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On Simple Formulations of Weakly-Singular Traction & Displacement BIE, and
Their Solutions through Petrov-Galerkin Approaches

Z. D. Han1 and S. N. Atluri1

Abstract: Using the directly derived non-hyper singu-
lar integral equations for displacement gradients [as in
Okada, Rajiyah, and Atluri (1989a)], simple and straight-
forward derivations of weakly singular traction BIE’s for
solids undergoing small deformations are presented. A
large number of “intrinsic properties” of the fundamen-
tal solutions in elasticity are developed, and are used
in rendering the tBIE and dBIE to be only weakly-
singular, in a very simple manner. The solutions of the
weakly singular tBIE and dBIE through either global
Petrov-Galerkin type “boundary element methods”, or,
alternatively, through the meshless local Petrov-Galerkin
(MLPG) methods, are discussed. As special cases, the
Galerkin type methods, which lead to symmetric systems
of equations, are also discussed.

1 Introduction

In the past 25 years, much has been written about the
integral equation formulations for the displacement and
traction vectors in a solid body. Much of this work has
been concentrated on linear elastic, homogenous, and
isotropic solids. The focus in these derivations is on
the “fundamental solution” in a linear elastic isotropic
solid, viz., the Kelvin solution for a unit point load ap-
plied at an arbitrary location, in an arbitrary direction,
in an infinite linear elastic solid. The Kelvin solution is
well-understood, and is “singular”. For clarity, we de-
note the various levels of singularity: If “r” is the dis-
tance between any arbitrary point (ξξξ) in the solid and
(x) (the point at which the unit load is applied in a 3-

dimensional solid), we denote the (1
r ) type singularities
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as being “weakly-singular”, the ( 1
r2 ) type singularities

as being “strongly-singular”, the ( 1
r3 ) type singularities

as being “hyper-singular”.

In the Kelvin solution, for a 3-D solid, it is well-known
that the displacement-vector is “weakly-singular”, and
the stress-tensor is “strongly-singular”. In the classical
formulation, the integral equation for the displacement
vector at any point [x ∈ Ω or ∂Ω] is “strongly singu-
lar”. If the displacement integral equation at any point
x ∈ Ω, is differentiated with respect to x ∈ Ω, one may

obtain an integral equation for ∇∇∇x [∇∇∇ = ei
∂

∂xi
] for any

x ∈ Ω. From this equation for the displacement gradi-
ents, one may derive a traction boundary integral equa-
tion [tBIE] at any x ∈ Ω or ∂Ω. It is seen that this tBIE
is “hyper-singular”. Much has been written in the last
10∼15 years on the “regularization” of the tBIE [i.e., ren-
der the “hyper-singular” tBIE into a “weakly-singular”
tBIE], through what appears to be laborious mathemati-
cal exercises and “manipulations”. This literature is too
large to discuss here, but excellent summaries may be
found in [Cruse and Richardson (1996); Bonnet, Maier,
Polizzotto (1998); Li and Mear (1998)].

In this paper, we revisit the Kelvin solution, and delin-
eate certain “fundamental properties” of this solution. By
using the global-weak-form [or the weighted-residual-
equation”] of the momentum balance laws of linear elas-
ticity, corresponding to a point load, on which the Kelvin
solution is based, we derive an arbitrary number of these
“fundamental properties”, by simply using an arbitrary
number of different types of “test functions” in writing
the weak-forms. These fundamental properties of the

Kelvin solution, which otherwise has a ( 1
r2 ) singular-

ity for tractions, are shown to be the key in-gradients in
any “regularization” of the tBIE, which is derived by dif-
ferentiating the strongly-singular displacement integral
equation.

On the other hand, as far back as 1989, Okada, Rajiyah,
and Atluri (1989a,b, 1991) have proposed a way to di-
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rectly derive integral equations for ∇∇∇u [∇∇∇ = ei
∂

∂xi
], rather

than first derive the dBIE, and then differentiate it with
respect to x as is most common is literature. Thus, one
may also, from Okada, Rajiyah and Atluri (1989a,b),
directly derive a tBIE. Thus, the directly derived tBIE
[Okada, Rajiyah and Atluri (1989a,b)] is only “strongly-
singular”, as opposed to being “hyper-singular”. It is
shown in the present paper, that by using the “funda-
mental properties” of the Kelvin solution [which are
also derived in the present paper], one may “regularize”
the directly derived tBIE of Okada, Rajiyah and Atluri
(1989a,b) in a very straight-forward and simple manner.
In a like manner, it is shown here that the dBIE can also
be “regularized” in a very straight-forward and simple
manner.

It is also shown in this paper that the fundamental Kelvin
solution for the stress-tensor can be naturally split into 2
parts, which we denote here as φ∗p

i j and ψ∗p
i j , respectively,

and write σ∗p
i j = ψ∗p

i j − φ∗p
i j , where σ∗p

i j is the Kelvin so-
lution for stresses, ψ∗p

i j is divergence free, and the diver-
gence of φ∗p

i j is the Dirac function.

We also discuss the numerical solution, by discretization,
of the directly derived, tBIE of Okada, Rajiyah and Atluri
(1989a,b), as well as of the regularized, weakly-singular
dBIE. We write the general Petrov-Galerkin types of
weak-forms of these integral equations at ∂Ω. Thus, we
introduce an arbitrary test function w(x), x ∈ ∂Ω. If
w(x) us a Dirac function, and if the trial functions t(x)
and u(x) are interpolated in terms of their nodal values
over a contiguous (“non-overlapping”) set of elements
at ∂Ω [“boundary elements”], one obtains the popular
“Boundary Element Methods”. On the other hand, if
w(x) is chosen to be the same as the complementary [or
energy-conjugate] trial function [i.e., in the tBIE, we use
u(x) as the test function, and in the dBIE, we use t(x)
as the test function], we obtain the so-called “Symmet-
ric Galerkin Approaches” for dBIE and tBIE [Bonnet,
Maier, Polizzotto (1998)]. On the other hand, one may
leave w(x) as arbitrary, and formulate a general Petrov-
Galerkin Approach. It is further shown that, in the “Sym-
metric Galerkin” approach to solving the directly derived
tBIE [Okada, Rajiyah and Atluri (1989a,b)], using the
natural split of σ∗p

i j , and the use of the Stokes’ theorem
at ∂Ω when w(x) is a continuous function, the resulting
discrete formulation results in certain further algebraic
conveniences. These end results are found to be some-

what similar to the results in Li and Mear (1998), but the
present results are different from those in Li and Mear
(1998) in terms of the attendant kernel functions. How-
ever, the present formulations of the Patrov-Galerkin ap-
proaches to solving the directly derived tBIE [Okada,
Rajiyah and Atluri (1989a,b)] are simple and straight-
forward.

The structure of the paper is as follows. In Section 1,
we briefly discuss the well-known Galerkin vector poten-
tial for displacements is an elastic solid undergoing small
displacements. In Section 2, we derive the fundamental
solution σ∗p

i j for a point load in an infinite body, and point
out how it can be split into φ∗p

i j and ψ∗p
i j . In Section 3, we

derive, following Okada, Rajiyah and Atluri (1989a,b),
the displacement equations (dBIE), and directly derive
the tBIE without differentiating the dBIE. In deriving
these, we use the notion of “unsymmetric weak-forms”
of differential equations, as first noted in Atluri (1985).
In Section 4, we derive a large number of basic proper-
ties of σ∗p

i j , by using the weak-forms [with different test
functions], of the balance laws for σ∗p

i j . We point out
how these methods can be used to derive the “basic prop-
erties” of the fundamental solutions for any problems of
mathematical physics [fluid mechanics, acoustics, elec-
tromagnetism, etc]. In Section 5, we discuss the “regular-
ization” of tBIE, using these properties. We also discuss
the Petrov-Galerkin approach to discretize the “regular-
ized” tBIE. In Section 6, we discuss the “regularization”
of dBIE, and the Petrov-Galerkin schemes to discretize
these regularized dBIE. In Section 7, we consider the im-
portant practical issue of the evaluation of displacements
and stresses near the surface. In Section 8, we briefly
mention the forthcoming papers of the authors, which
build upon the present results and to develop Meshless
Local Petrov Galerkin [MLPG] approaches [Atluri and
Zhu (1998), Atluri and Shen (2002a,b)].

2 Galerkin Vector Potential for Displacements in an
Elastic Solid Undergoing Small Deformations

Consider a linear elastic, homogeneous, isotropic body in
a domain Ω, with boundary ∂Ω. The Lame’ constants of
the linear elastic isotropic body are λ and µ; and the cor-
responding Young’s modulus and Poisson’s ratio are E
and υ, respectively. We use Cartesian coordinates ξi, and
the attendant base vectors ei, to describe the geometry in
Ω. The solid is assumed to undergo infinitesimal defor-
mations. The displacement vector, strain-tensor, and the
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stress-tensor in the elastic body are denoted as u, εεε and
σσσ, respectively, with the corresponding dyadic represen-
tations, as follows:

u = uiei (1)

εεε = εi jeie j (2)

σσσ = σi jeie j (3)

The equations of balance of linear and angular momen-
tum can be written as:

∇∇∇ ·σσσ+ f = 0; σσσ = σσσt; ∇∇∇ = ei
∂

∂ξi
(4)

σi j,i + f j = 0; σi j = σ ji (5)

The strain-displacement relations are:

εεε =
1
2

∇∇∇u + u∇∇∇); εi j =
1
2
(ui, j + uj,i) (6)

The constitutive relations of an isotropic linear elastic ho-
mogeneous solid are:

σσσ = λI(∇∇∇ ·u)+ 2µ εεε (7a)

= λI(∇∇∇ ·u)+ µ(∇∇∇u + u∇∇∇) (7b)

= µ[
1
A

I(∇∇∇ ·u)+∇∇∇u + u∇∇∇−2I(∇∇∇ ·u)] (7c)

where

A =
µ

λ+ 2µ
=

1−2υ
2(1−υ)

(8)

It is well known [Fung & Tong (2001)] that the displace-
ment vector, which is a continuous function of ξξξ, can be
derived, in general, from the Galerkin vector potential ϕϕϕ
such that:

u = ∇∇∇2ϕϕϕ− 1
2(1−υ)

∇∇∇(∇∇∇ ·ϕϕϕ) (9a)

= A∇∇∇Φ+∇∇∇×ΨΨΨ (9b)

= A∇∇∇(∇∇∇ ·ϕϕϕ)−∇∇∇×∇∇∇×ϕϕϕ (9c)

= A∇∇∇(∇∇∇ ·ϕϕϕ)+∇∇∇2ϕϕϕ−∇∇∇(∇∇∇ ·ϕϕϕ) (9d)

= uΦ + uΨ (9e)

where, by definition,

uΦ = A∇∇∇Φ = A∇∇∇(∇∇∇ ·ϕϕϕ) (10)

uΨ = ∇∇∇×ΨΨΨ = −∇∇∇×∇∇∇×ϕϕϕ = ∇∇∇2ϕϕϕ−∇∇∇(∇∇∇ ·ϕϕϕ) (11)

where Φ is a scalar potential, and ΨΨΨ is a vector potential,
such that:

Φ = ∇∇∇ ·ϕϕϕ (12)

ΨΨΨ = −(∇∇∇×ϕϕϕ) (13)

The displacements uΦ and uΨ have the properties,

∇∇∇×uΦ = A∇∇∇×∇∇∇Φ = 0 (14)

∇∇∇ ·uΨ = ∇∇∇ ·∇∇∇×ΨΨΨ = 0 (15)

Using (7c), (9c), (12)-(15) in (4)a, it is easily found (in
the absence of body force f) that:

∇∇∇ ·σσσ = µ∇∇∇2∇∇∇2ϕϕϕ = 0 or ∇∇∇2∇∇∇2ϕϕϕ = 0 (16)

since

∇∇∇uΦ + uΦ∇∇∇−2I∇∇∇ ·uΦ

= A(∇∇∇2Φ+∇∇∇Φ∇∇∇−2I∇∇∇2Φ) = 0 (17)

For a curl-free solution, in which:

u = uΦ = A∇∇∇Φ and uΨ = 0 (18)

the balance equation (4) is simplified, as:

∇∇∇∇∇∇2Φ = 0 or ∇∇∇2Φ = C (19)

3 Fundamental Solutions in a Linear Elastic
Isotropic Homogeneous Infinite Medium

x

Ω∂∈

p
e

)(n

Ω

Ω∂

Ω∈

Figure 1 : A solution domain with source point x and
target point ξξξ
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Consider a point unit load applied in an arbitrary direc-
tion ep at a generic location x in a linear elastic isotropic
homogeneous infinite medium as shown in Fig. 1. It is
well-known [Fung and Tong (2001)] that the displace-
ment solution corresponding to this unit point load is
given by the Galerkin vector displacement potential:

ϕϕϕ∗p = (1−υ)F∗ep (20)

where

F∗ =
r

8πµ(1−υ)
for 3D problems (21a)

and

F∗ =
−r2 lnr

8πµ(1−υ)
for 2D problems (21b)

where r = ‖ξξξ−x‖
Thus, ϕϕϕ∗p in (20) is the solution, in infinite space, to the
differential equation (in the coordinates ξξξ),

µ∇∇∇2∇∇∇2ϕϕϕ∗p + δ(x,ξξξ)ep = 0

∇∇∇ ·σσσ(x,ξξξ)+ δ(x,ξξξ)ep = 0 (22)

∇∇∇ = ei
∂

∂ξi

or

µ(1−υ)∇∇∇2∇∇∇2F∗ + δ(x,ξξξ) = 0 (23)

The corresponding displacements are derived from the
Galerkin vector displacement potential, using (9a), as:

u∗p
i (x,ξξξ) = (1−υ)δpiF

∗
,kk −

1
2

F∗
,pi (24)

The gradients of the displacements in (24) are:

u∗p
i, j (x,ξξξ) = (1−υ)δpiF

∗
,kk j −

1
2

F∗
,pi j (25)

The corresponding stresses in a linear elastic homoge-
nous isotropic body are given by:

σ∗p
i j (x,ξξξ) ≡ Ei jklε∗p

kl ≡ Ei jklu
∗p
k,l

= µ[(1−υ)(δpiF
∗
,kk j + δp jF

∗
,kki)+ υδi jF

∗
,pkk −F∗

,pi j]

= µ[(1−υ)δpiF
∗
,kk j + υδi jF

∗
,pkk −F∗

,pi j]

+ µ(1−υ)δp jF
∗
,kki (26)

These stresses are seen to satisfy the balance laws:

σ∗p
i j,i(x,ξξξ) = µ(1−υ)δp jF

∗
,kkii = −δp jδ(x,ξξξ);

σ∗p
i j = σ∗p

ji (27)

We define two functions φ∗p
i j and ψ∗p

i j , as

φ∗p
i j (x,ξξξ) ≡−µ(1−υ)δp jF

∗
,kki (28a)

ψ∗p
i j (x,ξξξ) ≡ σ∗p

i j (x,ξξξ)+ φ∗p
i j (x,ξξξ)

= µ[(1−υ)δpiF
∗
,kk j + υδi jF

∗
,pkk −F∗

,pi j] (28b)

Then, from (27), (28a) and (28b), it can be seen that:

φ∗p
i j,i(x,ξξξ) = −σ∗p

i j,i(x,ξξξ)

= −µ(1−υ)δp jF
∗
,kkii = δp jδ(x,ξξξ) (29a)

ψ∗p
i j,i(x,ξξξ) = 0 [ divergence of ψψψ∗(x,ξξξ) = 0] (29b)

Hence, as a divergence free tensor, ψψψ∗(x,ξ) must be a

curl of another divergence free tensor. We choose to

rewrite it in term of F∗ from Eq. (28b), as:

ψ∗p
i j (x,ξξξ) = µ[(1−υ)δpiF

∗
,kk j + υδi jF

∗
,pkk −F∗

,pi j]

= µ[(1−υ)(δpiF
∗
,kk j −δi jF

∗
,pkk)+ δi jF

∗
,pkk −F∗

,pi j]

= µ[(1−υ)(δpiδ jsF
∗
,kks−δi jδpsF

∗
,kks)

−(δkiδ jsF
∗
,pks −δi jδksF

∗
,pks)]

= µ[(1−υ)et p jetisF
∗
,kks − etk jetisF

∗
,pks]

= µetis[(1−υ)et p jF
∗
,kk − etk jF

∗
,pk],s

≡ eistG
∗p
t j,s (30)
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where, by definition,

G∗p
i j (x,ξξξ) = µ[(1−υ)eip jF

∗
,kk − eik jF

∗
,pk] (31)

In a 3-dimensional linear elastic homogeneous body we
can easily derive the derivatives of F∗, from (21a), as:

F∗
,p =

r,p

8πµ(1−υ)
(32a)

F∗
,pi =

1
8πµ(1−υ)r

(δpi − r,pr,i) (32b)

F∗
,kk =

1
4πµ(1−υ)r

(32c)

F∗
,pi j = − 1

8πµ(1−υ)r2 (δpir, j + δp jr,i + δi jr,p

−3r,pr,ir, j) (32d)

F∗
,kki = − 1

4πµ(1−υ)r2 r,i (32e)

F∗
,kki j = − 1

4πµ(1−υ)r3 (δi j −3r,ir, j) (32f)

and for a 2-dimensional body,

F∗
,p = − 1

8πµ(1−υ)
(r + 2r lnr)r,p (33a)

F∗
,pi = − 1

8πµ(1−υ)
[δpi(1+ 2lnr)+ 2r,pr,i] (33b)

F∗
,kk = − 1

2πµ(1−υ)
(1+ lnr) (33c)

F∗
,pi j = − 1

4πµ(1−υ)r
(δpir, j + δp jr,i + δi jr,p

−2r,pr,ir, j) (33d)

F∗
,kki = − 1

2πµ(1−υ)r
r,i (33e)

F∗
,kki j = − 1

2πµ(1−υ)r2 (δi j −2r,ir, j) (33f)

Thus, from (28a), (28b) and (30), one may see that:

σ∗p
i j (x,ξξξ) = ψ∗p

i j (x,ξξξ)−φ∗p
i j (x,ξξξ)

= µ(1−υ)δp jF
∗
,kki

+ µeist [(1−υ)et p jF
∗
,kk − etk jF

∗
,pk],s (34)

From (32b), (32c), (32), the singularity in each of the
terms in Eq. (34) can be seen, for 3D problems, as:

F∗
,kki ∝ O(

1
r2 ) (35a)

F∗
,kk ∝ O(

1
r
) (35b)

F∗
,pk ∝ O(

1
r
) (35c)

and for 2D problems as:

F∗
,kki ∝ O(

1
r
) (36a)

F∗
,kk ∝ O(lnr) (36b)

F∗
,pk ∝ O(lnr) (36c)

We write the kernel functions for 3D problems, from Eq.
(32), as:

u∗p
i (x,ξξξ) =

1
16πµ(1−υ)r

[(3−4υ)δip + r,ir,p] (37)

G∗p
i j (x,ξξξ) =

1
8π(1−υ)r

[(1−2υ)eip j + eik jr,kr,p] (38)

σ∗p
i j (x,ξξξ) =

1
8π(1−υ)r2

[(1−2υ)(δi jr,p −δipr, j −δ jpr,i)−3r,ir, jr,p] (39)

and for 2D plane strain problems, from Eq. (33), as:

u∗p
i (x,ξξξ) =

1
8πµ(1−υ)

[−(3−4υ) lnrδip + r,ir,p] (40)

G∗p
i j (x,ξξξ) =

1
4π(1−υ)

[−(1−2υ) ln r eip j + eik jr,kr,p]

(41)

σ∗p
i j (x,ξξξ) =

1
4π(1−υ)r

[(1−2υ)(δi jr,p −δipr, j −δ jpr,i)−2r,ir, jr,p] (42)
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4 Displacement & Traction BIE: Derivations From
Unsymmetric Weak Forms of Balance Laws in
Elasticity

The governing equations of momentum balance in a solid
undergoing small displacements are

σi j,i + f j = 0; σi j = σ ji (),i ≡ ∂
∂ξi

(43)

For the present, we ignore the body forces fi ( but include
them later, when necessary). Thus, (43) is reduced to:

σi j,i = 0 in Ω (44)

For a homogeneous linear elastic isotropic homogeneous
solid, the constitutive equation is

σi j = Ei jklεkl = Ei jkluk,l (45)

where

εkl =
1
2
(uk,l + ul,k) (46)

and

Ei jkl = λδi jδkl + µ(δikδ jl + δilδ jk), (47)

with λ and µ being the Lame’s constants.

Let ui be the trial functions for displacements, to satisfy
Eq. (44), in terms of ui, when Eqs. (45)-(47) are used.
Let u j be the test functions to satisfy the momentum bal-
ance laws in terms of ui, in a weak form. The weak form
of the equilibrium Eq. (44) can then be written as,

∫
Ω

σi j,iu jdΩ ≡
∫

Ω
(Ei jmnum,n)iu jdΩ = 0 (48)

Applying the divergence theorem two times2 in Eq. (48),
we obtain:

2 If we use the divergence theorem only once in Eq. (48), we obtain
the “symmetric” weak form:
∫

Ω σi ju j,idΩ− ∫
∂Ω niσi ju jdΩ = 0

Thus, in the symmetric weak form, both the trial functions ui as
well as the test functions u j are only required to be once differ
entiable. However, in the “unsymmetric weak form” of Eq. (49),
the test functions u j in Ω are required be twice-differentiable, while
there is no differentiability requirement on ui in Ω.

0=
∫

Ω
Ei jmnum,niu j dΩ

=
∫

∂Ω
niEi jmnum,nu j dS−

∫
Ω

Ei jmnum,nu j,i dΩ

=
∫

∂Ω
niEi jmnum,nu j dS−

∫
∂Ω

nnEi jmnumu j,i dS

+
∫

Ω
Ei jmnumu j,in dΩ

=
∫

∂Ω
niEi jmnum,nu j dS−

∫
∂Ω

nnEi jmnumu j,i dS

+
∫

Ω
um(Ei jmnu j,i),n dΩ (49)

Instead of the scalar weak form of Eq. (44), as in Eq.
(48), we may also write a vector weak form of Eq. (44),
by using the tensor test functions ui,k [as originally pro-
posed in Okada, Rajiyah, and Atluri (1988,1989)] as:

∫
Ω

σi j,iu j,kdΩ = 0 k = 1,2,3 (50)

By applying divergence theorem three times in Eq. (50),
we may write:

0 =
∫

Ω
Ei jmnum,niu j,k dΩ (51)

=
∫

∂Ω
niEi jmnum,nu j,k dS−

∫
Ω

Ei jmnum,nu j,ki dΩ

=
∫

∂Ω
niEi jmnum,nu j,k dS−

∫
∂Ω

nkEi jmnum,nu j,i dS

+
∫

Ω
Ei jmnum,nku j,i dΩ

=
∫

∂Ω
niEi jmnum,nu j,k dS−

∫
∂Ω

nkEi jmnum,nu j,i dS

+
∫

∂Ω
nnEi jmnum,ku j,i dS−

∫
Ω

Ei jmnum,ku j,in dΩ

=
∫

∂Ω
niEi jmnum,nu j,k dS−

∫
∂Ω

nkEi jmnum,nu j,i dS

+
∫

∂Ω
nnEi jmnum,ku j,i dS−

∫
Ω

um,k(Ei jmnu j,i),n dΩ

By taking the fundamental solution u∗p
i (x,ξξξ) as the test

function ui(ξξξ), and with the consideration of its proper-
ties in Eq. (22), we re-write Eqs. (49), (51), respectively,
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as,

up(x) =
∫

∂Ω
ni(ξξξ)Ei jmnum,n(ξξξ)u∗p

j (x,ξξξ) dS

−
∫

∂Ω
nn(ξξξ)Ei jmnum(ξξξ)u∗p

j,i(x,ξξξ) dS

≡
∫

∂Ω
t j(ξξξ)u∗p

j (x,ξξξ) dS−
∫

∂Ω
um(ξξξ)t∗p

m (x,ξξξ) dS (52)

−up,k(x) =
∫

∂Ω
ni(ξξξ)Ei jmnum,n(ξξξ)u∗p

j,k(x,ξξξ) dS

−
∫

∂Ω
nkξξξ)Ei jmnum,n(ξξξ)u∗p

j,i(x,ξξξ) dS

+
∫

∂Ω
nn(ξξξ)Ei jmnum,k(ξξξ)u∗p

j,i(x,ξξξ) dS (53)

Eqs. (52) and (53) were originally given in [Okada,
Rajiyah, and Atluri (1989a,b)], and the notion of using
unsymmetric weak-forms of the differential equations,
to obtain integral representations for displacements, was
presented in [Atluri (1985)]. It should be noted that the
integral equations for up(x) and up,k(x) as in Eqs. (52)
and (53) are derived independently of each other. On
the other hand, if we derive the integral equation for
displacement-gradients, by directly differentiating up(x)
in Eq. (52), i.e. by differentiating,

up(x) =
∫

∂Ω
t j(ξξξ)u∗p

j (x,ξξξ) dS−
∫

∂Ω
um(ξξξ)t∗p

m (x,ξξξ) dS

with respect to xk, we obtain:

up,k(x) =
∫

∂Ω
t j(ξξξ)u∗p

j,k(x,ξξξ) dS−
∫

∂Ω
um(ξξξ)t∗p

m,k(x,ξξξ) dS

(54)

Thus, Eq. (54) is hypersingular, since t∗p
m,k(x,ξξξ) is of

O(r−3) for 3D problems. On the other hand, the directly
derived integral equations for up,k(x,ξξξ) as in Eq. (53)
contain only singularities of O(r−2).
Eq. (52) is the original displacement BIE (dBIE) in
its strongly-singular form before any regularization. On
the other hand, Eq. (53) are the non-hypersingular
(“strongly-singular”) integral equations for displacement
gradients in a homogeneous linear elastic solid, as origi-
nally derived in Okada, Rajiyah, and Atluri (1989a,b). It
is but a simple extension to derive a non-hypersingular
integral equation for tractions in a linear elastic solid,
from Eq. (53),

−Eabpkup,k(x) = Eabpk

∫
∂Ω

t j(ξξξ)u∗p
j,k(x,ξξξ) dS

+ Eabpk

∫
∂Ω

[nn(ξξξ)um,k(ξξξ)−nk(ξξξ)um,n(ξξξ)]σ∗p
nm(x,ξξξ) dS

= Eabpk

∫
∂Ω

t j(ξξξ)u∗ j
p,k(x,ξξξ) dS

+ Eabpk

∫
∂Ω

Dtum(ξξξ)enkt σ∗p
nm(x,ξξξ) dS (55)

where the surface tangential operator Dt is defined as,

Dt = nrerst
∂

∂ξs
(56)

Then Eq. (55) can be re-written as,

−σab(x) =
∫

∂Ω
tq(ξξξ)σ∗q

ab(x,ξξξ) dS

+
∫

∂Ω
Dpuq(ξξξ)enlpEabklσ∗k

nq(x,ξξξ) dS (57)

≡
∫

∂Ω
tq(ξξξ)σ∗q

ab(x,ξξξ) dS

+
∫

∂Ω
Dpuq(ξξξ)Σ∗

abpq(x,ξξξ) dS

where by definition,

Σ∗
i jpq(x,ξξξ) = Ei jklenlpσ∗k

nq(x,ξξξ) (58)

Contracting Eq. (57) with na(x), we have

− tb(x) =
∫

∂Ω
tq(ξξξ)na(x)σ∗q

ab(x,ξξξ) dS

+
∫

∂Ω
Dpuq(ξξξ)na(x)Σ∗

abpq(x,ξξξ) dS (59)

where the traction is defined as,

tb(x) = na(x)σab(x) (60)

5 Some Basic Properties of the Fundamental Solu-
tion

Consider a body of an infinite extent, subject to a point
force at a generic location x in the direction ep, as shown
in Fig. 1. The fundamental solution, in infinite space, of
the stress field, denoted by σσσ∗p(x,ξξξ), at any point ξξξ due
to this point load at x, is generated by the balance law,
from Eq. (22):
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∇∇∇ ·σσσ∗p(x,ξξξ)+ δ(x,ξξξ)ep = 0 (61)

We write the weak form of Eq. (61) over the domain,
using a constant c as a test function, as
∫

Ω
∇∇∇ ·σσσ∗p(x,ξξξ) c dΩ+ epc = 0 (62a)

or∫
∂Ω

n(ξξξ) ·σσσ∗p(x,ξξξ)dS+ ep = 0 (62b)

or∫
∂Ω

ni(ξξξ)σ∗p
i j (x,ξξξ)dS+ δp j = 0 (62c)

or∫
∂Ω

t∗p
j (x,ξξξ)dS+ δp j = 0 x ∈ Ω (62d)

Eq. (62d) is a “basic identity” of the fundamental solu-
tion σσσ∗p(x,ξξξ). Eq. (62d) is simply an affirmation of the
force balance law for Ω: if the point load is applied at a
point x ∈ Ω when Ω is entirely embedded in an infinite
space, the tractions exerted by the surrounding infinite
body on the finite-body Ω should be equilibrated with
the applied point force at x inside Ω.

Secondly, if we consider an arbitrary function u(x) in
Ω as the test function, we may write the corresponding
weak-form, from Eq.(61), as:
∫

Ω
[∇∇∇ ·σσσ∗p(x,ξξξ)+ δ(x,ξξξ)ep] ·u(x)dΩ = 0 (63a)

or∫
∂Ω

[n(ξξξ) ·σσσ∗p(x,ξξξ)] ·u(x)dS + ep ·u(x) = 0 (63b)

or∫
∂Ω

t∗p(x,ξξξ) ·u(x)dS+ ep ·u(x) = 0 x ∈ Ω (63c)

or∫
∂Ω

t∗p
j (x,ξξξ)uj(x)dS+ up(x) = 0 x ∈ Ω (63d)

Once the point x approaches a smooth boundary, i.e. x ∈
∂Ω, the first term in Eq. (62d) can be written in a Cauchy
Principal value (CPV) integral, denoted by

∫ CPV , as,

lim
x→∂Ω

∫
∂Ω

t∗p
j (x,ξξξ)dS =

∫ CPV

∂Ω
t∗p

j (x,ξξξ)dS− 1
2

δp j (64a)

and thus, one obtains:
∫ CPV

∂Ω
t∗p

j (x,ξξξ)dS +
1
2

δp j = 0 x ∈ ∂Ω (64b)

The second term on the right hand-side of Eq. (64a) re-
sults from the principal value of the singular integral in-

volving t∗p
j , which has a O( 1

r2 ) singularity. Eq. (64b)

may also be physically explained as below. σ∗p
i j (and thus

t∗p
j ) are solutions due to a point load applied in an infi-

nite space. In reality, the point load can be assumed to be
distributed over a small-sphere, of radius ε, in an infinite
body. The tractions distributed over this sphere, that re-

sult in a point load, are of O( 1
ε2); while the surface area

of the sphere is O(ε2). As long as this sphere is inside
Ω, and while Ω is a part of the infinite space, the load
applied on Ω is still unity. Suppose x → x̂ at ∂Ω shown
in Fig. 2, then the sphere of radius ε is centered at the
boundary. As long as the boundary is smooth, only one-
half of the sphere of radius ε is actually inside Ω, when
x → x̂ at ∂Ω. Thus while the load applied, in infinite
space, on a sphere of radius ε at x̂ ∈ ∂Ω, is still unity, the
actual load applied on Ω is only 1

2 . Thus we obtain Eq.
(64b).

x̂

Ω∂∈

p
e

)(n

Ω

Ω∂

Ω∈

x

Figure 2 : A loading point x approaching the boundary

We can write Eqs. (62d) and (63d) for x ∈ ∂Ω, with Eq.
(64), as:
∫ CPV

∂Ω
t∗p

j (x,ξξξ)dS +
1
2

δp j = 0 x ∈ ∂Ω (65)
∫ CPV

∂Ω
t∗p

j (x,ξξξ)uj(x)dS +
1
2

δp j u j(x) = 0 x ∈ ∂Ω

(66)
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From Eq. (29a), we also see that

−
∫ CPV

∂Ω
ni(ξξξ)σ∗p

i j (x,ξξξ)dS =
∫ CPV

∂Ω
ni(ξξξ)φ∗p

i j (x,ξξξ)dS

(67a)

or

−
∫ CPV

∂Ω
t∗p

j (x,ξξξ)dS =
∫ CPV

∂Ω
ni(ξξξ)φ∗p

i j (x,ξξξ)dS (67b)

for both x ∈ Ω and x ∈ ∂Ω. Thus, we can write identities
for φ∗p

i j which are similar to those in Eqs. (62d) and (63d)
for σ∗p

i j , as:

∫ CPV

∂Ω
ni(ξξξ)φ∗p

i j (x,ξξξ)dS−Cδp j = 0 (68)

and
∫ CPV

∂Ω
ni(ξξξ)φ∗p

i j (x,ξξξ)uj(x)dS−Cup(x) = 0 (69)

where C = 1
2 for x ∈ ∂Ω and C = 1 for x ∈ Ω.

The corresponding equations for Ψ∗p
i j can also be written

as,

∫
∂Ω

ni(ξξξ)Ψ∗p
i j (x,ξξξ)dS = 0 (70)

and∫
∂Ω

ni(ξξξ)Ψ∗p
i j (x,ξξξ) ·uj(x)dS = 0 (71)

Third, we consider the weak form of Eq. (61), and con-
sider the test functions to be the gradients of an arbitrary
function u(ξξξ) in Ω. This function u(ξξξ) is so chosen that
it has constant gradients, as:

uj,k(ξξξ) = uj,k(x) (72)

Then, the weak form of Eq. (61) may be written as:
∫

Ω
[σ∗p

i j,i(x,ξξξ)+ δ(x,ξξξ)ep
j ]uj,k(x)dΩ = 0 (73a)

Applying the divergence theorem, we obtain,

∫
∂Ω

ni(ξξξ)σ∗p
i j (x,ξξξ)uj,k(x)dΩ + up,k(x) = 0 (73b)

or∫
∂Ω

nn(ξξξ)Ei jmnu∗p
j,i(x,ξξξ)um,k(x)dΩ + up,k(x) = 0 (73c)

or∫
∂Ω

t∗p
m (x,ξξξ)um,k(x)dΩ+ up,k(x) = 0 x ∈ Ω (73d)

In addition, we may observe that the first two terms in
Eq. (53) have the following identity, as:

∫
∂Ω

ni(ξξξ)Ei jmnum,n(x)u∗p
j,k(x,ξξξ) dS

−
∫

∂Ω
nk(ξξξ)Ei jmnum,n(x)u∗p

j,i(x,ξξξ) dS

=
∫

Ω
Ei jmnum,n(x)u∗p

j,ki(x,ξξξ) dS

−
∫

Ω
Ei jmnum,n(x)u∗p

j,ik(x,ξξξ) dS = 0 (74)

By adding Eq. (74) into Eq. (73c), we obtain,
∫

∂Ω
ni(ξξξ)Ei jmnum,n(x)u∗p

j,k(x,ξξξ) dS

−
∫

∂Ω
nk(ξξξ)Ei jmnum,n(x)u∗p

j,i(x,ξξξ) dS

+
∫

∂Ω
nn(ξξξ)Ei jmnum,k(x)u∗p

j,i(x,ξξξ)dΩ

+ up,k(x) = 0 (75a)

or∫
∂Ω

ni(ξξξ)Ei jmnum,n(x)u∗p
j,k(x,ξξξ) dS

+
∫

∂Ω
enkt Dtum(x)Ei jmnu∗p

j,i(x,ξξξ) dS

+ up,k(x) = 0 (75b)

Multiplying Eq. (75b) by Eabpk, we obtain the following
identity for the corresponding stresses σσσ(x), as:
∫

∂Ω
np(ξξξ)σpq(x)σ∗q

ab(x,ξξξ)dS

+
∫

∂Ω
Dpuq(x)Σ∗

abpq(x,ξξξ) dS + σab(x) = 0 (76)

where Σ∗
abpq is defined in Eq. (58).

Forth more, we use the displacement field u(ξξξ) in Ω as
the test function and write the weak form of Eq. (61) as,
∫

Ω
[σ∗p

i j,i(x,ξξξ)+ δ(x,ξξξ)ep
j ]uj(ξξξ)dΩ = 0 (77a)
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or

0 =
∫

∂Ω
ni(ξξξ)σ∗p

i j (x,ξξξ)up(ξξξ)dS

−
∫

Ω
σ∗p

i j (x,ξξξ)uj,i(ξξξ)dΩ+ up(x)

=
∫

∂Ω
ni(ξξξ)σ∗p

i j (x,ξξξ)up(ξξξ)dS

−
∫

Ω
Ei jmnu∗p

m,n(x,ξξξ)uj,i(ξξξ)dΩ+ up(x)

=
∫

∂Ω
ni(ξξξ)σ∗p

i j (x,ξξξ)up(ξξξ)dS

−
∫

∂Ω
nn(ξξξ)Ei jmnu∗p

m (x,ξξξ)uj,i(ξξξ)dS

+up(x) (77b)

By differentiating it with respect to xk, one may obtain

∫
∂Ω

t∗p
j,k(x,ξξξ)uj(ξξξ)dS

−
∫

∂Ω
nn(ξξξ)Ei jmnu∗p

m,k(x,ξξξ)uj,i(ξξξ)dS + up,k(x) = 0 (78)

Multiplying Eq. (78) by Eabpk, we have an identity

for the hypersingular t∗p
i, j (x,ξξξ), in terms of the non-

hypersingular σ∗p
i j (x,ξξξ), as:

Eabpq

∫
∂Ω

t∗p
j,q(x,ξξξ)uj(ξξξ)dS

−
∫

Ω
np(ξξξ)σpq(ξξξ)σ∗q

ab(x,ξξξ)dΩ+ σab(x) = 0 (79)

Clearly, one may derive any number of “properties” of
the fundamental solution in elasticity. Some of additional
properties are derived as follows:

By taking u(ξξξ) as the “radial displacement” field, as:

u(ξξξ) = αr(x,ξξξ) (80)

where α is a constant. We obtain from Eq. (80):

uj,k(ξξξ) = uj,k(x) = αδ jk (81)

By substituting Eq. (81) into Eq. (73d), we have

∫
∂Ω

t∗p
m (x,ξξξ)δmkdΩ+ δpk =

∫
∂Ω

t∗p
k (x,ξξξ)dΩ+ δpk = 0

(82)

which is the same as Eq. (62c) in the basic identity.

Applying this displacement field in Eq. (81) to Eq. (79),
we have

Eabpq

∫
∂Ω

t∗p
j,q(x,ξξξ)r j(x,ξξξ)dS

− (λ+ 2µ)[
∫

Ω
nm(ξξξ)σ∗m

ab (x,ξξξ)dΩ+ δab] = 0 (83)

Now we take another special case in which u(ξξξ) is from
a displacement field without volume strain, and contains
no free rotation, as:

u(ξξξ) = ω [v× (v× r(x,ξξξ))+
2
3

r(x,ξξξ)] (84a)

or

u(ξξξ) = ω [v∗ r(x,ξξξ))v− 1
3

r(x,ξξξ)] (84b)

where ω is a constant and v is a constant vector with a
unit length. A similar identity for such problems can be
easily obtained.

All the identities for σ∗p
i j , t∗p

j , φ∗p
i j and Ψ∗p

i j are obtained
from the weak form of the fundamental solution, with
various test functions. They can be readily used in the
regularization of the stongly-singular and hypersingular
integrals in BIE equations.

It is clear that “properties” similar to the above, can be
derived for the fundamental solutions for any set of par-
tial differential equations, such as those that arise in fluid
mechanics, acoustics, electromagnetism, etc. These will
be presented in subsequent papers by the present authors.

6 Regularization of tBIE

Contracting Eq. (76) with na(x), and using the resulting
equation in Eq. (59), we can obtain the fully regularized
form of Eq. (59), as

0 =
∫

∂Ω
[tq(ξξξ)−np(ξξξ)σpq(x)]na(x)σ∗q

ab(x,ξξξ) dS

+
∫

∂Ω
[Dpuq(ξξξ)− (Dpuq)(x)]na(x)Σ∗

abpq(x,ξξξ) dS (85)

We know that tq(ξξξ)−np(ξξξ) σpq(x) and Dpuq(ξξξ) −
(Dpuq)(x) become O(r) when ξξξ → x̂ at ∂Ω and hence
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x̂

)ˆ()ˆ(3 xnxe =

)ˆ()ˆ(2 xtxe =

)ˆ()ˆ(1 xsxe =

Figure 3 : Local coordinates at a boundary point x̂

Eq. (85) is weakly singular. Thus Eq. (85) can be ap-
plied as x → x̂ ∈ ∂Ω.

We define the local coordinates at point x as e1(x) = s(x),
e2(x) = t(x) and e3(x) = n(x), as shown in Fig. 3. From
the strain-displacement relations in (6) and the stress-
strain relations in Eq. (7), we have σσσ(x) in terms of u(x)
and t(x), as:

σ11(x) =
λ

λ+ 2µ
t3(x)+

2λµ
λ+ 2µ

[u1,1(x)+ u2,2(x)]

+ 2µu1,1(x)

σ22(x) =
λ

λ+ 2µ
t3(x)+

2λµ
λ+ 2µ

[u1,1(x)+ u2,2(x)]

+ 2µu2,2(x)
σ33(x) = t3(x)
σ12(x) = σ21(x) = µ[u1,2(x)+ u1,2(x)]
σ13(x) = σ31(x) = t1(x)
σ23(x) = σ32(x) = t2(x) (86)

Thus, we can re-write Eq. (85) as:

0 =
∫

∂Ω
{t j(ξξξ)− t j(x)

+ [ni(x)−ni(ξξξ)]σi j(x)}na(x)σ∗ j
ab(x,ξξξ) dS

+
∫

∂Ω
[Dpuq(ξξξ)− (Dpuq)(x)]na(x)Σ∗

abpq(x,ξξξ) dS (87a)

or

0 =
∫

∂Ω
[tq(ξξξ)− tq(x)]na(x)σ∗q

ab(x,ξξξ) dS

+ σpq(x)
∫

∂Ω
[np(x)−np(ξξξ)]na(x)σ∗q

ab(x,ξξξ) dS

+
∫

∂Ω
[Dpuq(ξξξ)− (Dpuq)(x)]na(x)Σ∗

abpq(x,ξξξ) dS

(87b)

With Eq. (86), Eq. (87) can be evaluated numerically as
tBIE in its fully-regularized form.

Eq. (87) is the regularized traction BIE, derivable
from the non-hypersingular integral representation for
tractions, as reported in Okada, Rajiyah, and Atluri
(1988,1989).

Eq. (85), may be satisfied in a weak-form at ∂Ω, using a
Petrov-Galerkin scheme, as:

0 =
∫

∂Ω
wb(x)dSx

∫
∂Ω

[tq(ξξξ)−np(ξξξ)σpq(x)]na(x)σ∗q
ab(x,ξξξ) dSξ

+
∫

∂Ω
wb(x)dSx

∫
∂Ω

[Dpuq(ξξξ)− (Dpuq)(x)]na(x)Σ∗
abpq(x,ξξξ) dSξ

(88)

where wb(x) is a test function. If wb(x) is chosen as a
Dirac delta function, i.e. wb(x) = δ(x,xm) at ∂Ω, we ob-
tain the standard “collocation” traction boundary element
method.

From Eqs. (7) and (26), Σ∗
i jpq can be written in terms of

F∗ as:

Σ∗
i jpq(x,ξξξ) = Ei jklenlpσ∗k

nq(x,ξξξ)

= µ2(
2υ

1−2υ
δi jδkl + δikδ jl + δilδ jk) ·

enlp[(1−υ)(δknF∗
,bbq + δkqF∗

,bbn)+ υδnqF∗
,bbk −F∗

,knq]

= µ2[(−enipF, jnq − en jpF,inq + δiqe jpnF,bbn + δ jqeipnF,bbn)
+ υ(eqipFbb j + eq jpF,bbi + 2δi jeqpnF,bbn

−δiqe jpnF,bbn −δ jqeipnF,bbn)]

= µ2[(einpF, jqn − einpδ jqF,bbn + eintetqke jpmF,kmn)
+ υ(einqδ jpF,bbn + e jnqδipF,bbn)] (89)
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We also have the divergence of Σ∗
i jpq as:

Σ∗
i jpq,i(x,ξξξ)

= µ2[(einpF, jqni − einpδ jqF,bbni + eintetqke jpmF,kmni)
+ υ(einqδ jpF,bbni + e jnqδipF,bbni)]

= µ2υe jnqF,bbnp

≡ Λ∗
i jpq,i(x,ξξξ) (90)

where, by definition,

Λ∗
i jpq(x,ξξξ) = µ2υe jiqF,bbp (91)

We observe that:∫
∂Ω

Dpuq(ξξξ)Λ∗
i jpq(x,ξξξ)dS

= −
∫

∂Ω
uq(ξξξ)DpΛ∗

i jpq(x,ξξξ)dS

= −
∫

∂Ω
uq(ξξξ)Dp[µ2υe jiqF,bb],pdS = 0 (92)

Then we have∫
∂Ω

Dpuq(ξξξ)Σ∗
i jpq(x,ξξξ) dS

=
∫

∂Ω
Dpuq(ξξξ)[Σ∗

i jpq(x,ξξξ)−Λ∗
i jpq(x,ξξξ)] dS

≡
∫

∂Ω
Dpuq(ξξξ)K∗

i jpq(x,ξξξ) dS (93)

where, by definition

K∗
i jpq(x,ξξξ) = Σ∗

i jpq(x,ξξξ)−Λ∗
i jpq(x,ξξξ)

= µ2[(einpF, jqn − einpδ jqF,bbn + eintetqke jpmF,kmn)

+ υ(einqδ jpF,bbn + e jnqδipF,bbn − e jiqF,bbp)]

= µ2eint [(δt pF, jq −δt pδ jqF,bb + etqke jpmF,km)

+ υ(δtqδ jpF,bb + et pme jmqF,bb)],n

≡ eint H
∗
t jpq,n(x,ξξξ) (94)

We have H∗
i jpq, by definition, as

H∗
i jpq(x,ξξξ) = µ2[(δipF, jq −δipδ jqF,bb + eiqke jpmF,km)

+ υ(δiqδ jpF,bb + eipme jmqF,bb)]

= µ2[−δi jF,pq + 2δipF, jq + δ jqF,ip −δpqF,i j (95)

−2δipδ jqF,bb + 2υδiqδ jpF,bb +(1−υ)δi jδpqF,bb)]

in which, the following results are used:

eipme jmqF,bb = (−δi jδpq + δiqδp j)F,bb (96a)

eiqke jpmF,km =
+ δipF, jq + δ jqF,ip −δi jF,pq −δpqF,i j (96b)

+ δi jδpqF,bb −δipδ jqF,bb

With Eqs. (21a) and (32), we can write H∗
i jpq for 3D prob-

lems as:

H∗
i jpq(x,ξξξ) =

µ
8π(1−υ)r

[4υδiqδ jp −δipδ jq −2υδi jδpq

+ δi jr,pr,q + δpqr,ir, j −2δipr, jr,q −δ jqr,ir,p] (97)

and with Eq. (33) for 2D plain strain problems as:

H∗
i jpq(x,ξξξ) =

µ
4π(1−υ)

[−4υ lnrδiqδ jp + lnrδipδ jq + 2υ lnrδi jδpq

+ δi jr,pr,q + δpqr,ir, j −2δipr, jr,q −δ jqr,ir,p] (98)

From Eqs. (90) and (94), some properties of the kernel
functions can be found as following:

∇∇∇ ·ΣΣΣ∗(x,ξξξ) = ∇∇∇ ·ΛΛΛ∗(x,ξξξ) (99a)

∇∇∇ ·K∗(x,ξξξ) = 0 (99b)

K∗(x,ξξξ) = ∇∇∇×H∗(x,ξξξ) (99c)
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We may take wb(x) to be any continuous function in
Eq. (88), and derive a Petrov-Galerkin boundary element
method. If wb(x) is continuous, one may use Stokes’
theorem, and write:

−
∫

∂Ω
wb(x)tb(x)dSx

=
∫

∂Ω
wb(x)dSx

∫
∂Ω

tq(ξξξ)na(x)[Ψ∗q
ab(x,ξξξ) −φ∗q

ab(x,ξξξ)]dSξ

+
∫

∂Ω
wb(x)dSx

∫
∂Ω

Dpuq(ξξξ)na(x)K∗
abpq(x,ξξξ) dSξ (100)

in which, Eqs. (76) and (93) are applied.

With the fact that

∂
∂xi

= − ∂
∂ξi

, (101)

and with Eqs. (69) and (94), one may rewrite Eq. (100)
as:

− 1
2

∫
∂Ω

tb(x)wb(x)dSx

= −
∫

∂Ω
wb(x)dSx

∫
∂Ω

tq(ξξξ)DaG∗q
ab(x,ξξξ) dSξ

−
∫

∂Ω
tq(ξξξ) dSξ

∫ CPV

∂Ω
na(x)wb(x)φ∗q

ab(x,ξξξ)dSx

−
∫

∂Ω
wb(x)dSx

∫
∂Ω

Dpuq(ξξξ)DaH∗
abpq(x,ξξξ) dSξ (102)

where G∗q
ab is defined in Eq.(31); φ∗q

ab is defined in Eq.
(28a), and H∗

abpq is defined in Eq. (95).

As wb(x) is continuous, one may use Stokes’ theorem,
and re-write Eq. (102) as:

− 1
2

∫
∂Ω

tb(x)wb(x)dSx

=
∫

∂Ω
Dawb(x)dSx

∫
∂Ω

tq(ξξξ)G∗q
ab(x,ξξξ) dSξ

−
∫

∂Ω
tq(ξξξ) dSξ

∫ CPV

∂Ω
na(x)wb(x)φ∗q

ab(x,ξξξ)dSx

+
∫

∂Ω
Dawb(x)dSx

∫
∂Ω

Dpuq(ξξξ)H∗
abpq(x,ξξξ) dSξ (103)

If the test function wb(x) is chosen to be identical to
a function that is energy-conjugate to tb, namely, the
trial function ûb(x), we generate the symmetric Galerkin
BEM as [Han and Atluri (2002); Nikishkov, Park,
Atluri(2001)]:

− 1
2

∫
∂Ω

tb(x)ûb(x)dSx

=
∫

∂Ω
Daûb(x)dSx

∫
∂Ω

tq(ξξξ)G∗q
ab(x,ξξξ) dSξ

−
∫

∂Ω
tq(ξξξ) dSξ

∫ CPV

∂Ω
na(x)ûb(x)φ∗q

ab(x,ξξξ)dSx

+
∫

∂Ω
Daûb(x)dSx

∫
∂Ω

Dpuq(ξξξ)H∗
abpq(x,ξξξ) dSξξξ

(104)

The results in Eq. (103) are similar to those reported in
[Li and Mear (1998)] but are different from those in [Li
and Mear (1998)] in the kernel functions appearing in Eq.
(104). However, here, we obtain these results in a very
straightforward and simple manner.

7 Regularization of dBIE

In this section, we consider the regularization of the dis-
placement BIE (52), in order to render it tractable for nu-
merical implementation. We also consider the possibility
of satisfying the dBIE, at ∂Ω, in a weak form, through a
general Petrov-Galerkin scheme.

We subtract Eq. (63d) from Eq. (52), and obtain,

0 =
∫

∂Ω
t j(ξξξ)u∗p

j (x,ξξξ) dS

−
∫

∂Ω
ni(ξξξ)[uj(ξξξ)−uj(x)]σ∗p

i j (x,ξξξ) dS (105)

We know that uj(ξξξ)− uj(x) becomes O(r) when ξξξ → x
and Eq. (105) becomes weakly singular. Then it can be
evaluated numerically, and applicable to point x on the
boundary ∂Ω. Eq. (105) is the well-known regularized
dBIE equation.

We can also use a Petrov-Galerkin scheme to write a
weak-form for Eq. (105) as:
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0 =
∫

∂Ω
wp(x)dSx

∫
∂Ω

t j(ξξξ)u∗p
j (x,ξξξ) dS (106)

−
∫

∂Ω
wp(x)dSx

∫
∂Ω

ni(ξξξ)[uj(ξξξ)−uj(x)]σ∗p
i j (x,ξξξ) dS

where wp(x) is a test function. If wp(x) is chosen as
a Dirac delta function, i.e. wp(x) = δ(x,xm) at ∂Ω, we
obtain the standard “collocation” displacement boundary
element method.

Using (28b), i.e., σ∗p
i j = ψ∗p

i j (x,ξξξ)− φ∗p
i j (x,ξξξ) [with Ψ∗p

i j

is defined in Eq.(30). and φ∗p
i j is defined in Eq. (28a)], we

re-write Eq. (106), with Eq. (69), as:

1
2

∫
∂Ω

wp(x)uj(x)dSx =
∫

∂Ω
wp(x)dSx

∫
∂Ω

t j(ξξξ)u∗p
j (x,ξξξ) dSξ

−
∫

∂Ω
wp(x)dSx

∫
∂Ω

ni(ξξξ)uj(ξξξ)ψ∗p
i j (x,ξξξ) dSξ

+
∫

∂Ω
wp(x)dSx

∫ CPV

∂Ω
ni(ξξξ)uj(ξξξ)φ∗p

i j (x,ξξξ) dSξ (107)

Applying Stokes’ theorem to Eq. (107), we have

1
2

∫
∂Ω

wp(x)up(x)dSx =
∫

∂Ω
wp(x)dSx

∫
∂Ω

t j(ξξξ)u∗p
j (x,ξξξ) dSξ

+
∫

∂Ω
wp(x)dSx

∫
∂Ω

Di(ξξξ)uj(ξξξ)G∗p
i j (x,ξξξ) dSξ

+
∫

∂Ω
wp(ξξξ)dSx

∫ CPV

∂Ω
ni(ξξξ)uj(ξξξ)φ∗p

i j (x,ξξξ) dSξ (108)

where G∗p
i j is defined in Eq.(31)

If wp(x) is chosen to be identical to a function which is
energy-conjugate to up, viz., the trial function t̂p(x), we
obtain the symmetric Galerkin dBEM, as

1
2

∫
∂Ω

t̂p(x)up(x)dSx =
∫

∂Ω
t̂p(x)dSx

∫
∂Ω

t j(ξξξ)u∗p
j (x,ξξξ) dSξ

+
∫

∂Ω
t̂p(x)dSx

∫
∂Ω

Di(ξξξ)uj(ξξξ)G∗p
i j (x,ξξξ) dSξ

+
∫

∂Ω
t̂p(x)dSx

∫ CPV

∂Ω
ni(ξξξ)uj(ξξξ)φ∗p

i j (x,ξξξ) dSξ (109)

8 Evaluation of displacements and stresses near the
surface

After obtaining the displacements and the stresses on the
boundary, we sometimes also need to evaluate the dis-
placements and stresses inside the domain. It is well
known that we need to evaluate the strongly singular in-
tegrals if Eqs. (52) and (53) are applied directly, if the
point approaches the boundary.

Consider a generic domain point x ∈ Ω which is close to
a boundary point x̂. By replacing the displacements in
Eq. (63d) with up(x̂), Eq. (52) is re-written as,

up(x) =
∫

∂Ω
t j(ξξξ)u∗p

j (x,ξξξ) dS

−
∫

∂Ω
[um(ξξξ)−um(x̂)]σ∗p

nm(x,ξξξ) dS + up(x̂) (110)

We know that um(ξξξ)−um(x̂) becomes O(r) when ξξξ → x̂
and Eq. (110) becomes weakly singular. Then it can be
evaluated numerically.

Eq. (53) is used for stress calculation. As a part of the so-
lution, we have the known displacements and tractions at
point x̂ as uj(x̂) and t j(x̂), respectively. We first calculate
the stress σab(x̂) at point x̂ from Eq. (86).

From Eq. (76), it is ready to re-write Eq. (57) as,

−σab(x) =
∫

∂Ω
[tq(ξξξ)−np(ξξξ)σpq(x̂)]σ∗q

ab(x,ξξξ) dS

+
∫

∂Ω
[Dpuq(ξξξ)− (Dpuq)(x̂)]Σ∗

abpq(x,ξξξ) dS−σab(x̂)

(111)

Again, we know that the singularities of terms
tq(ξξξ)−np(ξξξ)σpq(x̂) and Dpuq(ξξξ)− (Dpuq)(x̂) become
O(r) when ξξξ → x̂. Then Eq. (111) becomes weakly sin-
gular and can be evaluated numerically.

9 Closure

1. We have presented simple and straight-forward for-
mulations for weakly-singular traction as well as dis-
placement integral equations in a linear elastic solid un-
dergoing small displacements. Clearly, these formula-
tions can be extended to finite elasticity, large-strains,
and rate-formulations of elastic-plastic solids undergoing
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large deformations, using the methodologies presented in
Okada, Rajiyah, and Atluri (1989b).

2. The traditional traction boundary element, or dis-
placement boundary element methods can be derived
from Eqs. (102) and (108), respectively. In these
methods, one uses a “mesh” at ∂Ω, which consists of
a set of contiguous (non-overlapping) “elements”. In
general, the trial functions ub, tb, and the test functions
wb at ∂Ω are interpolated in terms of their respective
values at the nodes of the boundary elements. On
the other hand, using the concepts of the meshless
local Petrov-Galerkin methods (MLPG) developed in
Atluri et al [1998, 2002a,b], one may develop “mesh-
less local Petrov-Galerkin boundary integral equation
approaches”. Also, Eqs. (102) and (108) in general
involve double integrals over ∂Ω on their right-hand
sides, where ∂Ω is the entire global boundary. However,
in using MLPG, the second integral over ∂Ω in Eqs.
(102) and (108) may be replaced by a local integral over
a sub-region of ∂Ω only. In evaluating the first integral
over the global ∂Ω, one may use “shadow-elements”,
or alternatively, one may also develop a truly meshless
MLPG method for integral equations. They are the
subjects of our forthcoming papers [Atluri, Han, and
Shen (2003); Han and Atluri (2003)].
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