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Elastic wave propagation in fiber reinforced composite materialswith
non-uniform distribution of fibers

J.T. Verbist, S.V. Tsinopoulos? and D. Polyzos?

Abstract:  In the present work the iterative effective
medium approximation (IEMA) is appropriately used
for wave dispersion and attenuation predictionsin fiber-
reinforced composites that microscopically exhibit a
non-uniform fiber distribution. Two types of compos-
ites with such irregular topology of fibers are consid-
ered. The first contains a regular distribution of clus-
ters of fibers embedded in a composite matrix with uni-
formly distributed fibers, and the second a uniform dis-
tribution of matrix-rich inclusions embedded in a fiber-
rich regular composite medium. The resulting from the
application of the IEMA scattering problems are solved
numerically by means of a two dimensional boundary
element method. The obtained dispersion and attenua-
tion curves are compared to those for the corresponding
fiber-reinforced composite with a uniform distribution of
fibers.

keyword: Dispersion, attenuation, fiber composites,
BEM, wave propagation, homogenization.

1 Introduction

Among the existing nondestructive methodol ogies, ultra-
sonhics can be considered as the most widely used tech-
nigue for characterizing composite materials. Recon-
struction of the effective material constants and determi-
nation of the material damage state (matrix micro crack-
ing, interfacial cracks between matrix and fibers e.t.c.)
are two essentia parts of the nondestructive ultrasonic
composite materia characterization. The ingpection pro-
cess is usualy based on the inversion of mathematical
models that relate directly the ultrasonic data, i.e. ultra
sound phase or group velocities and/or ultrasound atten-
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uation, to the microstructure or the effective macrostruc-
ture of the composite medium. Thus, understanding of
how a stress wave propagates through an elastic medium
containing a random distribution of particles or fibersis
of great importance for this kind of nondestructive eval-
uation.

Due to the presence of the embedded inhomogeneities,
an eastic wave traveling through a composite medium
undergoes multiple scattering and becomes both disper-
sive and attenuated. Dispersion means that the phase ve-
locity of thewave isfrequency dependent, whilethe term
attenuation is related to the frequency dependent decay
rate of its amplitude. Within the last forty years, many
investigators have studied wave dispersion and attenua-
tion phenomenain particulate and fiber-reinforced com-
posites, either analytically or numerically. Since a re-
view on the subject is beyond the scope of this paper,
more details on the elastic multiple scattering simulation
one can find in the papers of Anson and Chivers (1993)
and Kim, 1h, and Lee (1995) for particulate composites
and Kim (1996), Verbis, Kattis, Tsinopoulosand Polyzos
(2001) for fiber-reinforced materials. Recently, the au-
thors presented a new iterative eff ective medium approxi-
mation (IEMA) for predicting wave dispersion and atten-
uation in particulate and fiber composites [ Tsinopoulos,
Verbis, Polyzos (2000) and Verbis, Kattis, Tsinopoulos
and Polyzos (2001)]. The proposed there IEMA makes
use of a single inclusion self-consistent condition, first
considered by Soven (1967) for substitutional alloys, as-
sumes that the effective stiffness of the composite being
the same with the corresponding static one and evalu-
atesiteratively an effective and frequency dependent dy-
namic density for the composite. The complex value of
the effective dynamic density and the static effective stiff-
ness of the composite determine, eventually, the wave
speed and the attenuation coefficient of a plane wave
propagating through the composite medium. The so-
lution of the single inclusion scattering problems, im-
posed by the self-consistent condition, is accomplished
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by means of an advanced and highly accurate boundary
element method (BEM) described in the works of Poly-
zos, Tsinopoulosand Beskos (1998), Kattis, Polyzos and
Beskos (1999) and Verbis, Kattis, Tsinopoulosand Poly-
zos (2001) for two and three dimensional compressible
and incompressible dynamic elastic applications and in
the work of Tsinopoulos, Kattis, Polyzos and Beskos
(1999) for problems dealing with axisymmetric scatter-
ers.

Almost all theories, appearing to dateintheliterature and
dealing with the propagation of an elastic wavein a com-
posite medium, are based on the assumption that the em-
bedded inhomogenities have regular topology for their
gpatia distribution. In macroscopic and microscopic
level this assumption ensures constant volume fraction
of the particles/fibers over the composite volume and the
problem can be reduced to the analysisof arepresentative
unit cell containing, in most cases, only oneinhomogene-
ity. However, due to fabrication process, composite ma-
terials often present non-uniform distribution of particles
or fibers, thus forming clusters of inclusions or matrix-
rich zones both responsible for damage initiation. The
problem appears to be more pronounced in particulate
composites where a control on the spatial distribution of
particles is a very difficult task. In fiber composites the
irregular distributionof fibersisobserved in the plane be-
ing perpendicular to thefibers and in most casesin micro-
scopic level. Thus, although real fiber composites appear
macroscopically to have a transversally isotropic behav-
ior, their representative volume element isnot afiber with
the surrounding matrix medium but a non-uniform distri-
bution of many fibers embedded in the matrix of the com-
posite. To the authors' best knowledge, theoretical or ex-
perimental results concerning wave propagation in com-
positeswith irregular distribution of particles/fibers have
not been reported so far. Only papers dealing with the
static behavior of such kind of composites have appeared
to date in the literature. Some representative works are
those of Paipetis (1984), Pyrz (1997) and Li, Zhao and
Pang (1999) for particulate composites and Axelsen and
Pyrz (1997) for fiber composites.

The goal of the present paper is to study, through an ap-
propriate use of IEMA, the dispersion and the attenua
tion of longitudinal and transverse plane waves propagat-
ing in unidirectional fiber compositesthat in their micro-
scopic level present non-uniform fiber distribution such
as clusters of fibers or matrix-rich inclusions. Since the

CMES, vol.3, no.6, pp.803-814, 2002

mechanism of forming clusters of fibersis different from
that of forming matrix-rich inclusions, two types of com-
posites will be examined. The first contains a uniform
distributionof clusters of fibers embedded inacomposite
matrix with uniformly distributed fibers and the second
considers aregular distribution of matrix-rich inclusions
embedded in a fiber-rich regular composite medium. In
the plane being perpendicular to the fibers the aforemen-
tioned two types of composites are depicted graphically
inFigs 1(a) and 1(b), respectively.

The paper is structured as follows: In section 2, the
IEMA asit is applied to fiber composites with uniform
distribution of fibersis described in brief.

(@ (b)
Figure 1 : Representation of the microstructure of two
fiber-composites appearing (a) inclusions of clustered
fibers and (b) inclusions of matrix-rich inclusions.

Section 3 presentsthe BEM used for the numerical solu-
tion of the imposed by the IEMA single scattering prob-
lems. In section 4, it is numerically proved that a clus-
ter of fibers can be replaced by an equivalent homoge-
neousfiber the effective material properties of which can
be predicted by the IEMA. Thisisaccomplished by com-
paring the BEM solutionsof the two corresponding prob-
lems. In section 5, the IEMA is appropriately used for
the composite media of Fig. 1 and dispersion as well
as attenuation curves concerning longitudinal and trans-
verse horizontal plane waves are provided. The obtained
results are compared to those taken for a corresponding
fiber-reinforced composite with uniform distribution of
fibers.

2 1EMA for fiber reinforced compositewith uniform
distribution of fibers

In this section, the IEMA proposed recently by Verbis,
Kattis, Tsinopoulos and Polyzos (2001) for fiber rein-
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forced composite with uniform distribution of fibers, is
presented in brief.

The starting point of the IEMA is a self-consistent con-
ditionfirst considered in the coherent potential theory of
Soven (1967). According to thistheory, any wave prop-
agating in a composite medium can be considered as a
sum of a mean wave propagating in a medium having
the dynamic effective properties of the composite and a
number of fluctuating waves coming from the multiple
scattering of the mean wave by the uniformly and ran-
domly distributed material variations from these of the
effective medium. On the average, the fluctuating field
should be vanished at any direction within the effective
medium, i.e.,

1)

where < > denotes average over the composition and
the shape of the scatterers, T is a matrix corresponding
to the total multiple scattering operator for the fluctuat-
ing waves and k isthe propagation direction of the mean
wave. Eq. 1iswell known as self-consistent condition
and can be used to determine the dynamic effective prop-
erties of the composite material. However, due to the
prohibitive computational cost of the evaluation of the
operator T Soven (1967) proposed, instead of Eq. 1, the
use of the following simplified self-consistent condition

(2

witht being asingle scattering operator coming from the
diffraction of the mean wave by each composition, i.e.
matrix and fibers, embedded in an infinitely extended ef-
fective medium. Devaney (1980) proved that Eq. 2 could
also be written as a function of the far-field scattering
amplitudes in forward direction. Thus, for the case of
a unidirectional fiber composite, where identical homo-
geneous elastic fibers are embedded in a homogeneous
elastic matrix, Eq. 2 assumes the following form

ng® (k,k) +(1—ny)g? (k,k) =0 )

where n; represents the volume fraction of the fibers and
gW(k,k), g?(k,k) are the forward scattering ampli-

tudes taken by the solution of the two single wave scat-
tering problemsillustrated in Fig. 2.

Effective medium Effective medium

k N k S
> @
(a) (b)

Figure 2 : A plane mean wave propagating in the ef-
fective to the composite medium and scattered by (a) a
fiber inclusion (problem 1) and (b) a matrix inclusion
with identical to the fiber geometry (problem 2).

According to the IEMA the self-consistent condition (3)
is satisfied numerically through an iterative procedure,
which can be summarized as follows:

Consider a harmonic elastic plane wave with circular
frequencyw, either longitudinal (P) or transverse (SH or
SV), traveling through a unidirectional composite with
its propagation vector being perpendicular to the fibers.
Due to the presence of the fibers, multiple scattering
occurs and thereby the considered wave becomes both
dispersive and attenuated and its complex wavenumber
K" (02) can be written as

K™ () +iag" (w) @)

@

with C§™" (w) and aS'" (w2) being the frequency depen-
dent wave phase velocity and attenuation coefficient, re-
spectively. The subscript d denotes either longitudinal
(d = p) or transverse (d = s) wave.

Next, the composite material is replaced by an elastic
homaogeneous and isotropi ¢ medium with effective shear
and Young moduli pf and ES'f, respectively, given by
the static model of Halpin and Tsai [Ashton and Halpin
(1969)]

Pa(1+m)+pp(1—ny)

eff _
“hy (1= ) + 2 (1+ )

u

(5)
El(l—l- nl) +Eo (1— nl)

Eeff —E
2E1(1—n1) —I—Ez(l—l- nl)
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Subscripts 1 and 2 indicate fiber and matrix materia
properties, respectively.

For the case of multi-coated fibersthe material properties
W and E; appearing in Eqs 5 are obtained by means of
the simple mixture rule.

In the first step of the IEMA, the effective density of the
compositeis assumed to be

(6)

eff)

(P*") gepr = NP1+ (1— 1) p2

Then, the effective wave number (kgf f ) < lis evaluated
ep
in as straightforward through the relations

_1
(keff) o ueff(Eeff_4ueff) 2
P Jdepl (Eeff _ 3|J_eff) (peff )stepl

(7)
for aP-wave and

ef f
V)

ef f _ _%
(") gepr = @ [(peff)stepl] (8)

for a shear wave, respectively.

In the sequel, utilizing the material properties obtained
from the first step, the two single wave scattering prob-
lemsillustratedin Fig. 2 are solved. The solutionof these
problems is accomplished numerically by means of a 2-
D boundary element code described in the next section.
Combining the evaluated forward scattering amplitudes

gi"? (k, k), according to the self-consistent condition (3),

i.e.,

ga(k, k) = mg’ (K, k) + (1—ny) o (K, k) ©

and making use of the dispersion relation proposed by
Foldy (1945), one obtainsthe new effective wave number
of the mean wave

[(kgff)gepz] = [(kﬁff)gem] 2+4r‘19;7§7‘2) (10)
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where a is the radius of the fibers. The new complex

. ef f . ef f
density (p )step2 isevaluated from the (kd )sepz and
Eqgs 7 and 8. The procedure is repeated with the mate-

rial properties (5) and the new density (p®'")_ 52 until
the self-consistent condition (3) is satisfied. This means

eff ef f .
= i h _
thaI <kd )gep(n_l) (kd >St9p(n) Flna”y, the a/alu

ated k' fin conjunction with Eq. 4 determines the fre-

quency dependent, effective phase velocity C4 ' (w)and
the attenuation coefficient 0(3” (w) of the propagating

wave.

In order to demonstrate the effectiveness of the IEMA,
the propagation of a longitudinal wave in a composite
material consisting of Titanium (Ti) alloy matrix rein-
forced with 24% Silicon Carbide (SIC) fibersis studied.
Each fiber has a diameter of 142 um and contains a Car-
bon core, aSiC shell and aCarbon rich interphasial layer.
All the materia properties as well as the dimensions of
the three phases of the fiber are given inthe Tab. 1.

Table 1 : Material properties of each phase in SIC/Ti
fiber/matrix composite

Phase E v p Radius

(Material) (GPa) (kgr /| (um)
m3)

Core(Carbon) | 41.0 0.250 | 1700 18

Shell (SiC) 415.0 | 0.170 | 3205 68

Interphase 13.0 0.413 | 2100 71

(Carbon-rich)

Matrix 1216 | 0.348 | 5400 | -

(Titanium

aloy)

Huang and Rohklin (1995) utilizing a generalized self-
consistent methodology (GSCM) provided theoretical
dispersion and attenuation curves, accompanied by ex-
perimental results, for a longitudinal wave propagating
inthe above-mentioned composite material. Their results
are displayed in Figs 3 and 4 and compared to the corre-
sponding ones obtained in the present study. Asit isob-
served, the experimental measurements and the present
numerical results are in a very good agreement. On the
other hand, although the method of Huang and Rohklin
(1995) predictsvery well the wave phase velocity, it fails
to predict with the same accuracy the wave attenuation.
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3 BEM evaluation of the scattering amplitudes

In what follows, the outline of a 2-D BEM utilized for
the evaluation of the wave scattering amplitudes required
in the above-mentioned IEMA is presented.

Consider a long homogeneous elastic fiber of arbitrary
cross-section embedded into an infinitely extended, ho-
mogeneous i sotropic elastic matrix and a Cartesian coor-
dinate system Ox1xox3 with the X3 %, plane being perpen-
dicular to thefiber.

A time harmonic plane wave u' (with e ' suppressed)
impinges upon the fiber with a circular frequaeny w. The
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Figure 3 : Phase velocity of longitudinal wave propa-
gating in a SiIC/Ti fiber/matrix composite material with a
fiber volume fraction n1=0.24 versus frequency.
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Figure 4 : Attenuation coefficient of longitudinal wave
propagating in a SIC/Ti fiber/matrix composite material
with a fiber volume fraction n;=0.24 versus frequency.

incident wave propagatesacross thedirection k andis po-
larized in the d direction. The solution of this scattering
problem can be obtained by the solution of a combined
system of integral equations, written as

) udt(r) 4 [T r iy usXt (1)) dS=
e S (11)
Ot )t () dS + u' (1)
S

(T—&(r))u™(r) + é "(rr )'”t( r') dS=
O (e 7 () d (12)
S

where Sis the boundary of the space Q occupied by one
fiber, r isafield point, r/ is a source point lying on the
boundary S u, t are the dlspl acement and traction vec-
tors, respectively, U and T represent the frequency do-
main fundamental solutions, the indices “ext” and “int”
indicate exterior and interior to the fiber quantities, re-
spectively, and €(r) isthe usual jump tensor. Analytical
expressionsfor U, T and &(r) can be found in the books
of Manolis and Beskos (1988) and Dominguez (1993).

Far away from the scatterer, the scattered field satisfies
the radiation conditions and admits a representation of
the form [Dassios and Kiriaki (1984)]

(13)

when the incident waves are of the type P or SV type

X)

uS(r) R e—iks\r\ 1
d;f +0
IR v I Ve

(14)

when the incident wave is of the SH type. In the above
relations, f, @ are the unit vectors of a polar coordinate
system, having its origin interior to the scatterer, k, and
ks are the longitudinal and shear wave numbers, respec-
tively, and the complex functions gy, gy and gy represent
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the scattering amplitudes, the analytical form of which
can be found in the work of Verbis, Kattis, Tsinopoulos
and Polyzos (2001).

In the present work, the boundary value problem and the
scattering amplitudes are calculated by means of a 2-D
frequency domain BEM code, developed by the authors
[Verbis, Kattis, Tsinopoulos and Polyzos (2001)]. Ac-
cordingto thiscode, the boundary of the scatterer Sisdis-
cretized into three-noded quadratic line elements. Collo-
cating the integral equations (11) and (12) at all nodes
and satisfying the continuity conditions at the interface
of the fiber and the matrix, one obtains a linear system
of equationswith unknownsall the nodal components of
the displacement and traction. As soon as the boundary
problem is solved, the evaluation of the scattering ampli-
tudesthrough their integral representationsis straightfor-
ward.

4 Homogenization of a cluster of fibers through the
IEMA

This section aims to show that the forward far-field scat-
tering parameters of a circular cluster of fibers embed-
ded in an infinitely extended matrix medium are almost
equivalent to those taken by adimensionally equal homo-
geneous fiber for which the effective material properties
areprovided by the IEMA.. To thisend, two circular clus-
ters consisting of N=25 and N=100 identical, cylindri-
cal glassfibers of radius a=50pum embedded in an Epoxy
matrix are considered. Each cluster occupies a cylindri-
cal area of radius Ry5=390um and R10p=780um, respec-
tively, corresponding to a volume fraction n=40.78%.
Both glass and Epoxy materials are homogeneous and
isotropic and their properties are given in Tab. 2. In the
circular area of each cluster, the N fibers have been com-
putationally placed by means of a random number gen-
erator function [IMSL (1994)].

Table 2 : Materia properties of a Glass/Epoxy
fiber/matrix composite
Material E (GPa) N p (kgr/m3)
Glass 62.620 0.20 | 2490.
Epoxy 4.742 0.37 | 1202.

The scattering problems concerning the interaction of
each cluster with elastic, longitudinal (P) or transverse
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horizontal (SH) plane waves are treated numerically
through the BEM described in the previous section. For
both cluster sizes, the influence of the fiber-randomness
on the obtained forward scattering amplitudes is inves-
tigated by considering three different cluster configura-
tionsdepictedin Fig. 5.

The obtained results are compared to those taken from
the BEM solution of the corresponding single scattering
problems where each cluster is considered as a homoge-
neous fiber for which the effective materia propertiesare
provided by the IEMA for n=40.78%. The evaluated for-
ward scattering amplitudes are presented in Figs 6 and 7
as afunction of the dimensionlessfrequency k'a, where
k' is the wave number of the incident wave traveling in
the matrix medium and a the radius of each fiber.

From Figs6 and 7 it is apparent that, in the framework of
wave scattering, a cluster of fibers can be effectively ho-
mogenized by the IEMA for both longitudinal and trans-
verse wave incidences.

5 IEMA for fiber composites with irregular distri-
bution of fibers

In this section, the use of the IEMA for wave dispersion
and attenuation predictionsin fiber compositeswith ami-
crostructure characterized by a non-uniform distribution
of fibersis described. Asit is explained in the introduc-
tion, two specific types of composites with non-uniform
distribution of fibers will be examined here. Both are
represented graphically in Fig. 1. Asin section 4, the
constituents of the examined composites are glass fibers
embedded in an Epoxy matrix with a fiber volume frac-
tion being equal to 24%.

The composite material of Fig. 1(a) concerns a uniform
distribution of not equally sized clusters of fibers em-
bedded in a composite matrix with uniformly distributed
fibers. Thetotal fiber volume fraction is 24% while 75%
of the fibers are enclosed in the clusters. The clusters
as well as the medium in which they are embedded are
compositeswith fiber volumefractions 40.78% and 11%,
respectively. The radii of the clusters follow a Gaussian
distribution of the form

1 1 -(RRy?
P(R)= —— e =
(R) ot
+oo
[ P(RIR=1 (19
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Figure 5 : Three different random fiber distributionsfor a circular cluster of radius (a) R25=390um (N=25 fibers)

and (b) Ryoo=780um (N=100 fibers).
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Figure 6 : Forward scattering amplitudes for the three cluster configurations of Fig 5(a) (symbols) and for (a)
longitudinal and (b) transverse horizontal incidence. The solid line corresponds to the same cluster (R 25=390um)
homogenized by the IEMA.
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Figure 7: The sameas Fig. 6, for the three cluster configurations shownin Fig. 5(b) (R100=780um).
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with o = /11/2 and Ry being the mean radius of the dis-
tributed clusters taken in the present study equal to 680
pm.

The second composite medium considered hereis aran-
dom distribution of matrix-rich inclusions embedded in
afiber-rich regular composite medium (Fig. 1(b)). Asin
the first case the total fiber volume fraction is 24%. Both
fiber-rich and matrix-rich areas are assumed to be regular
composite media with fiber volume fractions 32.5% and
5%, respectively. The matrix-rich inclusions are circular
with a size distribution described again by Eq. 15.

Applying the IEMA for each phase of the above men-
tioned composites one can derive two artificial composite
media with randomly and uniformly distributed circular
inclusionsas it isillustrated in Fig. 8. The elastic con-
stants of the homogenized constituents of the two new
composites are evaluated by means of Eqgs 5, while their
complex densitiesare provided by the IEMA for the cor-
responding fiber volume fractions. The volume fractions
of theinclusionsin thetwo artificial compositesresult in
N = 45% for the case of the clustered fibers and n= 30%
for the case of matrix-rich inclusions.

The key idea of the present work is that the dispersion
and attenuation properties of a plane wave propagating
in the two original composites of Fig. 1 can be effec-
tively predicted by applying the [IEMA on the two arti-
ficial composites of Fig. 8. Since the IEMA is based
on a self-consistent condition that combines the forward
far-field scattering parameters of the two scattering prob-
lemsillustratedin Fig. 2, the above ideaseemsto bereal-
istic if the forward scattering amplitudes taken from the
scattering of the incident wave by a cluster of fibers or a
matrix-rich inclusion are similar to those taken from the
corresponding homogenized inclusions. However, it has
been already proved in section 4 that a cluster of fibers
can be effectively homogenized by the IEMA for both
longitudinal and transverse wave incidences. Thus, ap-
plying the IEMA for the artificial composites of Fig. 8,
one can effectively make wave dispersion and attenua-
tion predictionsfor the original composite media of Fig.
1. In the present case, where not equally sized circular
inclusionsare considered, the scattering amplitudes used
in the iteration procedure of the [IEMA and given by Egs
9 are appropriately modified as

I ° .. 2o .:.:l ° l
[ ] e_"
o peean e een N se %l L ool
EM

(b)
Figure 8 : Homogenization of the two different phases
of the composite by means of the IEM approximation;
(a) clustered fibers (b) matrix-rich areas.
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Figure9: Phase velocity (a) and attenuation coefficient (b) of alongitudinal (P) wave propagating in a glass/Epoxy
compositewith uniformly distributed fibers (squares), clustered fibers (triangles) and matrix-rich inclusions(circles).
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(16)

where the scattering amplitudesg ™V (R k, k), 9@ (R; k, k)
are taken from the solution of the two single scattering
problems of Fig. 1, with the radius of the corresponding
circular scatterers being equal to R. The integra in the
right hand side of the third relation of Eq. 16 is treated
numerically by means of Gauss quadrature utilizing 10
integration points.

In Figs. 9 and 10 the evaluated phase velocity as well
as the attenuation coefficient of a longitudinal and a
transverse horizontally plane wave, respectively, trav-
eling in the two types of composites considered in
this paper are presented. The calculated phase ve-
locities are normalized with the corresponding ones of
a wave traveling in the Epoxy matrix medium. The
obtained results are compared with dispersion and at-
tenuation curves corresponding to wave propagation in
glass/Epoxy fiber/matrix composite with randomly and
uniformly distributed fibers. The results of this compar-
ison are presented in the conclusions section, which fol-
lows.

6 Conclusions

Onthe basis of the results of Figs 9 and 10, one can draw
the following conclusions concerning wave dispersion
and attenuation in composites with clustered fibers and
matrix-rich inclusions as compared to composites with a
uniform distribution of fibers:

1. For kj'a > 0.6 both longitudinal and transverse waves
become faster when they propagatein the compositewith
the matrix-rich inclusions. The opposite is valid in the
composite with the clustered fibers.

2. For al cases and for ki'a < 0.6 there are small differ-
ences among the evaluated phase vel ocities.

3. For dl the considered frequencies both longitudinal
and transverse waves propagating in the composite with
the matrix-rich inclusionsare more attenuated than in the
case of uniformly distributed fibers.

4. For kjla > 1, both longitudinal and transverse waves
propagating in the composite with the clustered fibers are

less attenuated than in the case of uniformly distributed
fibers.

7 References:

Anson, L. W.; ChiversR.C. (1993): Ultrasonic veloc-
ity in suspensions of solidsin solids— a comparison the-
ory and experiment. J. Phys. D: Appl. Phys., vol 26,
pp.1566-1575.

Ashton, J. E.; Halpin, J. C. (1969): Primer on Compos-
ite Materials: Anaysis. Progressin materials Science
Series, vol 111, Technomic, USA.

Axelsen, M.S.; Pyrz, R. (1997): Influence of disorder on
the evolution of interface Cracks in unidirectional com-
posites. Sc. and Eng. of Comp. Mat., vol. 6/3, pp.
151-158.

Dassios, G.; Kiriaki, K. (1984): Thelow-frequency the-
ory of elastic wave scattering. Quart. Appl. Math., vol.
42, pp. 225-248.

Devaney, A. J. (1980): Multiple scattering theory for
discrete, elastic, random media. J. Math. Phys., vol.
21/11, pp. 2603-2611.

Dominguez, J. (1993): Boundary elements in dynamic.
Computational Mechanics Publications, Southampton
and Elsevier Applied Science, London.

Foldy, L. L. (1945): The multiple scattering of waves
Phys. Rev., vol. 67, pp. 107-119.

Huang, W.; Rohklin, S. |. (1995): Frequency de-
pendences of ultrasonic wave velocity and attenuation
in fiber composites; Theory and experiments. In:
D.O. Thompson and D.E. Chimenti (eds) Review of
Progress in Quantitative Nondestructive Evaluation,
Plenum Press, New York, Vol. 14.

IMSL (1994): Math/Library User’'sManual, Version 3.0,
Visual Numerics Inc., Houston, Texas, USA.

Kattis, S. E.; Polyzos, D.; Beskos, D. E. (1999): Vibra-
tion Isolation by a Row of Piles Using a 3-D Fregquency
Domain BEM. International Journal of Numerical Meth-
odsin Engineering, vol. 46, pp. 713-728.

Kim, J. Y.(1996): Dynamic self-consistent analysis for
elastic wave propagation in fiber composites. J. Acoust.
Soc. Am,, vol. 100, pp. 2002-2010.

Kim, J. Y.; Ih, J. G.; Lee, B. H. (1995): Dispersion
of elastic waves in random particulate composites. J.
Acoust. Soc. Am., vol. 97, pp. 1380-1388.



814 Copyright (© 2002 Tech Science Press

Li, G.; Zhao, Y.; Pang, S. (1999): Analytical model-
ing pf particle size and cluster effects on particul ate-filled
composite. MaterialsScience and Engineering, vol. 271,
pp. 43-52.

Manolis, G.; Beskos, D. E. (1988): Boundary element
methodsin elastodynamics, Unwin-Hyman, London.

Paipetis, S.A. (1984): Interfacia phenomena and rein-
forcing mechanisms in rubber/carbon black composites.
Fibre Science and Technology, vol. 21, pp. 107-124.

Polyzos, D.; Tsinopoulos, S. V.; Beskos, D. E. (1998):
Static and Dynamic Boundary Element Analysisin In-
compressible Linear Elasticity. European Journal of Me-
chanics A/Solids, vol. 17, pp. 515-536.

Pyrz, R. (1997): Fracta characterization of second-
phase dispersion in composite materials. Sc. and Eng.
of Comp. Mat., vol. 6/3, pp. 141-150.

Soven, P. (1967): Coherent-potential model of substitu-
tional disordered aloys. Phys. Rev., vol. 156, pp. 809-
813.

Tsinopoulos, S. V.; Kattis, S. E.; Polyzos, D.; Beskos,
D. E. (1999): An Advanced Boundary Element Method
for Axisymmetric Elastodynamic Analysis. Computer
Methods in Applied Mechanics and Engineering, vol.
175, pp.53-70.

Tsinopoulos, S. V.; Verbis, J. T.; Polyzos, D. (2000):
An iterative effective medium approximation for wave
dispersion and attenuation predictionsin particul ate com-
posites. Advanced Composites Letters, vol. 9, pp. 94-
101.

Verbis, J. T.; Kattis, S.E.; Tsinopoulos, S. V.; Poly-
zos, D. (2001): Wave dispersion and attenuation in fiber
composites. Computational Mechanics, vol. 27, pp. 244-
255.

CMES, vol.3, no.6, pp.803-814, 2002




