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A Level Set Approach to Optimal Homogenized Coefficients

Dongwoo Sheen1 Sangwon Seo2 and Jinwoo Cho3

Abstract: The reconstructing optimal microstructures
of given homogenized coefficients of steady diffusion
equation is studied. In the reconstruction, the governing
equation of level set function is approximated by adding
viscosity term and the numerical procedure for the evo-
lution of the level set function for the solution is exam-
ined. The numerical experiments of reconstruction are
obtained by applying a finite element method with lo-
cally fitted mesh.

keyword: Homogenization, level set, reconstruction,
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1 Introduction

Composite materials consist of two or more different ma-
terials, in microscopic scale, usually assumed to have pe-
riodic structures. However, such composite materials in
microscopic scale are not of interest when they are actu-
ally used. Instead, the (effective) material properties in
macroscopic scale, which is measured by usual tools, are
more often useful. The theory and technique of homoge-
nization are the realization of the effective material prop-
erties in macroscopic scale from the microscopic struc-
tures of composite materials. The main topic of the paper
is to optimally design microscopic structures of compos-
ite materials to give certain macroscopic material proper-
ties.

The notion of the set of all effective moduli of two dif-
ferent mixtures has been well investigated by introduc-
ing Gθ sets. See Allaire and Kohn (1993); Bendsoe
and Soares (1993); Bendsoe (1995); Suzuki and Kikuchi
(1991) and the references therein, for the problem of op-
timal topology design of composite materials. Suzuki
and Kikuchi (1991), for example, approximated Gθ set in
microscopically square shape and Haslinger and Dvořák
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(1995) extended to star-shaped microstructures, using
standard minimization algorithms.

In this paper, the level set method for finding optimal mi-
crostructures for given effective conductivity to the dif-
fusion is studied. Since the topology of the optimal mi-
crostructure is not known, it is necessary to handle the
moving and splitting of the interface of the two mixtures.
The level set method overcomes these difficulties easily.
The evolution of level set function is calculated by fi-
nite element methods in this paper while the evolution
has been studied by applying the finite element method
designed in Osher and Sethian (1988). Also, the finite el-
ement mesh is locally fitted for the microstructure which
is also used in calculating the effective moduli (conduc-
tivity) by homogenization. The paper is organized as fol-
lows. In Section 2, the cost function and admissible set
are introduced and the existence of the solution is pre-
sented. In Section 3, we calculate the derivatives of ho-
mogenized coefficients which are used to obtain the ve-
locity of the level set functions. In Section 4, the level
set approach is introduced. In Section 5, we give the lo-
cally fitted mesh procedure which is done for each iter-
ated level set function, and give figures which show the
success of attainment of optimal microstructure whose
topology is different from that of initial guess.

2 Construction of optimal microstructures

For simplicity, we consider only for the homogenized co-
efficients or the effective conductivities, each phase of
which is isotropic, that is,

ai j(y) = aD(y)δi j where

aD(y) =
{

α, y ∈ D,

β, y ∈ Y \D,
(2.1)

for y∈Y , ξ ∈R2, Y ≡ [0,1]×[0,1] and D is a measurable
subset included in Y (See Fig. 2). As the conditions for
α,β, it is assumed that there exists a real number γ > 0
such that
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ai j(y)ξiξ j ≥ γξiξi, y ∈ Y, ξ ∈R2. (2.2)

Set Γ = ∂Ω and consider the following boundary value
problem for linear conductivity equation

−∇ · (aε(x)∇ uε(x)) = f (x), in Ω, (2.3a)

uε(x) = 0, on ∂Ω. (2.3b)

Here, the parameter ε is a positive real number and
Ω ⊆ R2, ∂Ω is a Lipschitz boundary and aε(x) = a(x/ε)
with the function a(·) being extended onto R 2 periodi-
cally with period Y . The periodic medium represented
by aε(x) is shown in Fig. 1.

It is well known by homogenization theory, for in-
stance, as described in Hornung (1997); Sanchez-
Palencia (1980), that uε ⇀ u0 weakly in H1(Ω) as ε−→
0, where u0 ∈H1(Ω) is the solution of

− ∂
∂xi

(
a∗i j

∂u0

∂x j

)
= f in Ω,

u0 = 0 on ∂Ω.

(2.4)

For the first equation of (2.4), the homogenized coeffi-
cients or the effective conductivities a∗i j are given by

a∗i j =
∫

Y
aD(y)

(
δi j− ∂ω( j)

∂yi
(y)

)
dy, (2.5)

where ω( j ) ∈ H1
per(Y) is the solution of

∫
Y

aD(y)∇ω ( j ) · ∇ϕ dy =
∫

Y
aD(y)

∂ϕ
∂y j

dy, ϕ ∈H1
per(Y).

(2.6)

Since the solution of (2.6) is unique up to an additive
constant, we impose an extra condition on their repre-
sentatives so that the mean value of ω( j) vanishes. From
now on, Ḣ1

per(Y) is denoted as the subspace of H 1
per(Y )

with mean zero.

→ ε ←
Fig. 1. Periodic medium in coordinate x.
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Fig. 2. Standard microcell in coordinate y.

For the equation (2.5), we see that the homogenized
coefficients a∗i j depend on aD which indicates the mi-
crostructure. The microstructure represents how two dif-
ferent materials are mixed. Let a∗(aD) be the homoge-
nized coefficient from the microscopic configuration de-
termined by aD . We are interested in optimizing the mi-
croscopic structure to reproduce the homogenized coef-
ficient a which is in Gθ.

In this paper, a level set method is proposed for construct-
ing more general microstructures for the matrices (or
moduli) in Gθ than star-shaped, single inclusion geome-
tries parametrized by a polar function around the center
of Y on which Haslinger and Dvořák (1995) worked.

In order to get the optimal shape of given effective mate-
rial constants, we minimize the following cost function

K (D) = K (a∗(aD)) =
1
2 ∑

i j

(a∗i j(aD)−ai j)2, (2.7)

for the microscopic configuration D. Thus our problem
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is formulated as the following minimization problem :

(P) Find the minimizer D ∈ ϑ
such that K (D) = min

D∈ϑ
K (D),

where K (D) = K (a∗(aD)) and ϑ is an admissible set.
To ensure the existence of a solution of (P), the following
condition for the admissible set is necessary:

For any{Dn}n→∞ ⊆ ϑ , there exist a subsequence

{Dn′} ⊆ {Dn} and D ∈ ϑ such that (2.8)

χDn′ → χD in L2(Y ),

where χE denotes the characteristic function of a set E ⊂
Y . It is known that (see for example Bendsoe (1995);
Sokolowski and Zolesio (1992) ) the following ϑ satisfies
(2.8) :

ϑ ≡ {D ⊂ Y | per(D)≤M}, (2.9)

where M is a fixed constant and

per(D) ≡ sup

{∫
D

∇ ·ϕ dy | ϕ ∈C1
0(Y,R2),

‖ϕ‖L∞(Y ) ≤ 1

}
.

Indeed, we have

Proposition 2.1 Let Y be a bounded domain in R n. For
any M > 0, the set ϑ in (2.9) is compact in L2(Y ) in the
sense of (2.8).

Proof. See De Giorgi, Colombini, and Pinccini (1972).

The choice of the admissible set (2.9) means restricting
the possible range of material sets to measurable sets of
bounded perimeter, i.e. the total length of the boundaries
of the structure is constrained.

Remark 2.2 Another admissible set ϑ̃ is also used
widely, which is the set of subdomains D which satisfies
the following two conditions;

1. A⊆ D ⊆ B for some A,B which are nonempty sub-
domains of Y .

2. There exists ε > 0 such that for any D ∈ ϑ̃ possesses
the ε-cone property given in Grisvard (1985).

This choice of ϑ̃ satisfies the condition (2.8). The admis-
sible set ϑ̃ preserves the regularity of boundary of do-
main, while the admissible set ϑ in (2.9) does not pre-
serve the regularity.

To ensure the existence of solution to minimization prob-
lem (P), the lower semicontinuity of K is necessary.
From now on, the symbol Dn → D as n→ ∞ is used
to denote the convergence of domains in the sense that

χ(Dn)→ χ(D) in L2(Y ) as n→∞.

The lower semicontinuity of K is equivalent to

if Dn→D, then K (D)≤ liminf
n→∞

K (Dn), (2.10)

which is guaranteed by the following lemma with a proof
given in Haslinger and Dvořák (1995);

Lemma 2.3 (Continuity) Let Dn→ D, where Dn,D ∈
ϑ . Then we have

a∗i j(aDn)→ a∗i j(aD) as n→ ∞.

Thus we have

Theorem 2.4 (Existence) There exists at least one solu-
tion of (P).

Proof. The proof can be obtained by a standard method,
see e.g. Struwe (1990).

3 Derivatives of homogenized coefficients

This section is devoted to finding Jacobian matrix
Ja∗(aD)(δaD), whose components are derivatives of ho-
mogenized coefficients. For a real number s > 0, let
ω( j)

s and ω( j) ∈ Ḣ1
per(Y) be the solutions of the follow-

ing equations,∫
Y
(aD + sδaD)∇ω ( j)

s · ∇ v dy =
∫

Y
(aD + sδaD)

∂v
∂y j

dy,∫
Y

aD ∇ω ( j) · ∇ v dy =
∫

Y
aD

∂v
∂y j

dy,

(3.1)

respectively, where v ∈ H1
per(Y). Let ω̇( j) ∈ Ḣ1

per(Y ) be
the solution of∫

Y
aD ∇ ω̇( j) · ∇ v dy =

∫
Y

δaD
∂v
∂y j

dy (3.2)

−
∫

Y
δaD ∇ω ( j) · ∇ v dy,
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for v ∈H1
per(Y ). Define z( j)

s as

z( j)
s ≡ ω( j)

s −ω( j)

s
. (3.3)

Lemma 3.1 If δaD ∈ L∞(Y ), then z( j)
s → ω̇( j) strongly in

H1
per(Y ) as s→ 0.

Proof. By subtracting the second equation from the first
of (3.1), we have∫

Y
sδaD ∇ω ( j)

s · ∇ v dy +
∫

Y
aD(∇ω ( j)

s − ∇ω ( j)) · ∇ v dy

=
∫

Y
sδaD

∂v
∂y j

dy.

Thus z( j)
s in (3.3) is the solution of∫

Y
aD ∇ z( j)

s · ∇ v dy =
∫

Y
δaD

∂v
∂y j

dy−
∫

Y
δaD ∇ω ( j)

s · ∇ v dy.

(3.4)

Since ω( j)
s and ω( j) ∈ Ḣ1

per(Y ), the function z( j)
s is in

Ḣ1
per(Y ). Then, by putting v = z( j)

s , we have

γ
∫

Y
|∇ z( j)

s |2dy≤
∫

Y
aD |∇ z( j)

s |2dy

=
∫

Y
δaDe j · ∇ z( j)

s dy−
∫

Y
δaD ∇ω ( j)

s · ∇ z( j)
s dy

≤M

{(∫
Y
|e j|2dy

)1/2

+
(∫

Y
|∇ω ( j)

s |2dy

)1/2
}

(∫
Y
|∇ z( j)

s |2dy

)1/2

,

where e j = y j, M = ‖δaD‖∞ and γ is given in (2.2). Simi-

larly, by putting v = ω( j)
s in (3.1) we have for sufficiently

small s

γ̂
∫

Y
|∇ω ( j)

s |2dy≤
∫

Y
(aD + sδaD)∇ω ( j)

s · ∇ω ( j)
s dy

=
∫

Y
(aD + sδaD)e j · ∇ω ( j)

s dy

≤
(∫

Y
| (aD + sδaD)|2dy

)1/2

(∫
Y
| ∇ω ( j)

s |2dy

)1/2

,

(3.5)

where γ̂ is taken so that

γ̂≤ γ/2.

Since if 0 < α ≤ β, then |aD + sδaD |< 2β in Y for suffi-

ciently small s, ω( j)
s is bounded in Ḣ1

per(Y) independently

of s, and hence z( j)
s is bounded in Ḣ1

per(Y) independently
of s. Thus there exist a subsequence, still denoted by
{z( j)

s }, and z( j)
0 ∈ Ḣ1

per(Y) such that

z( j)
s ⇀ z( j)

0 in Ḣ1
per(Y) as s→ 0.

Since z( j)
0 satisfies the equation (3.2) and by the unique-

ness of the solution for a weakly formulated elliptic prob-
lem in Ḣ1

per(Y ), we have

z( j)
0 = ω̇( j), j = 1,2.

For the strong convergence of {z( j)
s } to ω̇( j), subtract

(3.4) from (3.2). Then we have∫
Y

aD(∇ ω̇( j)− ∇ z( j)
s ) · ∇ v dy

=−
∫

Y
δaD(∇ω ( j)− ∇ω ( j)

s ) · ∇ v dy.

Let v = ω̇( j)− z( j)
s . Then

γ
∫

Y
|∇ (ω̇( j)− z( j)

s )|2dy

≤
∫

Y
aD |∇ (ω̇( j)− z( j)

s )|2dy

= −
∫

Y
δaD ∇ (ω( j)−ω( j)

s ) · ∇ (ω̇( j)− z( j)
s )dy

≤M

(∫
Y
|∇ (ω( j)−ω( j)

s )|2dy

)1/2

(∫
Y
|∇ (ω̇( j)− z( j)

s )|2dy

)1/2

,

where M = ‖δaD‖∞. Since ‖z( j)
s ‖Ḣ1

per(Y ) is bounded inde-
pendently of s, we know that∫

Y
|∇ (ω( j)−ω( j)

s )|2dy→ 0 as s→ 0.

Thus we conclude that

z( j)
s → ω̇( j) in Ḣ1

per(Y ) as s→ 0. (3.6)

Theorem 3.2 Let δaD ∈ L∞(Y ). Then the derivatives of
homogenized coefficients, Ja∗(aD) are represented as

(Ja∗(aD)(δaD))i j =
∫

Y
δaD

[
δi j− ∂ω(i)

∂y j
− ∂ω( j)

∂yi

+ ∇ω (i) · ∇ω ( j)
]

dy, i, j = 1,2.
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Proof. Notice that (2.5) can be rewritten by using (2.6)
as

a∗i j(aD) =
∫

Y
aDδi j dy−

∫
Y

aD ∇ω (i) · ∇ω ( j)dy.

Thus we get

a∗i j(aD + sδaD) =
∫

Y
(aD + sδaD)δi j dy

−
∫

Y
(aD + sδaD )∇ω (i)

s · ∇ω ( j)
s dy,

a∗i j(aD) =
∫

Y
aDδi j dy−

∫
Y

aD ∇ω (i) · ∇ω ( j)dy.

By subtracting a∗i j(aD) from a∗i j(aD + sδaD), we have

a∗i j(aD + sδaD )−a∗i j(aD) =
∫

Y
sδaDδi j dy

−
∫

Y
(aD + sδaDdy−aD)∇ω (i)

s · ∇ω ( j)
s dy

−
∫

Y
aD(∇ω (i)

s − ∇ω (i)) · ∇ω ( j)
s dy

−
∫

Y
aD ∇ω (i) · (∇ω ( j)

s − ∇ω ( j))dy.

Hence, by Lemma 3.1, we have

lim
s→0

a∗i j(aD + sδaD)−a∗i j(aD)
s

=∫
Y

δaDδi j dy−
∫

Y
δaD ∇ω (i) · ∇ω ( j)dy

−
∫

Y
aD ∇ ω̇(i) · ∇ω ( j)dy−

∫
Y

aD ∇ω (i) · ∇ ω̇( j)dy.

Put v = ω(i) in (3.2). Then,

∫
Y

aD ∇ ω̇( j) · ∇ω (i)dy =
∫

Y
δaD

∂ω(i)

∂y j
dy

−
∫

Y
δaD ∇ω ( j) · ∇ω (i)dy.

Similarly, we have

∫
Y

aD ∇ ω̇(i) · ∇ω ( j)dy =
∫

Y
δaD

∂ω( j)

∂yi
dy

−
∫

Y
δaD ∇ω (i) · ∇ω ( j)dy.

Thus Ja∗(aD), which are the Jacobian of a∗(aD), are

given by

(Ja∗(aD)(δaD))i j ≡ lim
s→0

a∗i j(aD + sδaD)−a∗i j(aD)
s

=
∫

Y
δaDδi j dy−

∫
Y

δaD ∇ω (i) · ∇ω ( j)dy

−
(∫

Y
δaD

∂ω(i)

∂y j
dy−

∫
Y

δaD ∇ω ( j) · ∇ω (i)dy

)

−
(∫

Y
δaD

∂ω( j)

∂yi
dy−

∫
Y

δaD ∇ω (i) · ∇ω ( j)dy

)

=
∫

Y
δaD

[
δi j− ∂ω(i)

∂y j
− ∂ω( j)

∂yi
+ ∇ω (i) · ∇ω ( j)

]
dy.

For the formal adjoint of Ja∗ , note that∫
Y

δaDJa∗(aD)T (p)dy = 〈p,Ja∗(aD)(δaD)〉

=
2

∑
i, j=1

pi j

∫
Y

δaD[
δi j− ∂ω(i)

∂y j
− ∂ω( j)

∂yi
+ ∇ω (i) · ∇ω ( j)

]
dy

=
∫

Y
δaD

2

∑
i, j=1

pi j[
δi j− ∂ω(i)

∂y j
− ∂ω( j)

∂yi
+ ∇ω (i) · ∇ω ( j)

]
dy,

for a second order tensors p where 〈·, ·〉 denotes the inner
product in R4. Thus we obtain

Ja∗(aD)T (p) =
2

∑
i, j=1

pi j[
δi j− ∂ω(i)

∂y j
− ∂ω( j)

∂yi
+ ∇ω (i) · ∇ω ( j)

]
.

4 The level set approach

The level set methods have been developed for the de-
scription of the motion of curves and surfaces by Osher
and Sethian (1988).

In the level set methods, the given curves or surfaces are
interpreted as zero level set of φ, a smooth level set func-
tion defined in the domain containing the physical do-
main where the curves or the surfaces evolve. Hence
a curve (or a surface) can develop corners, cusp, and
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undergo topological changes as the level set function
evolves. For the level set formulation, consider a closed
(N−1)-dimensional hypersurface Γ(t = 0) which propa-
gates along its normal direction with speed V , where V is
a function of the curvature, normal direction and others.
Let φ(x,0), where x∈Rn, be the signed distance function
from x to Γ(t = 0), defined by

φ(x,0) = φ0 ≡±d(x,Γ(t = 0)), (4.1)

where the plus(minus) sign indicates if x is out-
side(inside) the initial hypersurface Γ(t = 0). Thus the
relation between Γ(0) and φ(x,0) is:

Γ(t = 0) = {x | φ(x,0) = 0}.
What we are going to do is to get the equation for the
level set function φ(x, t) which evolves such that

Γ(t) = {x | φ(x, t) = 0}. (4.2)

Let x(t) be the path of a point on the propagation front.
Then xt ·n =V(x(t)) with the vector xt normal to the front
at x(t). Since (4.2) must be satisfied, we have

φ(x(t), t)= 0. (4.3)

By the chain rule, we have

φt + ∇φ (x(t), t) · xt(t) = 0.

Since n = ∇φ /|∇φ | and xt(t) · n = V (x, t), we have the
formulation{

φt +V |∇φ | = 0,

φ(x,0) = φ0(x).
(4.4)

More detailed contents can be found in Chang, Hou,
Merriman, and Osher (1996); Malladi, Sethian, and Ve-
muri (1995); Osher and Sethian (1988); Sethian (1996);
Sussman, Smereka, and Osher (1994); Zhu and Sethian
(1992). Santosa (1996) used the level set method for an
obstacle reconstruction problem. In the same way, we ap-
ply the method to obtain the optimal microstructures of
composite of two different mixtures for given effective
conductivity.

Let {Dn} be the minimizing sequence of the cost func-
tion K in (2.7) and let Dn,Dn+1 be characterized by the
functions φn,φn+1 such that

Dn = {y | φn(y)≤ 0}, (4.5)

Dn+1 = {y | φn+1(y)≤ 0}. (4.6)

Here D0 denote the initial guess of microgeometry of the
region of α.

Thus finding Dn+1 from Dn corresponds to finding φn+1

from φn. Consider the following equation;{
φt +V (y, t)|∇φ |= 0 for (y, t)∈ Y × (tn, tn+1],

φ(y, tn) = φ̂n(y) for y ∈ Y,

(4.7)

where φ̂n is the signed distance function reinitialized
from the zero level set of φn.

Let φn+1(y) denote the function φ(y, tn). Then it is neces-
sary to find such V (y, t).

Concerning the choice of V(y, t), we follow Santosa
(1996), in spite of the lack of the theoretical basis :

V(y, t) = −sign(α−β)(Ja∗)T (a∗−a)

= −sign(α−β)

(
∑
i j

[
δi j− ∂ω(i)

∂y j
− ∂ω( j)

∂yi

+∇ω (i) · ∇ω ( j)
]
(a∗(aD)−a)i j

)
,

(4.8)

to obtain Dn+1 such that K (Dn+1) < K (Dn).

Remark 4.1 If ω(i) and ω( j) belong to H s(Y) for 2 < s,
these are embedded into C1,q,0 < q < 1 (page 35 of Gris-
vard (1985)). Thus there is no theoretical lack. However,
ω(i) and ω( j) belong to H s(Y) for 1 < s < 3/2, thus the
trace of

δi j− ∂ω(i)

∂y j
− ∂ω( j)

∂yi
+ ∇ω (i) · ∇ω ( j)

is not well-defined.

5 Numerical examples

Since the classical solution of (4.4) is not available be-
yond a certain time or is not determined uniquely, it is
necessary to introduce a weak solution called a viscosity
solution.

Definition 5.1 A viscosity subsolution(supersolution) of
(4.4) is a function u ∈ C (Ω× [0,T ]) for all T > 0 such
that for all φ∈ C 1(Ω× (0,∞)), if (x0, t0) is a local maxi-
mum(minimum) point of (u−φ) on Ω× (0,T ), then

∂φ
∂t

(x0, t0)+V (x0, t0)|∇φ (x0, t0)| ≤ (≥)0.
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A function u is called a viscosity solution if u is a viscosity
sub and supersolution.

Two approximations of the solution of (4.4) are proposed
in Crandall and Lions (1984). One is the finite differ-
ence approximation and the other an approximation with
viscosity term, so called the method of vanishing viscos-
ity. Here, we use the viscosity term to approximate (4.4).
We consider the following periodic initial boundary value
problem

φε
t−ε∆φε +V (y, t)|∇φ ε|= 0 for (y, t) ∈ Y × [0,T ],

periodic boundary condition on ∂Y × [0,T ],
φε(y,0) = φ0(y),

(5.1)

where ε > 0, T > 0 and Y = [0,1]× [0,1]. In the numer-
ical test, the finite element method to initial–boundary
value problem (5.1) is used for the level set method in-
stead of Osher and Sethian’s scheme. The finite ele-
ment mesh is locally fitted for the microstructures. For
the locally fitting procedure, we follow the idea given in
Börgers (1990).

5.1 The locally fitting procedure

Consider a rectangular grid Ξ̂ covering Y = [0,1]× [0,1].
Denote the grid points by

x̂i j = (x̂i, ŷ j) = ((i−1)h, ( j−1)h),1≤ i≤M, 1≤ j≤N,

where, for convenience, M = N and h is the mesh grid
size. We also use notation x = (x,y) ∈ Y . Note the level
set function φgives the mapping

φ : Ξ̂→R

such that

φ=
{ ≤ 0 if x̂ ∈D,

> 0 if x̂ ∈ Y \D.

Let us find the zero points of φas follows.

For i = 1, · · · ,M :

For j = 1, · · · ,N−1 :

If φ(x̂i j) ·φ(x̂i( j+1)) < 0

Determine y∈ [( j−1)h, jh]with φ((i−
1)h,y) = 0, and mark{

x̂i( j+1) if y≥ ( j− 1
2 )h

x̂i j otherwise

End of j.

End of i.

For j = 1, · · · ,N :

For i = 1, · · · ,M−1 :

If φ(x̂i j) ·φ(x̂(i+1) j) < 0

Determine x ∈ [(i − 1)h, ih] with
φ(x, ( j−1)h) = 0, and mark{

x̂(i+1) j if x≥ (i− 1
2)h

x̂i j otherwise

End for i.

End for j.

Perturb Ξ̂ by moving the marked points near the bound-
ary ∂D onto ∂D. This results in an almost rectangular
grid Ξ, whose points are denoted by

xi j = (xi,y j), 1≤ i≤M, 1≤ j ≤ N.

Let us define

I ≡ {x ∈ Ξ | φ(x) < 0},
B≡ {x ∈ Ξ | φ(x) = 0},
E ≡ {x ∈ Ξ | φ(x) > 0}.
The points in I,B and E are called the interior, boundary
and exterior points, respectively. Then

Ξ = I ∪̇B ∪̇E.

Note that the values of φat the nodes on ∂D are all zero.
Let B̂ be the set of the points of Ξ̂ which corresponds to
B of Ξ. Thus

Ξ̂ = I ∪̇B̂ ∪̇E.

Let Q be the quadrilateral with vertices x i j,xi, j+1,xi+1, j

and xi+1, j+1. Let d1,d2 be the two diagonals of Q. We
assign µl to dl, for l = 1,2, as follows

(Q,dl)→ µl ≡ min
k=1,2

detDψ(k)(dl)
λmax ((Dψ(k)(dl))T (Dψ(k)(dl)))

,
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where λmax(·) denotes the larger of the two eigenval-
ues and ψ(k)(dl) is the affine mapping from τ̂k(dl) to
τk(dl). τk(dl), k = 1,2, are the resulting triangles by dl

and τ̂k(dl), k = 1,2, are the corresponding triangles in Ξ̂
for l = 1,2. Since the larger µl is, the less degenerate is
the configuration resulted from cutting Q along d l ,

if µ1 ≥ µ2, then choose d1,
else, choose d2.

By measuring µ, we decide along which to cut the quadri-
lateral cells Q of the grid Ξ. The details are referred to
Börgers (1990). In Fig. 3 and Fig 4, we show the mi-
crostructure and the corresponding locally fitted mesh,
respectively.
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Fig. 3. Microstructure of circle type.
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Fig. 4. Locally fitted mesh for circle.

5.2 Numerical examples

We show a numerical example. It is chosen that α =
3,β = 1. The initial microstructure is given such that D
is the circle with center at (0.5,0.5) and the radius 0.25,
which is the nonpositive region of sign((y 1 − 0.5)2+
(y2 − 0.5)2 − 0.252)

√
(y1−0.5)2 +(y2−0.5)2−0.252

and Y \D is the outside of the circle (See Fig. 5(b). The
target homogenized coefficients are given by a11 = 2.0,

a12 = 0.0, a21 = 0.0 and a22 = 1.5. The viscosity coef-
ficient ε is taken as 0.001. The underlying finite element
mesh is 41× 41. The following table shows the history
of the iteration of our level set method.

Table 1. Iteration history of the optimality

iteration K a11 a12 a22

1 0.21364 1.3606 0.0053 1.3646
2 0.10217 1.5684 -0.0742 1.5842
3 0.0576 1.8380 -0.0653 1.7836
4 0.025397 1.9042 -0.0545 1.6889
5 0.019929 1.8470 -0.0569 1.5998
11 0.0018156 1.9638 -0.0073 1.5470
51 0.0012152 1.9632 -0.0048 1.5321
91 0.00058364 1.9664 -0.0014 1.4941
101 9.6545e-05 1.9916 -0.0011 1.5109
118 2.7756e-15 2.0000 0.0000 1.5000

In the following series of figures, the left hand sides
represent the level set function and the right hand sides
the corresponding microstructure.In the figures of mi-
crostructures, the darker regions represents D and the
lighter regions Y \D.
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Fig. 5. (a) shows the first level set function and (b) shows
the corresponding first micorstructure with cost 0.21364.
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Fig. 6. (a) shows the second level set function and (b)
shows the corresponding second micorstructure with cost
0.10217.
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Fig. 7. (a) shows the third level set function and (b)
shows the corresponding third micorstructure with cost
0.0576.
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Fig. 8. (a) shows the fourth level set function and (b)
shows the corresponding fourth micorstructure with cost
0.025397.
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Fig. 9. (a) shows the 101-st level set function and (b)
shows the corresponding 101-st micorstructure with cost
9.6545e-05.
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Fig. 10. (a) shows the 118-th level set function and (b)
shows the corresponding 118-th micorstructure with cost
2.7756e-15.
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