]{oh. 1} (8)
ary integrals and [M] and [Q] to the inertial and initia{N

stress domain integrals, respectively. The construction

of the above matrices requires integrations in every etg*] = At?[G], [H*] = At?[H] +2[M], [Q*] = At?|Q] and
ment and cell as described in Eq. (2). Regular and neﬁ;IL U+ AU 1 — Un )
singular integrals are evaluated by the standard Gaussian
quadrature. The computation of nearly singular integrafe assumption of zero initial displacement, velocity and
requires an increased number of Gauss points to redyge,) stress gives the initial conditions

the numerical error into a low level. Thus, an empiri-

cal relation proposed by Bu (1997) is adopted to achielfe]{ po} — [M]{lo} = {0} (10)

. o . )
?e;cglrswtrolled relative error less than 0.1%. This relatlclﬂ‘se of the boundary conditions enables one to solve the

above equation and obtain the initial tractions and accel-
erations. After the application of the boundary condi-

.\ —08 tions, Eqg. (8) becomes
Nk21+2.1<dm'”> (5) 9. (8)

k GHI{ b}~ M) -k + (8] (D

where Nyin is the minimum number of Gauss points for
each element, g, the minimum distance between th@vhere GH] corresponds to thed*] and H*] terms
collocation pointand the element and the length of the | 110 {B} arises from the known boundary conditions.

element side to the integration direction. Singular intq,q tr4ctions and displacementsin the left-hand side can-
grals are evaluated by the Guiggiani and Gigante methoa he computed from Eq. (11) because of the ignorance
[G_wgg|an| aqd Q|ggnte -(1_990)]. The m_aln_advantag_e Bf the stress vectdfo, } in the right hand side. The solu-
this method is its simplicity. The application of Guigyjop of this equation requires an iterative procedure. The
giani & Gigante method requires the execution of tW@omputation of stresses via the way “displacements
steps. In the first one, a transformation of coordinatg§ins— stresses” (see Fig. 2) is selected because it
from local Cartesian to an equivalent polar system fQr ) efficient than the computation via integral equa-
boundary elements and to a spherical system for VOIUW?ns, which requires much more computational effort

cells is applied. This step causes a complete SUPPres§{eriee (1994)]. The iterative scheme employed here

of the singularities of [G], [M] and [Q] matrices appealig 5 extension of Banerjee’s static inelastic iterative al-

ing in Eq. (4) In.the sep_ond step, a Taylo.r E)Xp"’ms'(@ﬁrithm [Banerjee (1994)] to dynamics. In every time
of the remaining singularities of the [H] matrix at lengtiiie, starting with the assumption of an elastic structure,
leads to a regular integrand. the solution of Eq. (11) gives the first estimation for dis-
placements and tractions. From these displacements, the
strains are obtained and use of the constitutive equation,

3 Computation of response

The Houbolt scheme is selected for the integration @escribed in the next section, enable one to determine the
time because it gives excellent results with respect to sédastic, inelastic and total stresses. The inelastic stresses
bility and accuracy. Thus, the acceleration is expressacEq. (11) give a second estimation for displacements
in displacement terms as (Karabalis &Beskos 1997) and tractions etc. If convergence is satisfied in this proce-
dure, the next time step follows. The solution procedure

1
5 (2Uny1—5Un +4Un_1 —Un_2) (6) appears in Fig. 3.

U pu—
n+1 At
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4 Material modeling

This paper is mainly concerned with brittle materials like
concrete, rock, soil and ceramics. The non-linear behav-
ior of these materials presents some common characteris-
tics that damage theory is ideal to simulate [Krajcinovic
(1996)]. In this paper the @te (1997) and a modified
Faria-Oliver(1993)/Mazars (1986) - FOM damage mod-
els are adopted to describe the main characteristics of
brittle materials. The FOM model consists of the elastic-
damage part of the plasticity-damage model of Faria and
Oliver expressed in terms of the tension and compression

Figure 2 : lterative procedure for the computation oflamage indices, which are combined to produce a suit-

stresses

<
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Figure 3: Solution algorithm

able average damage index on the basis of a Mazars’ type
theory. The @ate and FOM models take into account
the different response of material under tension and com-
pression states and the effect of stiffness degradation. In
order to clarify the concept of elastic isotropic damage, a
section of the body with overall areg, Sffective resist-

ing areaS, and area of the void$§{ — S,) is considered.
The damage index d is defined as

S-S S
— S —— 12
d s S| (12)

The equilibrium relationship between the standard
Cauchy stress and the effective stress givesoS, =
GS,and thus in view of Eq (12), the constitutive equation
can be written as

{0} =(1-d){o} = (1-d)[C]{e} (13)

where [] is the elastic constitutive matrix. The analysis

requires the knowledge of the damage index d and its
evolution at every stage of the deformation process. The
described below constitutive models satisfy this demand.

4.1 Onate’'smodel

The application of @ate’s model requires the determi-
nation of the norm of strain state,the damage criterion
and the damage index evolution.

The norm of strain state, results from

- (e+$) [GHCRGIEE (14)
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where n is the compressive to tensile strength ratio

(5

and®e is given by

o="A—— (16)
S |ail Figure4 : Ofate’s model representation

The symbol &>) corresponds to MacAuley brackets

where 4.2 FOM model
1 The application of FOM model requires the following 5
(£0i) = > (loi| £oi) @n steps:
The damage criterion is given by Stepl
Compute the effective strains from the principal strains
F(1—r)=1-r<0 (18) ¢&iby
where
r= max(i T) (19) <E&>=E& gnq 2E&<=0 ey &0 (23)
VE’ <g>=0 > <=§ & <0

Finally, the evolution of the damage index d results from . )
Compute the equivalent strains from

ro n r
d_l—Texp[A (1—r—0>} (20)
where N 2 2 and 2 ) (24)
€ = <g >2andg” = >g < 24
1 |3, 7a a5
GiE 1\~
At = - = 21
(l*ftz 2) (1)
with G+ being the fracture energy, E the modulus of elas- 3

ticity and I* an internal length scale. The last parame- — max (< & >)/izi <&> and

ter provides response independent of mesh discretization. 5
Cervera, Oliver and Faria (1995) proposed the relatiog_ _ \/min (> <)/Zi > g <
i=

1=V (22)

to determine the characteristic length where V is the Step2
volume of the j-internal element (volume cell).  Theompute the effective stresses from the principal elastic
stress-strain diagram in uniaxial conditions and the dagyresses; from

age bounding surface in biaxial conditions oh&é’s

model appear in Fig. 4. It is obvious that this model

cannot take into account the biaxiality effect in compresx g, >=;, and >0,<=0 when 0, >0

sion. <0;>=0 > 0j <= 0j 0; <0 (25)
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Compute the equivalent stresses from

3 3

o = _Zi> G <andd = i;(> g <)
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and the strains vector from effective stresses vector bw

{ef}=[CI H{<Ti>} kau {7 }=[C]!
where [C] is the elasticity matrix.

Step3
Compute the parametess” anda ™~ from

. ok
at =min [2"2'::" ,1}

o~ = min [k+|j_k_ , 1}
where

ZiH

+s+ s++s )

~ & (s +&)
k- =S H 2\ TE)

o &7
with
Ht —1 H =0 (& +%)>0
=0 3 - —1 WheN (e ) <o
Step4

Compute the scalar nornmst and 1~
stress state from

=\ Ji<o>1[c

and
= \/\/é(Kﬁact +Toxt)

where

{<o>}

{>0i<} (27)

with
fe_op biaxial compressive strength
= = — . (34)
fe_ip  uniaxial compressive strength
(26)
Compute the damage indices
r+ At 1_i
d+_l—Ti+e ( r3> (35)
and
. B (1-L
d = —;i_(l—A‘)—A‘e < fo> (36)

where A", A~ and B~ are material parameters (Faria and
(28) Oliver 1993, Hatzigeorgiou 2001). Furthermorg,and
r, correspond to the beginning of damage where

37)

(29)
- [ ]2 R

The damage indices of Eq. (33) and (34) are unified in
(30) one and only damage indebas

d=atd" +oa-d (39)

of undamaged

It is worth noticing that the superscripts-) and (—)
correspond to tension and compression, respectively.

(31) The stress-strain diagram in uniaxial conditions and the
damage bounding surface in biaxial conditions of FOM
model appear in Fig. 5.

Itis observed that this model is capable of taking into ac-
(32) count the biaxiality effect in compression. In conclusion,

Onfate’s model is characterized by a great simplicity but

its use is mostly suggested in tension dominated states of

deformation, while the FOM model, despite its complex-
(33) ity is capable of simulating any deformation state.



Dynamic response of 3-D damaged solids and structures by BEM 797

3.0
f:dyn
L 2.5
2.0
1.5
. . Compression
Figure5: FOM model representation 1.0 . . : . . ;
6 -5 -4 3 2 1 0 1
log(€)
4.3 Strain rate dependency Figure 6 : Dynamic to static strengths ratios

The sensitivity of the mechanical behavior of concrete
(or other quasi-brittle materials) to the rate of external
loading is a well known fact. This feature is taken into (42)

account by a simple and general methodology proposgffich have been obtained here in by a polynomial re-
here in, which appears stepwise below: gression.

Steol The ratios between dynamic and static, tensile and com-
tep . o _ pressive strength versus strain rate appear in Fig. 6.
Compute the tensile™ and compressive~ strain rate

between the present (n+1) and the previous (n) time stgip3

from Replace in @ate’s and FOM models the static values of

tensile and compressive strengths with the corresponding

. . dynamic values, for every time step.
(E &)y EE) y P

tn+1 - tn

o | EE ) — (7€),

?

For more details one can consult Hatzigeorgiou (2001)
(40) and Hatzigeorgiou, Beskos, Theodorakopoulos and
Sfakianakis (2001).

tn+1 - tn

5 Examples

Step2 _ _ _ This section describes three representative numerical ex-
Compute the dynamic tensilggn and compressive fiyn  amples in order to illustrate the use and demonstrate the
strength for the above strain rates. In this work, the SXgvantages of the proposed three-dimensional dynamic

perimental results of Suaris & Shah (1985) providing ﬂ't?amage boundary element method of analysis.
ratios t gyn/ft st and £ ayn/fc st versus strain rate have been

adopted. This work uses the Suaris & Shah (1985) curn&s Dynamic tensileloading of a concrete bar

in analytic forms .
y The ability of the proposed methodology to simulate a

concrete bar under dynamic uniaxial tension is examined
. o in this example. The dimensions of the bar arex281
= 2.25340.411[log(¢")] +0.035[log (¢")] m, while its geometry and discretization appear in Fig.
(41) 7. Cervera, Oliver and Manzoli (1995) using the finite
element method have also investigated this example. The
and material parameters for this analysis, using thea@'s
damage model are:

ft,dyn

ft st

fean _ 1 405+ 0.150 [log (¢7)] +0.014[log (¢ )]

fost e modulus of elasticity E = 30.0 GPa,
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densityp = 2400 kg/n¥, 0.05 m
Poisson ratiz = 0.18, /
uniaxial compressive strength £ 30.0 MPa,

uniaxial tensile strength £ 3.0 MPa and

fracture energy G=250.0 N/m.

2 0.20m

The concrete bar is subjected to a dynamic uniaxial ten

sile displacement varying linearly with time and with X
106,102 and 10! sec! strain rates. Figure 8 shows

the stress-strain curves for these strain rates. A very goo .
convergence is evident between the analysis with the prc

posed BEM and the FEM results of Cervera, Oliver and +—— 020m ——»
Manzoli (1995).

Figure 9: Geometry and discretization of Example 2

7 77 yd
u 1.0m

’/']_[k m

modulus of elasticity E = 33.0 GPa,

densityp = 2400 kg/nt,

Poisson rativ = 0.18,

compressive elastic limipf= 10.0 MPa,

uniaxial compressive strength £ 47.5 MPa,
uniaxial tensile strength = 4.0 MPa,

biaxial to uniaxial compressive strengthhR 1.16

- 20,0 m >

Figure7: Geometry and discretization of Example 1

2.5

off — BEM and
a0l e FEM ¢ fracture energy &= 150.0 N/m.

137 The concrete specimen is subjected to a dynamic uniax-
ial compressive displacement varying linearly with time

& -10" et and with 10°® and 0.088 sec* strain rates. Figure 10

051 T 107 sec! shows the stress-strain curves for these strain rates. A

very good convergence is evident between analytical and

experimental results.

£ =107 gec!
0.0 0.5 1.0 1.5 2.0 2.5 3.0
Strain e (<10

0.0

5.3 Dynamic analysisof a mortar beam

Figure 8 : Concrete bar under dynamic tensile loadindn this example, a simply supported mortar beam sub-
Stress-strain curves under various strain rates jected to a central impact loading is analyzed numeri-
cally by the proposed method using theddé’s model.

_ , _ The material parameters are
5.2 Dynamic compressive loading of a concrete spec-

Imen modulus of elasticity E=22000.0 N/nfm
Poisson ratiw=0.15

uniaxial tensile strength £3.91 N/mn?
uniaxial compressive strengtg35.0 N/mn?
densityp=2410 kg/n?

fracture energy G=103.7 N/m.

This example presents numerical simulations of a con-
crete specimen under dynamic uniaxial compression.
The specimen dimensions arex220x5 cm. The geom-
etry and the discretization appear in Fig. 9.

This example undertakes to simulate the experimen-

tal tests of Suaris and Shah (1985) using the prieigure 11 contains the geometry and the 3-D BEM dis-
posed methodology in conjunction with the FOM daneretization of the structure. Due the symmetry only half
age model. The material parameters for the analysis avéthe beam is discretized.
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80 5000
— BEM
4000 1
o Suaris & Shah (1985) g 000
601 . 1 3 3000 7
— &= 0.088 sec 3
£ 501 2000 T
=
40 £=10"sec” 1000 7
7]
]
& 30 0 ' ' - '
v 0.0 0.2 0.4 06 08 1.0
20] Time (msec)
101 : . .
Figure 12 : Loading history on Example 3
0 T T T T T T T T T T
0.0 10 20 30 40 50 6.0
Strain & (x107%) 125
Figure 10 : Concrete bar under dynamic compressive 100 Experiment = — —
loading. Stress-strain curves under various strain rates
g
2 754
P =]
RS
3
P/2 5 " = 501
1 jo3
254 [} A
s [ -
y 254
76.2 d
sl
sl
v 0 T T T T T T T T
) 0.0 0.2 0.4 0.6 0.8 1.0
101.6 12.7

Time (msec)

Figure 11 : Geometry and discretization of Example 3 Figure 13 : Time history of deflection at load point
(dimensions in mm)

used to simulate inelastic material behavior, including
Figure 12 shows the loading history, applied at the uppgrain rate effects. The main aspects concerning the nu-
central line of the beam. merical implementation required for the solution of the

Figure 13 depicts the time history of the vertical displac@onlinear dynamic problem are also presented. Three nu-
ment at the load point. The proposed BEM exhibits Berical examples are described to illustrate the method

very good agreement with the experimental and the FEQ{id demonstrate its accuracy. Finally, itis worth noticing
results of Du, Kobayashi and Hawkins (1989). that the three-dimensional treatment of dynamic inelastic

problems requires a considerable computational effort.
6 Conclusions
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