
Copyright c© 2002 Tech Science Press CMES, vol.3, no.6, pp.791-801, 2002

Dynamic Response of 3-D Damaged Solids and Structures by BEM

G.D. Hatzigeorgiou1 and D.E. Beskos1

Abstract: This paper presents a general boundary el-
ement methodology for the dynamic analysis of three-
dimensional inelastic solids and structures. Inelasticity
is simulated with the aid of the continuum damage the-
ory. The elastostatic fundamental solution is employed in
the integral formulation of the problem and this creates in
addition to the surface integrals, volume integrals due to
inertia and inelasticity. Thus an interior discretization in
addition to the usual surface discretization is necessary.
Isoparametric linear quadrilateral elements are used for
the surface discretization and isoparametric linear hexa-
hedra for the interior discretization. Advanced numerical
integration techniques for singular and nearly singular in-
tegrals are employed. Houbolt’s step-by-step numerical
time integration algorithm is used to provide the dynamic
response. Numerical examples are presented to illustrate
the method and demonstrate its accuracy.

keyword: Dynamic response, damage mechanics,
boundary element method, three-dimensional structures.

1 Introduction

Dynamic analysis of linear elastic structures by either
the finite element method (FEM) or the boundary ele-
ment method (BEM) has reached a rather mature state
of development [Zienkiewicz and Taylor (1991), Beskos
(1997), Kogl and Gaul (2000)]. In recent years, intensive
research has been carried out to develop reliable numer-
ical methods for determining the nonlinear behavior of
various types of structures under dynamic loading. The
FEM is the most popular numerical method for the solu-
tion of dynamic inelastic problems involving two- and
three-dimensional (2-D and 3-D) solids and structures
[Zienciewicz and Taylor (1991)]. Recently, the BEM
has emerged as a reliable alternative method of solution
of this class of problems, as it is evident in the book
of Banerjee (1994) and in the review articles of Beskos
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(1995) and Providakis and Beskos (1999).

The BEM in its direct conventional form and in con-
junction with the elastostatic fundamental solution of the
problem has been successfully used for the analysis of 2-
D elastoplastic solids and structures under static [Telles
and Brebbia (1979)] and dynamic loading [Carrer and
Telles (1992), Kontoni and Beskos (1993), Providakis
and Beskos (1994), Telles and Carrer (1994)]. The first
3-D dynamic elastoplastic analysis by the BEM was very
recently presented by Hatzigeorgiou and Beskos (2002a).
The BEM in its symmetric Galerkin form and in con-
junction with the elastostatic fundamental solution of
the problem has also been successfully applied to static
[Maier and Pollizzotto (1987)] and dynamic [Frangi and
Maier (1999)] inelastic problems in a 2-D space. The
BEM in its direct conventional form and in conjunc-
tion with the elastodynamic fundamental solution of the
problem has the advantage of restricting the interior dis-
cretization to those parts of the domain expected to be-
come inelastic, but is very complicated due to the need
for satisfying causality at every time step. [Ahmad and
Banerjee (1989), Telles, Carrer and Mansur (1999)]. Fur-
thermore, use of the elastodynamic fundamental solution
may create problems of instability [Siebrits and Peirce
(1997)]. Inelasticity, especially for quasi-brittle mate-
rials can be successfully and very simply simulated by
continuum damage theories [Krajcinovic (1996), Bazant
and Planas (1998)].

It is worth noticing that the applications of BEM to ana-
lyze damaged structures are restricted only to static prob-
lems. The first application of BEM in combination with
damage mechanics originated by Rajgelj, Amadio and
Nappi (1992) and then extented by Herding and Kuhn
(1996), Sellers and Napier (1997), Cerrolaza and Garcia
(1997), Garcia, Florez-Lopez and Cerrolaza (1999), to 2-
D structures under static loading. Furthermore, the first
3-D static BEM implementation of damage analysis was
very recently established by Hatzigeorgiou and Beskos
(2002b). Thus, the need for the development of an accu-
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rate and efficient BEM for the analysis of 3-D damaged
structures under dynamic loading is apparent.

In this paper a general boundary element methodology is
developed for the analysis of three-dimensional inelastic
solids and structures under static and dynamic loads. The
method employs the elastostatic fundamental solution of
the problem because of its simplicity. This creates vol-
ume integrals due to inertia and inelasticity in addition
to the boundary ones. Thus, an interior discretization is
necessary in addition to the boundary one. Inelasticity is
simulated in this work by damage theory, which is used
for reproducing nonlinear behavior of brittle materials,
like concrete or rock, in a simple, yet very successful
way. The matrix equations of motion are numerically
integrated in time with the aid of Houbolt’s algorithm.
Three numerical examples serve to illustrate the method
and demonstrate its accuracy.

2 Boundary Element Formulation

For a three-dimensional bodyΩ which is bounded by its
surfaceΓ, the Somigliana identity for the dynamic in-
elastic case associated to the initial stress formulation is
defined as

ci ju j(ξ, t) =
∫

Γ
u∗i j(ξ,X)p j(X , t)dΓ(X)−∫

Γ
p∗i j(ξ,X)u j(X , t)dΓ(X)−∫

Ω
ρu∗i j(ξ,X)ü j(X , t)dΩ(X)+ (1)∫

Ω
ε∗jki(ξ,X)σp

jk(X , t)dΩ(X)

In the above, t is the time,ρ the constant mass density
of the body, ci j the usual free coefficient of elastostatic
analysis andu∗

i j(ξ,X), p∗i j(ξ,X) andε∗jki(ξ,X)are the fun-
damental solution components of the elastostatic prob-
lem representing the displacement, traction and strain,
respectively. Furthermore,u j, ü j, p j andσp

jk represent
the displacements, accelerations, tractions and inelastic
stresses, respectively. Eq. (1) represents the equation
of motion of the body in integral form. Forρ = 0 this
equation reduces to the static case. In order to solve Eq.
(1), the boundary element method (BEM) is applied. The
boundary of the 3-D body is discretized to NB linear
quadrilateral boundary elements and the domain is dis-

cretized to NV linear hexahedral volume cells (see Fig.
1).

Figure 1 : Discretization of a general three-dimensional
body

Then, Eq. (1) becomes

ci ju j(ξ, t) =
NB

∑
m=1




∫
Γm

u∗i j(ξ,X)ΦdΓ


 p j(X , t)−

NB

∑
m=1




∫
Γm

p∗i j(ξ,X)ΦdΓ


u j(X , t)−

NV

∑
n=1




∫
Ωn

ρu∗i j(ξ,X)ΦdΩ


 ü j(X , t)+ (2)

NV

∑
n=1




∫
Ωn

ε∗jki(ξ,X)ΦdΩ


σp

jk(X , t)

whereΦ is the matrix of the shape functions. Eq. (2) is
rewritten in a compact form as

ci ju j =
NBE

∑
m=1

Gi j p j −
NBE

∑
m=1

Hi ju j −
NVC

∑
n=1

Mi jü j +
NVC

∑
n=1

Qi jσ
p
jk (3)

The boundary element implementation transforms the
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system of integral equations to an equivalent algebraic
system, which in matrix notation reads

[G]{p(t)}− [H]{u(t)}−
[M]{ü(t)}+[Q]{σp(t)} = {0} (4)

In Eq. (4) matrices [G] and [H] correspond to the bound-
ary integrals and [M] and [Q] to the inertial and initial
stress domain integrals, respectively. The construction
of the above matrices requires integrations in every ele-
ment and cell as described in Eq. (2). Regular and nearly
singular integrals are evaluated by the standard Gaussian
quadrature. The computation of nearly singular integrals
requires an increased number of Gauss points to reduce
the numerical error into a low level. Thus, an empiri-
cal relation proposed by Bu (1997) is adopted to achieve
a controlled relative error less than 0.1%. This relation
reads

Nk ≥ 1+2.1

(
dmin

Lk

)−0.8

(5)

where Nmin is the minimum number of Gauss points for
each element, dmin the minimum distance between the
collocation point and the element and Lk the length of the
element side to the integration direction. Singular inte-
grals are evaluated by the Guiggiani and Gigante method
[Guiggiani and Gigante (1990)]. The main advantage of
this method is its simplicity. The application of Guig-
giani & Gigante method requires the execution of two
steps. In the first one, a transformation of coordinates
from local Cartesian to an equivalent polar system for
boundary elements and to a spherical system for volume
cells is applied. This step causes a complete suppression
of the singularities of [G], [M] and [Q] matrices appear-
ing in Eq. (4). In the second step, a Taylor expansion
of the remaining singularities of the [H] matrix at length
leads to a regular integrand.

3 Computation of response

The Houbolt scheme is selected for the integration in
time because it gives excellent results with respect to sta-
bility and accuracy. Thus, the acceleration is expressed
in displacement terms as (Karabalis &Beskos 1997)

ün+1 =
1

∆t2 (2un+1−5un +4un−1−un−2) (6)

If the current time step is the (n + 1), substitution of
Eq.(6) into Eq.(4) gives

∆t2[G]{pn+1}− (∆t2[H]+2[M]){un+1}=
[M]{−5un +4un−1−un−2}−∆t2[Q]{σp

n+1} (7)

or in a compact form

[G∗]{pn+1}− [H∗]{un+1} = [M]{u∗}− [Q∗]{σp
n+1} (8)

where

[G∗] = ∆t2[G], [H∗] = ∆t2[H]+2[M], [Q∗] = ∆t2[Q] and

u∗ = −5un +4un−1−un−2 (9)

The assumption of zero initial displacement, velocity and
initial stress gives the initial conditions

[G]{p0}− [M]{ü0} = {0} (10)

Use of the boundary conditions enables one to solve the
above equation and obtain the initial tractions and accel-
erations. After the application of the boundary condi-
tions, Eq. (8) becomes

[GH]
{

p
u

}
n+1

= [M]{u∗}− [Q∗]{σp
n+1}+{B} (11)

where [GH] corresponds to the [G∗] and [H∗] terms,
while {B} arises from the known boundary conditions.
The tractions and displacements in the left-hand side can-
not be computed from Eq. (11) because of the ignorance
of the stress vector{σp} in the right hand side. The solu-
tion of this equation requires an iterative procedure. The
computation of stresses via the way “displacements→
strains→ stresses” (see Fig. 2) is selected because it
is more efficient than the computation via integral equa-
tions, which requires much more computational effort
[Banerjee (1994)]. The iterative scheme employed here
is an extension of Banerjee’s static inelastic iterative al-
gorithm [Banerjee (1994)] to dynamics. In every time
step, starting with the assumption of an elastic structure,
the solution of Eq. (11) gives the first estimation for dis-
placements and tractions. From these displacements, the
strains are obtained and use of the constitutive equation,

described in the next section, enable one to determine the
elastic, inelastic and total stresses. The inelastic stresses
in Eq. (11) give a second estimation for displacements
and tractions etc. If convergence is satisfied in this proce-
dure, the next time step follows. The solution procedure
appears in Fig. 3.
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Displacements

StrainsStresses

 { }=[ ]{u}

Constitutive

relations

  Eqn. (11)

Figure 2 : Iterative procedure for the computation of
stresses
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NO
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[G],[H],[M],[Q]

[G*],[H*],[Q*],[GH]

INITIAL CONDITIONS

t = tn

BOUNDARY CONDITIONS { 1},{ }

   START

PRINT RESULTS

  END

t = tn+1

YES

NO

t ≥ tTOTAL

Figure 3 : Solution algorithm

4 Material modeling

This paper is mainly concerned with brittle materials like
concrete, rock, soil and ceramics. The non-linear behav-
ior of these materials presents some common characteris-
tics that damage theory is ideal to simulate [Krajcinovic
(1996)]. In this paper the O˜nate (1997) and a modified
Faria-Oliver(1993)/Mazars (1986) - FOM damage mod-
els are adopted to describe the main characteristics of
brittle materials. The FOM model consists of the elastic-
damage part of the plasticity-damage model of Faria and
Oliver expressed in terms of the tension and compression
damage indices, which are combined to produce a suit-
able average damage index on the basis of a Mazars’ type
theory. The O˜nate and FOM models take into account
the different response of material under tension and com-
pression states and the effect of stiffness degradation. In
order to clarify the concept of elastic isotropic damage, a
section of the body with overall area Sn, effective resist-
ing areaSn and area of the voids (Sn −Sn) is considered.
The damage index d is defined as

d =
Sn −Sn

Sn
= 1− Sn

Sn
(12)

The equilibrium relationship between the standard
Cauchy stressσ and the effective stressσ givesσSn =
σSnand thus in view of Eq (12), the constitutive equation
can be written as

{σ} = (1−d){σ} = (1−d) [C]{ε} (13)

where [C] is the elastic constitutive matrix. The analysis
requires the knowledge of the damage index d and its
evolution at every stage of the deformation process. The
described below constitutive models satisfy this demand.

4.1 Oñate’s model

The application of O˜nate’s model requires the determi-
nation of the norm of strain state,τ, the damage criterion
and the damage index evolution.

The norm of strain state,τ, results from

τ =
(

θ+
1−θ

n

)[
{σ}T [C]−1{σ}

]
1/2 (14)
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where n is the compressive to tensile strength ratio

n =
(

fc

ft

)
(15)

andθ is given by

θ =

3
∑

i=1
< σi >

3
∑

i=1
|σi|

(16)

The symbol (<>) corresponds to MacAuley brackets
where

〈±σi〉=
1
2

(|σi|±σi) (17)

The damage criterion is given by

F(τ− r) = τ− r ≤ 0 (18)

where

r = max

(
ft√
E

,τ
)

(19)

Finally, the evolution of the damage index d results from

d = 1− ro

r
exp

[
A+

(
1− r

ro

)]
(20)

where

A+ =
(

G f E

l∗ f 2
t
− 1

2

)−1

(21)

with G f being the fracture energy, E the modulus of elas-
ticity and l∗ an internal length scale. The last parame-
ter provides response independent of mesh discretization.
Cervera, Oliver and Faria (1995) proposed the relation

l∗j = 3
√

Vj (22)

to determine the characteristic lengthl ∗, where V is the
volume of the j-internal element (volume cell). The
stress-strain diagram in uniaxial conditions and the dam-
age bounding surface in biaxial conditions of O˜nate’s
model appear in Fig. 4. It is obvious that this model
cannot take into account the biaxiality effect in compres-
sion.

ft

ft

fc

fc
1

2

fc

ft

Figure 4 : Oñate’s model representation

4.2 FOM model

The application of FOM model requires the following 5
steps:

Step1

Compute the effective strains from the principal strains
εi by

< εi >= εi

< εi >= 0
and

> εi <= 0
> εi <= εi

when
εi > 0
εi ≤ 0

(23)

Compute the equivalent strains from

ε̃+ =

√
2

∑
i=1

< εi >2 andε̃− =

√
2

∑
i=1

> εi <2 (24)

ε̂+ =

√
max(< εi >)/

3

∑
i=1

< εi > and

ε̂− =

√
min (> εi <)/

3

∑
i=1

> εi <

Step2

Compute the effective stresses from the principal elastic
stressesσi from

< σi >= σi

< σi >= 0
and

> σi <= 0
> σi <= σi

when
σi > 0
σi ≤ 0

(25)
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Compute the equivalent stresses from

σ− =
3

∑
i=1

> σi < andσ̃− =

√
3

∑
i=1

(> σi <)2 (26)

and the strains vector from effective stresses vector by

{
ε+}

=[C]−1{<σi >} και
{

ε−
}

=[C]−1{>σi <} (27)

where [C] is the elasticity matrix.

Step3

Compute the parametersα+ andα− from

α+ = min
[

2k++k−
2k+ ,1

]
α− = min

[
k++k−

k− ,1
] (28)

where

k+ =
3

∑
i=1

H+
i

ε+
i

(
ε+

i +ε−i
)

(ε̃+)2

k− =
3

∑
i=1

H−
i

ε−i
(
ε+

i +ε−i
)

(ε̃−)2 (29)

with

H+
i = 1

H+
i = 0

and
H−

i = 0
H−

i = 1
when

(
ε+

i +ε−i
)

> 0(
ε+

i +ε−i
) ≤ 0

(30)

Step4

Compute the scalar normsτ+ and τ− of undamaged
stress state from

τ + =
√
{< σ >}T [C−1]{< σ >} (31)

and

τ− =
√√

3(Kσ−
oct + τ−oct) (32)

where

K =
√

2
1−R0

1−2R0
(33)

with

R0 =
fc−2D

fc−1D
=

biaxial compressive strength
uniaxial compressive strength

(34)

Step5

Compute the damage indices

d+ = 1− r+
0

τ+ e
A+

(
1− τ+

r+0

)
(35)

and

d− = 1− r−0
τ−

(1−A−)−A−e
B−

(
1− τ−

r−0

)
(36)

where A+, A− and B− are material parameters (Faria and
Oliver 1993, Hatzigeorgiou 2001). Furthermore, r+

0 and
r−0 correspond to the beginning of damage where

r+
0 =

ft√
E

(37)

and

r−0 =

√√
2
3

R0

1−2R0
fc (38)

The damage indices of Eq. (33) and (34) are unified in
one and only damage indexd as

d = α+d+ +α−d− (39)

It is worth noticing that the superscripts(+) and (−)
correspond to tension and compression, respectively.
The stress-strain diagram in uniaxial conditions and the
damage bounding surface in biaxial conditions of FOM
model appear in Fig. 5.

It is observed that this model is capable of taking into ac-
count the biaxiality effect in compression. In conclusion,
Oñate’s model is characterized by a great simplicity but
its use is mostly suggested in tension dominated states of
deformation, while the FOM model, despite its complex-
ity is capable of simulating any deformation state.



Dynamic response of 3-D damaged solids and structures by BEM 797

ft

ft

fc

fc
1

2

fc

ft

Figure 5 : FOM model representation

4.3 Strain rate dependency

The sensitivity of the mechanical behavior of concrete
(or other quasi-brittle materials) to the rate of external
loading is a well known fact. This feature is taken into
account by a simple and general methodology proposed
here in, which appears stepwise below:

Step1

Compute the tensilėε+ and compressivėε− strain rate
between the present (n+1) and the previous (n) time step
from

ε̇+ =
∣∣∣∣(ε̃+ε̂+)n+1− (ε̃+ε̂+)n

tn+1− tn

∣∣∣∣ , ε̇−=
∣∣∣∣(ε̃−ε̂−)n+1− (ε̃−ε̂−)n

tn+1− tn

∣∣∣∣
(40)

Step2

Compute the dynamic tensile ft,dyn and compressive fc,dyn

strength for the above strain rates. In this work, the ex-
perimental results of Suaris & Shah (1985) providing the
ratios ft,dyn/ft,st and fc,dyn/fc,st versus strain rate have been
adopted. This work uses the Suaris & Shah (1985) curves
in analytic forms

ft,dyn

ft,st
= 2.253+0.411

[
log

(
ε̇+)]

+0.035
[
log

(
ε̇+)]2

(41)

and

fc,dyn

fc,st
= 1.405+0.150

[
log

(
ε̇−

)]
+0.014

[
log

(
ε̇−

)]2

-6 -5 -4 -3 -2 -1 0 1
1.0

1.5

2.0

2.5

3.0

)log(ε

st

dyn

f

f

,

,

Tension

Compression

Figure 6 : Dynamic to static strengths ratios

(42)

which have been obtained here in by a polynomial re-
gression.

The ratios between dynamic and static, tensile and com-
pressive strength versus strain rate appear in Fig. 6.

Step3

Replace in O˜nate’s and FOM models the static values of
tensile and compressive strengths with the corresponding
dynamic values, for every time step.

For more details one can consult Hatzigeorgiou (2001)
and Hatzigeorgiou, Beskos, Theodorakopoulos and
Sfakianakis (2001).

5 Examples

This section describes three representative numerical ex-
amples in order to illustrate the use and demonstrate the
advantages of the proposed three-dimensional dynamic
damage boundary element method of analysis.

5.1 Dynamic tensile loading of a concrete bar

The ability of the proposed methodology to simulate a
concrete bar under dynamic uniaxial tension is examined
in this example. The dimensions of the bar are 20×1×1
m, while its geometry and discretization appear in Fig.
7. Cervera, Oliver and Manzoli (1995) using the finite
element method have also investigated this example. The
material parameters for this analysis, using the O˜nate’s
damage model are:

• modulus of elasticity E = 30.0 GPa,
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• densityρ = 2400 kg/m3,
• Poisson ratioν = 0.18,
• uniaxial compressive strength fc = 30.0 MPa,
• uniaxial tensile strength ft = 3.0 MPa and
• fracture energy Gf = 250.0 N/m.

The concrete bar is subjected to a dynamic uniaxial ten-
sile displacement varying linearly with time and with
10−6, 10−2 and 10−1 sec−1 strain rates. Figure 8 shows
the stress-strain curves for these strain rates. A very good
convergence is evident between the analysis with the pro-
posed BEM and the FEM results of Cervera, Oliver and
Manzoli (1995).

Figure 7 : Geometry and discretization of Example 1

Figure 8 : Concrete bar under dynamic tensile loading.
Stress-strain curves under various strain rates

5.2 Dynamic compressive loading of a concrete spec-
imen

This example presents numerical simulations of a con-
crete specimen under dynamic uniaxial compression.
The specimen dimensions are 20×20×5 cm. The geom-
etry and the discretization appear in Fig. 9.

This example undertakes to simulate the experimen-
tal tests of Suaris and Shah (1985) using the pro-
posed methodology in conjunction with the FOM dam-
age model. The material parameters for the analysis are:

Figure 9 : Geometry and discretization of Example 2

• modulus of elasticity E = 33.0 GPa,
• densityρ = 2400 kg/m3,
• Poisson ratioν = 0.18,
• compressive elastic limit f0 = 10.0 MPa,
• uniaxial compressive strength fc = 47.5 MPa,
• uniaxial tensile strength ft = 4.0 MPa,
• biaxial to uniaxial compressive strength R0 = 1.16

and
• fracture energy Gf = 150.0 N/m.

The concrete specimen is subjected to a dynamic uniax-
ial compressive displacement varying linearly with time
and with 10−6 and 0.088 sec−1 strain rates. Figure 10
shows the stress-strain curves for these strain rates. A
very good convergence is evident between analytical and
experimental results.

5.3 Dynamic analysis of a mortar beam

In this example, a simply supported mortar beam sub-
jected to a central impact loading is analyzed numeri-
cally by the proposed method using the O˜nate’s model.
The material parameters are

• modulus of elasticity E=22000.0 N/mm2

• Poisson ratioν=0.15
• uniaxial tensile strength ft=3.91 N/mm2

• uniaxial compressive strength fc=35.0 N/mm2

• densityρ=2410 kg/m3

• fracture energy Gf =103.7 N/m.

Figure 11 contains the geometry and the 3-D BEM dis-
cretization of the structure. Due the symmetry only half
of the beam is discretized.
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Figure 10 : Concrete bar under dynamic compressive
loading. Stress-strain curves under various strain rates

Figure 11 : Geometry and discretization of Example 3
(dimensions in mm)

Figure 12 shows the loading history, applied at the upper
central line of the beam.

Figure 13 depicts the time history of the vertical displace-
ment at the load point. The proposed BEM exhibits a
very good agreement with the experimental and the FEM
results of Du, Kobayashi and Hawkins (1989).

6 Conclusions

In this paper a BEM for transient dynamic inelastic anal-
ysis of 3-D solids and structures is presented. The
method employs the static fundamental solution of the
problem and this creates not only boundary integrals but
also volume integrals as well due to the presence of in-
elasticity and inertial effects. Thus, boundary as well
as domain (interior) elements are used in the space dis-
cretization of the problem. The implicit algorithm of
Houbolt is employed for the numerical integration in
time. Initial stress formulation and damage theories are

0

1000

2000

3000

4000

 5000

L
o

ad
 (

N
)

0.0 0.2 0.4 0.6 0.8 1.0

Time (msec)

Figure 12 : Loading history on Example 3
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Figure 13 : Time history of deflection at load point

used to simulate inelastic material behavior, including
strain rate effects. The main aspects concerning the nu-
merical implementation required for the solution of the
nonlinear dynamic problem are also presented. Three nu-
merical examples are described to illustrate the method
and demonstrate its accuracy. Finally, it is worth noticing
that the three-dimensional treatment of dynamic inelastic
problems requires a considerable computational effort.
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