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A Level Set Approach to Optimal Homogenized Coefficients

Dongwoo Sheen! Sangwon Seo? and Jinwoo Cho®

Abstract:  The reconstructing optimal microstructures
of given homogenized coefficients of steady diffusion
equation is studied. In the reconstruction, the governing
equation of level set function is approximated by adding
viscosity term and the numerical procedure for the evo-
[ution of the level set function for the solution is exam-
ined. The numerical experiments of reconstruction are
obtained by applying a finite element method with lo-
caly fitted mesh.

keyword: Homogenization, level set, reconstruction,
locally fitted mesh

1 Introduction

Composite materials consist of two or more different ma-
terials, in microscopic scale, usually assumed to have pe-
riodic structures. However, such composite materialsin
microscopic scale are not of interest when they are actu-
ally used. Instead, the (effective) material propertiesin
macroscopic scale, which ismeasured by usual tools, are
more often useful. The theory and technique of homoge-
nization are the realization of the effective material prop-
erties in macroscopic scale from the microscopic struc-
tures of composite materials. The main topic of the paper
isto optimally design microscopic structures of compos-
ite material s to give certain macroscopic material proper-
ties.

The notion of the set of all effective moduli of two dif-
ferent mixtures has been well investigated by introduc-
ing Gg sets. See Allaire and Kohn (1993); Bendsoe
and Soares (1993); Bendsoe (1995); Suzuki and Kikuchi
(1991) and the references therein, for the problem of op-
timal topology design of composite materials. Suzuki
and Kikuchi (1991), for example, approximated Gg setin
microscopically square shape and Haslinger and Dvorak
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(1995) extended to star-shaped microstructures, using
standard minimization algorithms.

In this paper, the level set method for finding optimal mi-
crostructures for given effective conductivity to the dif-
fusion is studied. Since the topology of the optimal mi-
crostructure is not known, it is necessary to handle the
moving and splitting of theinterface of the two mixtures.
The level set method overcomes these difficulties easily.
The evolution of level set function is calculated by fi-
nite element methods in this paper while the evolution
has been studied by applying the finite element method
designed in Osher and Sethian (1988). Also, thefinite el-
ement mesh islocally fitted for the microstructure which
is also used in calculating the effective moduli (conduc-
tivity) by homogenization. The paper is organized asfol-
lows. In Section 2, the cost function and admissible set
are introduced and the existence of the solution is pre-
sented. In Section 3, we calculate the derivatives of ho-
mogenized coefficients which are used to obtain the ve-
locity of the level set functions. In Section 4, the level
set approach isintroduced. In Section 5, we give the lo-
cally fitted mesh procedure which is done for each iter-
ated level set function, and give figures which show the
success of attainment of optimal microstructure whose
topology is different from that of initial guess.

2 Construction of optimal microstructures

For simplicity, we consider only for the homogenized co-
efficients or the effective conductivities, each phase of
whichisisotropic, that is,

aij(y) =ap(y)8j where
o ={ & ¥ Vb, @

foryeY,& €R2Y=][0,1] x [0,1] and D isameasurable
subset included in Y (See Fig. 2). Asthe conditionsfor
o, [, it is assumed that there exists a real number y > 0
such that
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aij(y)&&; > y&&, yeY, EcRA (2.2)

Set ' = 0Q and consider the following boundary value
problem for linear conductivity equation

f(x), in Q,
(x) = 0, on 0Q.

(2.39)
(2.3b)

Here, the parameter € is a positive real number and
Q C R?,0Q isa Lipschitz boundary and a&(x) = a(x/«)
with the function a(-) being extended onto R? periodi-
cally with period Y. The periodic medium represented
by a&(x) isshownin Fig. 1.

It is well known by homogenization theory, for in-
stance, as described in Hornung (1997); Sanchez-
Palencia (1980), that u® — u® weakly inH(Q) ase —
0, where w® € H(Q) is the solution of

a [, o .
“ox (a”&> =fin Q,

u®=0 on 9Q.

(2.4)

For the first equation of (2.4), the homogenized coeffi-
cients or the effective conductivitiesaj; are given by

(1)
ajj = /Y ap(y) <6i j —%w—w(y)> dy, (2.5)
where (1) € H1, (Y) isthe solution of
et 0w 4y [am3 dy,q»eH 2 (Y).
Y
(2.6)

Since the solution of (2.6) is unique up to an additive
constant, we impose an extra condition on their repre-
sentatives so that the mean value of w) vanishes. From
now on, Hi(Y) is denoted as the subspace of H g, (Y)
with mean zero.
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Fig. 1. Periodic medium in coordinate X.
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Fig. 2. Standard microcell in coordinate y.

For the equation (2.5), we see that the homogenized
coefficients af; depend on ap which indicates the mi-
crostructure. The microstructure represents how two dif-
ferent materials are mixed. Let a*(ap) be the homoge-
nized coefficient from the microscopic configuration de-
termined by ap. We are interested in optimizing the mi-
croscopic structure to reproduce the homogenized coef-
ficientawhichisin Gg.

Inthispaper, alevel set method is proposed for construct-
ing more general microstructures for the matrices (or
moduli) in Gg than star-shaped, single inclusion geome-
tries parametrized by a polar function around the center
of Y on which Hadlinger and Dvorék (1995) worked.

In order to get the optimal shape of given effective mate-
rial constants, we minimize the following cost function

K (D)= 27

1
75%&] aD 7

for the microscopic configuration D. Thus our problem



A Level Set Approach to Optimal Homogenized Coefficients

isformulated as the following minimization problem :

(P)

Find the minimizer D € 9§

suchthat K (D) = minK (D),
Ded

where K (D) = K (a*(ap)) and 9 is an admissible set.
To ensurethe existence of asolution of (P), thefollowing
condition for the admissible set is necessary:

For any{Dn}n—« C 9, there exist a subsequence
{Dy} C{Dn}andD €9 suchthat (2.8)
XDn/ — XD in LZ(Y)7
where g denotesthe characteristic function of aset E C
Y. It is known that (see for example Bendsoe (1995);

Sokolowski and Zolesio (1992) ) thefollowing o satisfies
(2.8):
3={DcY]|per(D) <M}, (2.9

where M is afixed constant and
pr(D) = sup{ [ -0 dy|¢ < CHY.R?),
10l < 1}.

Indeed, we have

Proposition 2.1 LetY be a bounded domainin R". For
any M > 0, the set § in (2.9) is compact in L2(Y) in the
sense of (2.8).

Proof. See De Giorgi, Colombini, and Pinccini (1972).

The choice of the admissible set (2.9) means restricting
the possible range of material sets to measurable sets of
bounded perimeter, i.e. thetotal length of the boundaries
of the structure is constrained.

Remark 2.2 Another admissible set § is also used
widely, which is the set of subdomains D which satisfies
the following two conditions;

1. AC D C B for some A, B which are nonempty sub-
domainsof Y.

2. Thereexistsg > 0such that for any D € § possesses
the €-cone property given in Grisvard (1985).
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This choice of § satisfies the condition (2.8). The admis-
sible set § preserves the regularity of boundary of do-
main, while the admissible set 9 in (2.9) does not pre-
servethe regularity.

To ensure the existence of solution to minimization prob-
lem (P), the lower semicontinuity of K is necessary.
From now on, the symbol D, — D as n — o is used
to denote the convergence of domainsin the sense that

X(Dn) — X(D) in L3(Y) asn — c.
The lower semicontinuity of K isequivalent to

if Dy — D, then K (D) < liminfK (Dy), (2.10)

which isguaranteed by the followinglemma with a proof
given in Haslinger and Dvorak (1995);

Lemma 2.3 (Continuity) Let D, — D, where D,,D €
9. Then we have
aj(ap,) — &j(ap) asn— .
Thuswe have

Theorem 2.4 (Existence) There exists at |east one solu-
tion of (P).

Proof. The proof can be obtained by a standard method,
see e.g. Struwe (1990).
3 Derivativesof homogenized coefficients

This section is devoted to finding Jacobian matrix
Ja-(ap) (dap ), whose components are derivatives of ho-
mogenized coefficients. For a real number s > 0, let
@ and wi) € Hi, (Y) be the solutions of the follow-

ing equations,

/(aD + sdap ) [ gl')'Dvdy:/(aD _|_353D)a_vdy7
Y Y ayj

/aDM) (j)-Dvdy_/aDa—de,
Y Yy 0y
3.1)

respectively, where v € Hiy (Y). Let @) € HL, (Y) be
the solution of
" ov
/aDDoo(”-Dvdy:/éaD—dy (3.2)
Y Y 0y

—/6aDM) (). v dy,
Y
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for vie He (Y). Define ! as
(33)

Lemma3.1 If dap € L°(Y), then z) — D) stronglyin

Hoer (Y) ass— 0.

Proof. By subtracting the second equation from the first
of (3.1), we have

/séaDM)Q)-Dvdy + /YaD(M) U@ Oy.ovdy
Y

ov
sdap ——d
/Y D oy y
Thus zéj) in (3.3) isthe solution of

/ ap Dz( -Ovdy = / 6aD dy / 6aDM) Dvdy
(3.9

since &) and w) € Hiy(Y), the function 2
Hi, (Y). Then, by puttingv = 2y,

isin
we have
v/\DZé”\ZdyS/aD\Dé”\Zdy

Y Y

:/6aDej-Dz§j)dy—/6aDM) éj)-Dzéj)dy
Y

gm{(/\e, Zdy)l/z ([l Zdy)l/z}
(/\DZ 2dy>12,

whereej =yj, M = |[8ap || and yisgivenin (2.2). Simi-
larly, by puttingv = ooé” in (3.1) we have for sufficiently
small s

V/Y\tfbé">\2dys/Y<aD+sesaD>@é”-m)é”dy

:/(aD +sdap )e;j - [ éj)dy

(/\ (ap +sdap )| 2o|y)12
(fotre)”

(35)

wherey istaken so that
y<vy/2
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Sinceif 0 < a < B, then |ap +sdap| < 2Bin’Y for suffi-
ciently small s, w{ isboundedin Héer (Y) independently
of s, and hence 2 isbounded in Héer (Y) independently
of s. Thus there exist a subsequence, still denoted by
{2V}, and 7)) € HL, (Y) such that

Zéj)
Since zéj) satisfies the equation (3.2) and by the unique-
nessof the solution for aweakly formulated elliptic prob-
lemin HZ (Y), we have

A —

For the strong convergence of {z{} to ¢/), subtract
(3.4) from (3.2). Then we have

/aD(Doo() nZ)
Y

2 =70 in Hiy(Y) s s—0.

o, j=12
)-Ovdy

—/6aD(M) D —@ ). Ovdy.
Y

_ , 1/2
(10w -#)eay)

whereM = ||dap ||«. Since HZQ)HH%H(Y) is bounded inde-

pendently of s, we know that

o

Thus we conclude that

[2dy — 0 as s— 0.

2V — @) in Hl (Y) as s—0. (3.6)

Theorem 3.2 Let dap € L*(Y). Then the derivatives of
homogenized coefficients, Ja-(ap) are represented as

ayi

(i)
(Ja-(ap) (8ap) )ij :/Y&'ﬂD [6”- —%wTj

1,2.

+@ V.m (i)] dy, i,j
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Proof. Natice that (2.5) can be rewritten by using (2.6) given by
as

(Ja(@p)(ap))ij = lim aj(ap +sbap) — & (ap)

aj(ap) :/aoéij dy—/aD@ 0. @ Ddy. 50 s
! Y :/éaoéij dy—/éaDm) ). @ (J)dy

</ 6aD dy /6aDM) [ ('>dy>

Thuswe get

aj(ap +dap) = /Y(aD + sdap ) &;j dy

/(ao+s6ao)m>( @ Pay, </5ao dy— /éaDm) m)<'>dy>
a'?ﬁj(aD) :/YaDéij dy_/vaD@ o <'>dy. :/5aD &ij — —aw(l) ——awm +@ O D dy.
Y 0y; 0y

By subtracting aj; (ap ) from &j(ap +sdap ), we have o
For theformal adjoint of J,-, hote that

(a0 + o) ~(a0) = [ a0 /8303 (20)" (P)dy = (p. - (0) (380))

- [ (a0 +sdapdy—ap)@ ¢ - @ oy 2
Y = > pij/éaD
—/aD(M) g)_m) (i))'m) éj)dy i,=1 Y
Y o) 9wl .
, . , _ () (i)
_/aDM) 0] (m) gj)_@ (J))dy [ 1] ayj ayl [ dy
v
2
Hence, by Lemma 3.1, we have = /Y dap > pij
i,]=1
jim 2120 040) ~3j(@) _ R ti]
s—0 S ') ayj 0y| ’
5 5"d—/5 @ . g _
/ DA &Y 4D y for asecond order tensors p where (-, -) denotestheinner
/ ap 0 - @ (dy— / ap@ . 0idy,  Productin R* Thuswe obtain
2
T _ .
Putv= ) in (3.2). Then, Ja(20) (p)—ijzlp”
T ) 0 0w ) g ()
() . Ny — i Oi——— ——+1[ o W
/Y apJw' - dy /Y dap 3y, dy [u dy, ay;

4 Thelevel set approach

The level set methods have been developed for the de-

Similarly, we have - .
scription of the motion of curves and surfaces by Osher

and Sethian (1988).
/ ap 0" - @ Wdy = / 20 %2 dy Inthe level set methods, the given curves or surfaces are
interpreted as zero level set of ¢, asmooth level set func-
/ Sap 0 | dy. tion defined in the domain containing the physical do-

main where the curves or the surfaces evolve. Hence
Thus Ja-(ap), which are the Jacobian of a*(ap), are a curve (or a surface) can develop corners, cusp, and
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undergo topological changes as the level set function
evolves. For the level set formulation, consider a closed
(N —1)-dimensional hypersurfacel (t = 0) which propa-
gatesalong itsnormal direction with speedV, whereV is
afunction of the curvature, normal direction and others.
Let @(x,0), wherex € R", bethe signed distance function
from xto ' (t = 0), defined by

@(x,0) = @ = +d(x,I'(t =0)),

where the plus(minus) sign indicates if x is out-
side(inside) the initial hypersurface I'(t = 0). Thus the
relation between ' (0) and @(x,0) is:

Mt =0)={x|@x,0)=0}.

What we are going to do is to get the equation for the
level set function ¢(x,t) which evolves such that

F(t) = {x] o(x,t) = 0}.

Let X(t) be the path of a point on the propagation front.
Thenx; -n=V(x(t)) with thevector x; normal to thefront
at x(t). Since (4.2) must be satisfied, we have

G(x(t),t) = 0.

By the chain rule, we have

@+ (X(1),1) -%(t) =0.

Sncen=[@ /|[¢ | and % (t)-n=V(x,t), we have the
formulation

{cn+V|@| = 0
@®x0) = @o(x).

More detailed contents can be found in Chang, Hou,
Merriman, and Osher (1996); Malladi, Sethian, and Ve-
muri (1995); Osher and Sethian (1988); Sethian (1996);
Sussman, Smereka, and Osher (1994); Zhu and Sethian
(1992). Santosa (1996) used the level set method for an
obstaclereconstruction problem. Inthe sameway, we ap-
ply the method to obtain the optimal microstructures of
composite of two different mixtures for given effective
conductivity.

(4.1)

(4.2)

(4.3)

(4.4)

Let {Dn} be the minimizing sequence of the cost func-
tionK in (2.7) and let Dy, Dy, 1 be characterized by the
functions @, @1 such that

Dn = {ylg(y) <0},
Dni1 = {Y|@hia(y) <0}

(4.5)
(4.6)
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Here Dg denote the initial guess of microgeometry of the
region of a.

Thusfinding Dy,..; from D, corresponds to finding @1
from @,. Consider the following equation;

{ @+Vy)[@ [=0 for (y,t) €Y x (tn,tara],
@Y.t)) =n(y) foryey,
4.7)

where cAph is the signed distance function reinitialized
from the zero level set of @,.

Let @n.1(y) denote the function @(y, tn). Thenitisneces-
sary to find such V (y,t).

Concerning the choice of V(y,t), we follow Santosa
(1996), in spite of the lack of the theoretical basis:

V(y.t) = —sign(a —B)(Ja) " (a" —3)
aw(')

— —sign(a—B) (z lau- —
]

ay;

o (4.8)

+i O @ <i>} (a*(aD)—é)ij>,
toobtain Dy,1 suchthat K (Dy11) < K(Dp).

Remark 4.1 If w() and w'!) belong to H3(Y) for 2 <'s,
these are embedded into C19,0 < q < 1 (page 35 of Gris-
vard (1985)). Thusthere isno theoretical lack. However,
w) and w'l) belong to HS(Y) for 1 < s < 3/2, thusthe
trace of

S dy; oy
is not well-defined.

5 @ 0. @ ()

5 Numerical examples

Since the classical solution of (4.4) is not available be-
yond a certain time or is not determined uniquely, it is
necessary to introduce a weak solution called a viscosity
solution.

Definition 5.1 A viscosity subsolution(supersolution) of
(4.4) isafunctionu e C(Q x [0,T]) for all T > 0 such
that for all @ € C1(Q x (0,)), if (Xo,to) isalocal maxi-
mum(minimum) point of (u— @) on Q x (0, T), then

0

5 (%0,10) +V (%0, 10)| B (¥0,t0)]| < (2)0.
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Afunctionuiscalled aviscosity solutionif uisa viscosity
sub and super solution.

Two approximations of the solution of (4.4) are proposed
in Crandall and Lions (1984). One is the finite differ-
ence approximation and the other an approximation with
viscosity term, so called the method of vanishing viscos-
ity. Here, we use the viscosity term to approximate (4.4).
We consider thefollowing periodicinitial boundary value
problem

G—eAF+V(y,1)|B =0 for (y,t)eYx[0,T],
periodic boundary condition ondY x [0, T],

@ (y,0) = @o(y),
(5.1)

wheree >0, T > 0andY = [0,1] x [0,1]. In the numer-
ical test, the finite element method to initial—boundary
value problem (5.1) is used for the level set method in-
stead of Osher and Sethian's scheme. The finite ele-
ment mesh is locally fitted for the microstructures. For
the locally fitting procedure, we follow the idea given in
Borgers (1990).

5.1 Thelocallyfitting procedure

Consider arectangular grid = coveringY = [0,1] x [0, 1].
Denote the grid points by

Xij=(%,¥j) = ((i—=Dh,(j—=1h),1<i <M, 1< <N,

where, for convenience, M = N and h is the mesh grid
size. We also use notation X = (x,y) € Y. Note the level
set function @ gives the mapping

cp:§—>R

such that

|

Let usfind the zero points of ¢ asfollows.

<0 if xeD,
>0 if XeY\D.

Fori=1,--,M:
For j—1,--- N—1:
If @(Xij) - @(Xi(j+1)) <O

27

Determiney € [(j—21)h, jh] with @((i —
1)h,y) =0, and mark

Xiry if y=(j—32)h
Xij otherwise
End of j.
End of i.
For j=1,---,N:
Fori=1,---,M—1:
If @(Xij) - @(X(i11)j) <O
Determine x € [(i — 1)h,ih] with
@(X, (j—1)h) =0, and mark

/)Z(i—',-l)j if x> (I — %)h
Xij otherwise
End for i.
End for j.

Perturb = by moving the marked points near the bound-
ary dD onto 0D. This resultsin an amost rectangular
grid =, whose points are denoted by

Xij=(%,yj), 1<i<M,1<j<N.

Let usdefine

I ={xe=|q@Xx) <0},
B={xc=|g(x) =0},
E={xe=|q@Xx) >0}

The pointsin |, B and E are caled theinterior, boundary
and exterior points, respectively. Then

==1UBUE.

Note that the values of @ at the nodes on oD areall zero.
Let B be the set of the points of = which corresponds to
Bof =. Thus

==1UBUE.
Let Q be the quadrilateral with vertices Xij, Xi j4+1,Xi+1,

and Xj;1,j+1. Let dg,dy be the two diagonals of Q. We
assign  tody, for | = 1,2, asfollows

o detDy(k)(dy)
(Qud) =1 = min S BwK) ()T (DY) ()’
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where Amax(-) denotes the larger of the two eigenval- aj» = 0.0, ap; = 0.0 and az, = 1.5. The viscosity coef-
ues and Y(k)(d) is the affine mapping from Ty(d) to ficient € istaken as0.001. The underlying finite element
Tk(d). w(d), k= 1,2, are the resulting triangles by d; mesh is 41 x 41. The following table shows the history
and T(d,), k= 1,2, are the corresponding trianglesin = of theiteration of our level set method.

for | = 1,2. Since the larger  is, the less degenerate is

the configuration resulted from cutting Q along d, Table 1. Iteration history of the optimality
if g > M2, then choose d1, iteration K ann aio ano
else, choose dy. 1 0.21364 | 1.3606 | 0.0053 | 1.3646
2 0.10217 | 1.5684 | -0.0742 | 1.5842
By measuring 1, we decide al ong which to cut the quadri- 3 0.0576 | 1.8380 | -0.0653 | 1.7836
lateral cells Q of the grid =. The details are referred to 4 0.025397 | 1.9042 | -0.0545 | 1.6839
Borgers (1990). In Fig. 3 and Fig 4, we show the mi- 5 0.019929 | 1.8470 | -0.0569 | 1.5998
crostructure and the corresponding locally fitted mesh, 11 0.0018156 | 1.9638 | -0.0073 | 1.5470
respectively. 51 0.0012152 | 1.9632 | -0.0048 | 1.5321
91 0.00058364 | 1.9664 | -0.0014 | 1.4941

: 101 9.6545e-05 | 1.9916 | -0.0011 | 1.5109
o 118 2.7756e-15 | 2.0000 | 0.0000 | 1.5000

In the following series of figures, the left hand sides
represent the level set function and the right hand sides
the corresponding microstructure.In the figures of mi-
0 crostructures, the darker regions represents D and the
u lighter regionsY \ D.

0 01 02 03 04 05 06 07 08 09 1

Fig. 3. Microstructure of circle type.
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Fig. 4. Locally fitted mesh for circle. Fig. 5. (a) showsthefirst level set functionand (b) shows
the corresponding first micorstructure with cost 0.21364.

0]

5.2 Numerical examples

We show a numerical example. It is chosen that a =
3,8 = 1. Theinitia microstructure is given such that D
is the circle with center at (0.5,0.5) and the radius 0.25,
which is the nonpositive region of sign((y; — 0.5)%+
(y2 — 0.5)2 — 0.25%)/(y1 — 0.5)2+ (y, — 0.5)2 - 0.252
and Y\ D isthe outside of thecircle (See Fig. 5(b). The
target homogenized coefficients are given by a;; = 2.0,




A Level Set Approach to Optimal Homogenized Coefficients

29

0\
0
t’:“ X8
t :o L
“‘ 0 o ‘o‘o‘n
TN \\\\‘\\“ “O

QNN
N \\\\}: N “0\"

2|

7
7
;,1

7
2z

77

7t

.
7
2
7

2
z
22
7
s
i
‘—'
>
X
=
=
v‘

\ \
‘ \\\\\:\\\“
\\

77
72

7

2
7 ‘;
Zizzze

Z

V2
77
y 7

\\

%
.
27
=
.’ =
ﬁ—
z

Z

4
o7

(a) (b) (a) (b)
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0.0576. 2.7756e-15.
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