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Crack Propagation Modeling by Remeshing Using the Cell Method (CM)

E. Ferretti 1

Abstract: A numerical code for modeling crack prop-
agation using the cell method is proposed. The Mohr-
Coulomb criterion is used to compute the direction of
crack propagation, and the new crack geometry is real-
ized by an intra-element propagation technique. Auto-
matic remeshing is then activated. Applications in Mode
I and Mixed Mode are presented to illustrate the robust-
ness of the implementation.

keyword: Cell Method, fracture mechanics, crack
propagation, automatic remeshing.

1 Introduction

Modeling the propagation of a crack through a mesh is
difficult, since the geometry of the mesh must be modi-
fied as the crack propagates. Two different strategies are
available to study fracture mechanics (FM) using the fi-
nite element method (FEM). The first strategy describes
fracture as a sharp drop in the normal stress, due to
the evolution of damage to the material [Gurson (1977),
Rousselier (1981)]. The second strategy represents the
crack as a displacement discontinuity described by the
separation of its edges. Since this approach requires a
remeshing stage to model the crack propagation, many
authors have developed innovative techniques to simu-
late the propagation without a FEM mesh, such as the
meshless method [Atluri and Shen (2002), Atluri and
Zhu (1998), Kim and Atluri (2000), Nikishkov Park and
Atluri (2001)], the element-free Galerkin method [Be-
lytschko, Lu and Gu (1994)], the arbitrary local mesh
replacement method [Rashid (1998)], the boundary ele-
ment method, and nodal relaxation. In particular, nodal
relaxation can be achieved using two different tech-
niques: inter-element propagation, which is mesh depen-
dent, since the crack propagates along mesh boundaries;
and intra-element propagation, which is mesh indepen-
dent, since the direction of propagation is computed us-
ing various criteria. The first method is faster than the
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second, since it does not require a remeshing stage, but it
is less accurate.

Here, the second strategy has been chosen. A combina-
tion of nodal relaxation with intra-element propagation
and remeshing has been adopted. This technique is used
to implement a code using the cell method (CM) [Tonti
(2001)].

The aim of this paper is not to present the most relevant
fracture criteria or to discuss FM aspects, but to show
how a CM numerical code can admit good predictions in
FM. Consequently, a relatively simple fracture criterion
is used: the Mohr-Coulomb criterion. For the same rea-
son, only linear interpolation of the CM is used, and not
quadratic interpolation [Cosmi (2000)].

Changes in mesh topology are rarely supported by clas-
sical FEM numerical codes. An example of a remesh-
ing technique can be found in Bouchard, Bay, Chastel
and Tovena (2000). The ability of a code to reproduce
the change in mesh topology is of prime importance in
FM. Thus, the present work is original in two ways. It is
one of the first implementations of the CM for FM, and
presents a remeshing technique that is easily able to take
a general change in the mesh topology into account.

2 Theoretical basics of the CM

The CM is a new numerical method for solving field
equations [Tonti (2001)]. The essence of this method is
to provide a direct finite formulation of field equations,
without requiring a differential formulation (Fig. 1).

All existing numerical methods for the solution of field
equations take a differential formulation as their starting
point. A finite formulation is derived from the differen-
tial formulation by one of various discretization methods
(Fig. 1). Even the boundary element method (BEM) and
the finite volume method (FVM), which use integral for-
mulation, are based on a differential formulation. The
CM is very similar to the direct or physical approach ini-
tially used in the FEM [Huebner (1975), Livesley (1983)
and Fenner (1996)]. It is also similar to the FVM and
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Figure 1:  Comparison between the CM (   ) and differential methods (   ) 

can be considered as a generalization of the finite differ-
ences method (FDM). However, it was not possible to
attain convergence greater than second order for any of
these methods. Consequently, the physical approach fell
out of favor. The CM (based on a different philosophy)
permits the use of interpolation functions, as used in the
FEM. This allows the physical approach to be revived. A
demonstration of fourth-order convergence with the CM
can be found in Cosmi (2000).

The differential formulation requires field functions,
which have to depend on point position and instant. Only
on this condition is it possible to find the derivatives and,
then, to apply the differential formulation. So, if the
field functions are not directly described in terms of the
current point and instant, they are obtained from global
quantities, by performing densities and rates. The inten-
tion is to formulate the field laws in an exact form. How-
ever, the differential formulation can only be solved for
very simple geometries and particular boundary condi-
tions. To obtain a solution in the general case, the dif-
ferential equations must be expressed in a discrete form
(for any differential method). Consequently, the final so-
lution is an approximation in all cases. It therefore seems
unnecessary to use exact equations if, to solve them, we
must introduce some kind of approximation.

The process of forming the densities of global quantities
can be divided into two steps:-

• dividing the global variable by the extent of the ge-

ometrical object to which it is referred, to obtain
mean densities;

• performing the limit process of the mean densities
with the extent of the geometrical object going to
zero, to obtain point densities, that is, the required
point functions.

The density finding process is usually carried out without
considering whether there is a physical significance for
the limit one is performing. In fact, since at the molecular
scale matter is discrete, the notion of point density loses
its physical sense.

Leaving the differential formulation, it is not more nec-
essary to utilize point functions. This corresponds to re-
placing the idea of an exact solution with the idea of a
solution within a given tolerance. Moving in this direc-
tion, the CM deals with (discrete) equations that are not
in conflict with the discrete nature of matter.

Furthermore, all global quantities are implicitly associ-
ated with geometrical objects (lines, areas and volumes).
By performing a limit analysis of the mean global quan-
tities, the geometrical content of the global quantities is
lost. When we return to a finite formulation, we must
reconstruct the lost geometrical content. We are then
faced with two processes, one the inverse of the other:
from finite to differential and then back to finite. This
cumbersome double transformation can be avoided by
starting directly from physical laws in finite form, as the
CM does. The starting point of this alternative procedure
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is the use of global variables instead of field functions.
Global variables are referred not only to points, but also
to lines, surfaces and volumes: they are domain functions
and not point functions.

In its first formulation, the linear interpolation, the CM
subdivides the domain to study into simplexes, for each
of which it is possible to assume that the strain and the
stress are uniform and that the material is homogeneous.
This hypothesis does not involve any restriction on the
strain-stress analysis, on constitutive laws, or equilibrium
conditions:-

• the Stokes-Helmholtz theorem, which decomposes
the strain into a translation, a rotation, and a pure
strain, is valid in a uniform strain region and does
not require an infinitesimal region;

• the Cauchy relation, which relates the surface force
with the plane surface element by the stress tensor,
does not require an infinitesimal region: it’s suffi-
cient that the stress in the region is uniform;

• constitutive laws are found experimentally from
uniform stress and strain regions, and from homo-
geneous samples;

• equilibrium is valid in every portion of the body, and
not only in infinitesimal volumes.

Consequently, deformation of solids can be studied with-
out resorting to a derivative formulation.

The CM divides the domain by means of two cell com-
plexes, in such a way that every cell of the first cell com-
plex, which is a simplicial complex, contains one, and
one only, node of the other cell complex. This proce-
dure establishes a geometrical duality between the two
cell complexes.

The duality is extended to equilibrium and congruence
analysis: physical variables have a well-defined refer-
ence to geometrical objects of the two cell complexes. In
particular, configuration variables, geometrical and kine-
matical, are referred to the objects of the simplicial com-
plex, denoted “primal”, while source variables, static and
dynamical, are referred to the objects of the other com-
plex, denoted “dual”.

The duality can also be extended to the orientations. In-
deed, if one assigns to the objects of the primal complex
an internal orientation, all objects of the dual complex are

automatically endowed with external orientation. Thus,
configuration variables are naturally associated with ge-
ometrical objects endowed with an internal orientation,
while source variables are naturally associated with geo-
metrical objects endowed with an external orientation.

The conservation law is enforced on the dual polygon of
every primal vertex. In this respect, the CM corresponds
to one of three schemes used in the FVM to choose
the control volume [Mavripilis (1995)]: the vertex-based
scheme. However, this is the only common factor shared
by the CM and the FVM. In fact, the FVM (unlike the
CM), evaluates global quantities by integrating differen-
tial equations that use field variables, uses mainly one
mesh, does not use interpolating functions inside every
primal cell, and does not permit free control volumes
to be dealt with. Furthermore, it uses mainly structured
grids, does not respect flux continuity on the cell faces,
and has limited order of accuracy (usually no more than
second order) [Morton and Stringer (1995)].

The FDM is also based on a different philosophy from
the CM. It starts with a differential equation, in which
the derivatives are approximated by difference quotients.
This involves the use of a Cartesian mesh, which is one
of the principal reasons for the decline of this method
in favor of the FEM. Moreover, a concentrated force is
difficult to treat numerically using the FDM (unlike the
CM).

In general, a concentrated force is difficult to treat numer-
ically for all differential methods. For analysis, the no-
tion of distribution is used, as with the Dirac delta func-
tion. However distributions cannot be used in numerical
analysis, as the distribution space does not admit a norm.

For a source that is uniformly distributed over the whole
domain, the source vector of the FEM is coincident with
the source vector of the CM. In this case, it can be shown
[Tonti (2001)] that, using linear shape functions on sim-
plicial complexes, the stiffness matrix of the CM is co-
incident with the stiffness matrix of the FEM. When
sources are not uniformly distributed, the CM and the
FEM do not provide the same result for the source vec-
tor, and, consequently, for the mass matrix in dynamic
problems. In fact, in the FEM a concentrated source
is distributed to the vertexes according with the “lever
rule”, whereas in the CM a concentrated source is en-
tirely charged to the dual polygon in which it is located.
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3 Implementation of the CM with linear interpola-
tion

Linear interpolation of the CM is obtained by employing
affine interpolation functions of the displacement field in
every primal cell (§2). The dimensions of primal cells
are chosen so that the assumption of uniform strain is
accurate. This is the fundamental assumption when using
linear interpolation.

As stated in §2, the CM uses two meshes, the one the
dual of the other. In this study, a Delaunay/Voronoi mesh
generator [George (1995)] is used to generate the two
meshes in the two-dimensional domain (Fig. 2). The pri-
mal mesh (the Delaunay mesh) is obtained by subdivid-
ing the domain into triangles, so that for each triangle
of the triangulation, the circumcircle of that triangle is
empty of all other sites. The dual mesh (the Voronoi
mesh) is formed by the polygons whose vertexes are at
the circumcenters of the primal mesh. The Voronoi dia-
gram has the property that for each site every point in the
region around that site is closer to that site than to any
of the other sites. Figs. 2 & 3 show the CM association
between physical variables and geometrical elements of
the two cell complexes (§2). In particular [Nappi, Rajgelj
and Zaccaria (1997)], displacement vectors ui, u j, uk are
associated with nodes Pi, Pj , Pk of the Ai jk generic primal
cell:

uq = wqex +vqey (q = i, j,k). (1)
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Figure 2 : The Delaunay/Voronoi mesh and the asso-
ciation of Voronoi geometric elements with the source
variables
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Figure 3 : The association of te Delaunay geometric el-
ements with the configuration variables

Relative displacements hnm are associated with oriented
sides Lnm = (Pm −Pn) = [∆xnm ∆ynm]T :

hnm = um −un (n = i, j,k; m = j,k, i). (2)

A homogeneous state of strain is associated with the
complex of primal cells (§2), represented by the affine
transformation related to the nodal displacement compo-
nents of these cells (Fig. 4).
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Figure 4 : Nodal displacements (a), displacement field
(b), and displacement components (c) assuming an affine
field

For the nodal displacements shown in a primal cell (Fig.
4a), the hypothesis of an affine displacement field (Fig.
4b) results in the linear behavior shown in Fig. 4c for the
displacement components.

The affine transformation can be expressed in the form:

hnm = Hi jkLnm, (n = i, j,k; m = j,k, i) (3)

where Hi jk, displacement gradient of Ai jk, is a double
tensor which, in general, is not symmetric.

The determinant of the transformation is:

∆i jk = detHi jk =

∣∣∣∣∣∣
xi yi 1
x j y j 1
xk yk 1

∣∣∣∣∣∣ . (4)
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This determinant is twice the magnitude of the oriented
area of Ai jk, with its sign (according to the corkscrew
rule):

∆i jk = 2Ai jk. (5)

Consequently, the determinant can be positive or neg-
ative depending upon whether the cell vertices are ar-
ranged in an anticlockwise or clockwise sense.

Once known Hi jk, the components of the infinitesimal

strain tensor ε = [εx εy 2εxy]
T can be immediately eval-

uated:

ε = Bu, (6)

where,

u =
[

wk vk wi vi wj v j
]T

, (7)

B =
1

∆i jk


 ∆y ji 0 ∆yk j 0 ∆yik 0

0 ∆xi j 0 ∆x jk 0 ∆xki

∆xi j ∆y ji ∆x jk ∆yk j ∆xki ∆yik


 . (8)

As stated in §2, the equilibrium equations have to be writ-
ten for dual cells. Using (Fig. 2) Ak to denote the dual
cell whose nodes are Pi jk, Pjhk, . . . , and whose oriented
sides are LV

ik, LV
jk, LV

hk, . . . , Gk describes the barycenter of
Ak, Fk the body force associated with Ak, and Q

k j
the in-

terface force associated with LV
k j. The equilibrium equa-

tions then take the form:

Q
k j

= −Q
jk
, (9)

∑ j Q
k j

+F k = 0, (10)

∑ j

(
Pjk −0

)×Q
k j

+(Gk −0)×F k = 0. (11)

Three oriented lines (for example Li j, Ljk & Lki) are asso-
ciated with each Voronoi node, (in this case, Pi jk). Three

interface forces Q
i j

Q
jk

& Q
ki

are associated with these
lines. Finally, a state of stress represented by a double
symmetric tensor σi jk (stress tensor) is associated with
the beam of lines passing through Pi jk. Thus, it is possi-
ble to express each interface force as a function of the two
stress tensors associated with the junctions of the corre-
sponding interface:

Q
k j

= σ jhkR
(
Pjk −Pjhk

)−σi jkR
(
Pjk −Pi jk

)
. (12)

R represents a counter-clockwise rotation by 90 ◦:

R =
[

0 −1
1 0

]
. (13)

For each Ak dual cell, the following property follows
from assuming a uniform stress field (Fig. 5):
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Figure 5 : Property of the stress field

σi jkR
(
Pjk −Pi jk

)−σi jkR
(
Pik −Pi jk

)
= σi jkR

(
Pjk −Pik

)
=

1
2

σi jkR(Pj −Pi) (14)

By means of Eq.14, the first term in Eq.10 becomes:

∑ j Q
k j

= −1
2 ∑ j σi jkR(Pj −Pi). (15)

Eq.10 can then be written as:

1
2 ∑ j

σi jkR(Pj −Pi) = Fk. (16)
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For cells located on the boundary, Eq.10 takes the form:

∑ j
Q

k j
+Q

k
+Fk = 0. (17)

Q
k

is the interface force to the boundary.

These equations are implemented in the same manner as
for FEM:-

• a compatibility equation: Eq.6;

• the constitutive law:

σ = Dε. (18)

• an indefinite equilibrium equation: by means of
Eqs.12, 18, and 6, the interface force can be ex-
pressed as a function of displacement:

S = RL, (19)

N =
[

Sx 0 Sy

0 Sy Sx

]
, (20)

Q = Nσ = NDε = (NDB)u. (21)

By using Eq.10, a linear system of equations can be writ-
ten for each dual cell, in the form:

F = KU . (22)

F and U are the force and displacement vectors respec-
tively, and K is analogous to the stiffness matrix in the
FEM, which is symmetric, and defined as positive for
properly constrained systems. To assemble K, the con-
tribution of each primal cell is computed, taking into ac-
count the relationship between the local and global node
numbering schemes (as in the FEM):

u = CU . (23)

C is a Boolean matrix describing the location of the ver-
tices.

If we consider the dual cell Ak as a prism of unit thick-
ness, the terms R

(
Pjk −Pjhk

)
and R

(
Pjk −Pi jk

)
in Eq.12

are the lateral area of the prism Ak, with regard to the
edges Pi jkPjk and PikPi jk. This new approach [Tonti
(2001)] is more general than the previous approach, since
it can easily be extended to three-dimensional analysis.

4 Mesh generator

The following are the main features of EasyMesh, the
freeware mesh generator for generic domains used in this
study. EasyMesh:-

• generates two dimensional, unstructured, Delaunay
and constrained Delaunay triangulations;

• can handle holes in the domain;

• can easily describe local refinement / coarsening of
the mesh;

• handles domains with more than one material;

• performs re-numbering of nodes, elements and
sides, to decrease the bandwidth of the equations;

• has a built-in function for relaxation of the grid, to
avoid creating nodes surrounded by more than 7 and
less than 5 elements;

• performs Laplacian smoothing;

• generates an adaptive mesh: for each node the de-
sired side length can be specified for the triangle
containing that node in the final triangulation.

Fig. 6 shows an example of a domain with several mate-
rials and a hole, requiring refinement of the mesh in some
regions, and coarsening of it in others.

Points 0-1-3-9-8-11-10-7-6-2 define the boundary of the
domain and represent a boundary chain. They must be
inserted in an anticlockwise sense.

Points 16-17-18-19 define the hole and represent a hole
chain. They have to be inserted in a clockwise sense.

Smaller or larger elements can be specified for particu-
lar regions inside the domain by using “false holes”. In
Fig. 6, points 20-21-22-23 define the false hole used to
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Figure 6 : Domain to be meshed

refine the grid in that region. They must be inserted in an
anticlockwise sense, as for the domain boundaries.

Points 2-3 and 7-4-5-8 define the interfaces between re-
gions with different materials. Points 24, 25 and 26 are
used to assign materials to specific regions.

Points 12-13 and 14-15 define interior lines, to describe
coarsening of the mesh.

The mesh generated by the mesh generator is shown in
Fig. 7.
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Figure 7 : Meshed Domain

EasyMesh is the first mesh generator studied for numeri-
cal applications with the CM. Its simplicity makes it very
easy to use. Nevertheless, it is susceptible to problems

generating the mesh near the boundary of non-convex do-
mains. For these cases, the user must specify an accurate
choice of side length of the triangles. This could be a dif-
ficult problem for automatically remeshing crack propa-
gation problems. Other Delaunay/Voronoi mesh gener-
ators are being considered at the moment. The CM has
recently been implemented for barycentric dual mesh and
meshless methods [Zovatto(2001)].

5 Computing the crack propagation direction

The crack propagation direction can be determined using
a variety of criteria:-

• the maximal normal stress criterion [Erdogan and
Sih (1963)];

• the maximal strain criterion [Maiti and Smith
(1984)];

• the minimum strain energy density fracture criterion
[Sih and Macdonald (1974), Sih (1981), Carpinteri
and Sih (1984), Sih (1985)];

• the maximal strain energy release rate criterion
[Paris and Erdogan (1963)];

• the damage law criteria [Koenke and Schmid
(1997)].

In the present paper, the crack propagation direction is
derived directly from the properties of the Mohr’s pole
[Di Tommaso (1981)]. If σ and τ are the normal and
shear components, respectively, of the stress acting on a
general Voronoi side, the Mohr-Coulomb criterion pre-
dicts that crack propagation occurs if:

|τ| = c−σ tan ϕ. (24)

c and ϕ are material properties. In Eq.24, compressive
actions are defined as negative.

The direction of propagation can only be found if the
Mohr’s circle representing the stress field in the neigh-
borhood of the tip is known. Crack propagation oc-
curs when this circle is tangent to the limit surfaces in
the Mohr-Coulomb plane. Thus, to apply the Mohr-
Coulomb criterion, the stress field in the neighborhood
of the tip must first be determined. The CM association
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between dual geometrical objects and source variables
(§2) is used in this study to determine the stress field.

To take advantage of this association, the shape of the
primal (Delaunay) mesh surrounding the tip is fixed be-
forehand, so that the mesh generator generates an almost
regular Voronoi polygon centered on the crack tip [Fer-
retti, Viola, Di Leo and Pascale (1999)]. In the remainder
of the domain, the mesh generator is allowed to generate
the mesh automatically.

5.1 Crack tip mesh

The dual mesh around the tip is created as follows:-

• the input file for the mesh generator, which defines
the geometry of the domain, is modified to add six
new nodes representing the vertexes of a regular
hexagon centered on the tip;

• the desired element dimension (§4) for the six new
nodes and for the tip node is set equal to the side of
the regular hexagon;

• the input file for the mesh generator is modified to
add seven new sides which join the six new nodes
and the crack tip node in a counter-clockwise sense,
without crossing the surfaces of the crack;

• a marker is associated with the seven new sides, in-
dicating that the polygon that starts and ends with
the crack tip node, and touches all six of the new
points, is a false hole (§4).

This false hole will be termed the “first hexagonal ker-
nel”.

For the case shown in Fig. 8, the first hexagonal kernel
has been inserted so that one of its nodes lies on one edge
of the crack.

EasyMesh treats the boundary chain of a false hole as
a closed internal interface between two parts of the do-
main. Usually, a false hole is used to refine the grid in a
particular region of the domain (§4). In the present pa-
per, it is used to specify a particular mesh geometry in a
region, for use by the mesh generator.

Once the mesh generator has been activated, it creates
a Delaunay mesh that divides the first hexagonal kernel
into five equilateral triangles. This happens because the
desired element dimension chosen for the 7 vertexes of

ge of the crack. 
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Figure 8 : First hexagonal kernel at the crack tip

the first hexagonal kernel is equal to the hexagonal kernel
side.

Dividing the first hexagonal kernel into equilateral ele-
ments resembles the ring of elements surrounding the tip
of the crack used in FEM. However, the aim is different:
in the FEM the radial concentric mesh around the crack
tip allows the asymptotic development of the stress field
at the crack tip. Sih, DeLorenzi and German (1976), Bar-
soum (1974, 1976), Henshell and Shaw (1975) and Har-
rop (1985) demonstrated analytically that the singularity
in stress (required for linear elastic fracture mechanics -
LEFM) can be realised by distributing the intermediate
nodes of isoparametric finite elements in a non-uniform
manner. Specific elements for treating the singularity at
a crack tip were developed from 1968 onwards [Sih and
Liebowitz (1968), Benzley and Beisinger (1973), Benz-
ley (1974)].

The Voronoi polygon centered on the crack tip, required
for the CM, is the gray-shaded polygon shown in Fig. 8.
This polygon will be termed the “crack tip Voronoi cell”.
Due to the way it is constructed, four of its sides are po-
sitioned equidistant from the crack tip, which belong to
a hexagon centered on the crack tip, termed the “second
hexagonal kernel”. These sides join the circumcenters of
the five equilateral triangles.

A simple geometric relationship exists between the sides
of the first and second hexagonal kernels, named l I and
lII, respectively:
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lII =
√

3
3

lI (25)

5.2 Positioning the first hexagonal kernel

In this work, two input files are used to study crack prop-
agation through a domain.

The first input file defines the current geometry of the do-
main. It has to be modified every time crack propagation
occurs. The first input file is not, properly speaking, an
input file, since the mesh generator works from the sec-
ond input file.

The second input file is derived from the first input file,
with the addition of the nodes and internal sides that de-
fine the first hexagonal kernel (§5.1). When generated
numerically, the first hexagonal kernel is initially posi-
tioned on the origin of the reference frame, as shown in
Fig. 9. Next, the first hexagonal kernel is moved from the
origin to the crack tip. As it is translated, it is also rotated,
so that it takes up one of the two positions described in
§5.4, taking care that it does not cross the crack (Fig. 8).
To achieve this, crack tip coordinates and the direction of
the last portion of the crack must be computed.

1
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5 6
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x 
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Figure 9 : Generation of the first hexagonal kernel

Once the coordinates of the transformed first hexagonal
kernel have been calculated, the second input file can be
derived from the first input file by updating the node and
edge numbering, remembering that nodes defining a false
hole chain must be inserted in a clockwise sense (§4).

Furthermore, the addition of nodes and sides defining the
first hexagonal kernel modifies the sequential numbering
of those nodes and sides defining the domain geometry.
A special tool has been developed to ensure that the sec-
ond input file is correctly written. This tool re-writes the
second input file twice, once for each of the desired posi-
tions of the first hexagonal kernel (§5.4). For every mod-
ification to the second input file, the mesh generator is
automatically invoked again.

5.3 Analysis in the Mohr-Coulomb plane

The force acting on the Voronoi side a has the same
components in the (x,y) global reference frame, QV

a
=[

QV
ax

QV
ay

]T
, as in the (x,y) local reference frame, Q

V

a
=[

QV
ax

QV
ay

]T
(Fig. 10).
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Figure 10 : Global and local reference frames for a
Voronoi side a

Denoted the angle between the Voronoi side and the x
axis as ϑ (Fig.10), the force Q

V

a
can be projected perpen-

dicular and parallel to the Voronoi side, using the matrix
T a:

T a =
[

cosϑ sinϑ
−sinϑ cosϑ

]
. (26)

This gives Q̃
V
a

=
[
QV

ax̃
QV

aỹ

]T
, the projection of Q

V

a
in the

x̃
/

ỹ local reference frame:



60 Copyright c© 2003 Tech Science Press CMES, vol.4, no.1, pp.51-72, 2003

Q̃
V
a

= T aQ
V
a
. (27)

Finally, to obtain the vector whose components are the
normal and the tangential stress on a, t V

a =
[
τV

a σV
a

]T ,
QV

aỹ
and QV

ax̃
must be divided by la, the length of the

Voronoi side:

tV
a =

1
la

Q̃
V
a
. (28)

Rotating the first hexagonal kernel around the crack tip,
and plotting the points whose coordinates are derived
from Eq.28 on the Mohr-Coulomb plane, the projection
of the stress field onto the sides of the crack tip Voronoi
cell is obtained.

An example of the stress field representation obtained in
this way is shown in Fig. 11 [Ferretti (2001)], which
refers to a grade-by-grade clockwise rotation of 59◦,
starting from the first hexagonal kernel position shown
in Fig. 8.

In Fig. 11, a well-defined Mohr’s circle can be recog-
nised, together with some dispersed points. The circle is
obtained by rotation of the crack tip Voronoi cell sides
that are equidistant from the tip, as these lie on the sec-
ond hexagonal kernel. The distance of these sides from
the crack tip, r, equals the apothem of the second hexag-
onal kernel:

r =
√

3
2

lII =
1
2

lI. (29)

If the stress field is known for 60 different rotations of the
first hexagonal kernel, then this can be extended to define
the stress field for a 360◦ rotation of attitude around the
crack tip. The 360◦ rotation around the crack tip is ac-
companied by two rotations around the Mohr’s circle.

The points outside the Mohr’s circle correspond to the
stress on the crack tip Voronoi cell sides that do not lie
on the second hexagonal kernel. These points do not be-
long to the same crack tip neighborhood as that which
the points corresponding to the sides equidistant from the
crack tip belong. Thus, in the Mohr-Coulomb plane, the
outlying points, termed the “points of type a”, should not
to be plotted with the points corresponding to the sides

limit surface for   
the infinitesimal 
neighbourhood 
of the tip

limit surface for the 
finite neighbourhood 
of the tip 

τ  

σ

Figure 11 : Representation of the stress field in the
Mohr-Coulomb plane

lying on the second hexagonal kernel, termed the “points
of type b”.

Plotting only the points of type b, it is possible to describe
the stress field on those attitudes of the tip finite neigh-
borhood whose trace belongs to the plane containing the
crack.

Moreover, by varying the value of l I it is possible to de-
scribe the stress field on those attitudes lying on finite
neighborhoods of a given dimension.

For a crack whose shape does not vary normal to the
plane of the mesh, the direction of crack propagation will
always lie in the plane of the mesh. If this is the case,
it is not necessary to construct the complete Mohr’s do-
main, but only the Mohr’s circle obtained rotating the
first hexagonal kernel, since this is the biggest in the
Mohr’s domain. Therefore, to obtain the crack propa-
gation direction for the case where the Mohr’s circle is
tangential to the limit surface, it is sufficient to calcu-
late the point in the Mohr-Coulomb domain which lies
on the limit surface, and the corresponding direction of
the Voronoi side.

Since the simulation proceeds using finite increments of
displacement, it is not possible to capture the precise in-
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stant for which the Mohr’s circle becomes tangent to the
limit surface. In general, it is only possible to find the
first value of displacement for which the Mohr’s circle
intersects the limit surface. For this case, the crack propa-
gation direction can be found by calculating the direction
of the Voronoi side corresponding to that Mohr’s point
which lies furthest outside the limit surface.

The limit surface (Eq.24) describes failure in the in-
finitesimal neighborhood of the crack tip. However, the
stress field is calculated at a finite distance from the crack
tip. Thus, Eq.24 must be modified, by introducing a cor-
rection factor k,which is applied to the cohesion, c:

|τ|= kc−σ tan ϕ, (30)

where:

k < 1. (31)

That is to say, the position of the Mohr’s circle is studied
in a reduced domain, with respect to a translated limit
surface (Fig. 11).

5.4 Further remarks

To construct the Mohr’s circle it is sufficient to know
any two points in the Mohr-Coulomb plane, and conse-
quently it is sufficient to know the stress field on two at-
titudes of the same (finite) neighborhood. Remembering
that only the sides of the tip Voronoi cell that lie on the
second hexagonal kernel need to be taken into account
(§5.3), for a general position of the first hexagonal ker-
nel only three distinct attitudes are available. Of the four
sides belonging to the second hexagonal kernel (Fig. 8),
two of them are parallel to each other, and correspond to
the same attitude. So, one generic position of the first
hexagonal kernel is sufficient to identify the circle.

Nevertheless, the uncertainty of the first hexagonal ker-
nel orientation cannot guarantee a good accuracy during
numerical solution. It has been found [Ferretti (2001)]
that the accuracy is not satisfactory for side slopes near
to 0◦ and 90◦.

A numerical analysis [Ferretti (2001)] showed that higher
accuracy solutions are obtained for side slopes close to
30◦ and 60◦. Since the difference between the slopes of
two consecutive sides of the second hexagonal kernel is

equal to 60◦, it is impossible to insert a first hexagonal
kernel giving the higher accuracy solution for at least two
sides of the hexagon.

Thus, to identify the Mohr’s circle, two different orien-
tations of the first hexagonal kernel can be used. For the
first of them (Fig. 12a) a Voronoi side slope of 60◦ is
available, while for the second (Fig. 12b) a Voronoi side
slope of 30◦ is available.

a) 

b)

c) 

direction of 
propagation 

Mohr’s 
pole 

τ

σ

Figure 12 : a)b) First and second positions of the first
hexagonal kernel; c) Computed Mohr’s circle

To optimize the computation, only the positive/negative
slope needs to be taken into account. Due to the prop-
erties of the Mohr circle, slopes with the same sign are
sufficient to uniquely identify it. In Fig.12c, only the
stress points relating to positive slopes have been plot-
ted. These points refer to sides rotated by 30 ◦ relative to
one another. Thus, the angle measured from the centre
of the Mohr’s circle to each of these points is 60 ◦. This
information is sufficient to calculate [Ferretti (2001)]:-

• the radius R of the Mohr’s circle;

• the position of the Mohr’s circle center;

• the distance d between the Mohr’s circle center and
the limit surfaces;

• the position of the Mohr’s pole.

The condition for no crack propagation takes the form:

d > R. (32)

When d ≤ R, the code automatically calculates:-



62 Copyright c© 2003 Tech Science Press CMES, vol.4, no.1, pp.51-72, 2003

• the position of the point on the Mohr’s circle, which
minimizes the distance between the Mohr’s circle
and the limit surface;

• the crack propagation direction, given by the direc-
tion of a line that joins the above critical point to the
Mohr’s pole (Fig. 12c).

6 Crack geometry updating

It has already been stated (§5.3) that the simulation in this
paper proceeds by finite increments of the displacement
value.

If the condition for no crack propagation (Eq.32) is not
satisfied for a general loading step, the length of crack
propagation is assumed equal to the length of a side of
the first hexagonal kernel (§5.1). This side length is a
parameter in the numerical simulation and is input by the
user.

Once the direction of crack propagation has been deter-
mined by the method described in §5.4, the crack geom-
etry is updated by modifying both the first and second
input files:

• Step 1: a new edge representing the crack propaga-
tion is added (by modifying the first input file);

• Step 2: the first hexagonal kernel is moved from the
old to the new crack tip (by modifying the second
input file).

For the first step, two new nodes and two new sides are
added to the first input file (Fig. 13).

 

a) b) 

new
nodes

new sides 

Figure 13 : a) Old Crack b) New Crack

The first of these new nodes is the new tip, while the
second added node describes the separation of the crack

surfaces at the old crack tip. The two added sides join the
new crack tip to the two nodes at the former crack tip.

A special tool has been developed to update the first input
file automatically when Eq.32 is not satisfied.

In the second step, the first hexagonal kernel is moved
by updating the value of the crack tip coordinates and the
slope of the last portion of the crack. The first hexagonal
kernel is then created and moved as described in §5.2.

At this point, the mesh generator is automatically in-
voked again and a new mesh is generated for the new
crack geometry.

Next, the Mohr-Coulomb stress analysis is repeated in
the finite neighborhood of the new crack tip, without in-
crementing the displacement value. If Eq.32 is not yet
satisfied, further crack propagation occurs, accompanied
by updating of the crack geometry. The crack is allowed
to grow until it is stable (when Eq.32 is satisfied). At this
point, the value of displacement is incremented and the
condition for no crack propagation re-evaluated.

Due to the way the crack is extended, pairs of nodes are
positioned opposite each other on the crack surfaces.

This technique is mesh-independent, since the direction
of propagation is computed independently of the mesh
(by intra-element propagation). It requires a remeshing
stage at each step of propagation, but results are very ac-
curate.

To decrease the number of required remeshing stages,
an inter-element propagation technique can be followed,
which assumes that the final direction of crack propaga-
tion is the triangle side nearest to the computed direc-
tion of propagation [Bouchard, Bay, Chastel and Tovena
(2000)], giving crack propagation along the edges of tri-
angles. This technique is mesh-dependent, but it does not
require a remeshing procedure, since the extension of the
crack is described only by nodal relaxation. However,
the method is inaccurate and needs an initially fine mesh.
Indeed, to accurately model the large stress concentra-
tion at the crack tip, an infinitely fine mesh is required.
The crack propagation along the edges of triangles results
in frequent changes in the crack propagation direction.
To improve the precision at the crack tip, a remeshing
procedure can be used in addition to nodal relaxation at
the crack tip. However, this type of propagation involves
large modifications to the local stress field. In complex
domains these modification to the stress field can lead
to inaccurate propagation paths, as crack bifurcation can
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occur due to the imposed direction, so that the crack fol-
lows multiple paths. In summary, inter-element propaga-
tion is faster than intra-element propagation, but it is less
accurate.

7 Mixed-mode crack propagation

Mixed-Mode crack propagation occurs when the load is
applied obliquely to the crack direction and the crack
opening direction (Fig. 14).

S

part a) 

part b)

Tip

crack opening direction 

crack
direction

load
direction

deformed
configuration

undeformed
configuration

Figure 14 : Mixed-Mode crack loading

In this paper, only the combination of the Mode I and
Mode II cases is considered. For this combination, when
a crack is subjected to Mixed-Mode loading, it can be
divided into two parts [Ferretti (2001)]:-

part a) Mode I prevails and the two edges of the crack
separate;

part b) Mode II prevails and the two edges of the crack
slide over one another.

Depending upon the geometry of the domain and the
boundary conditions, there may be more than one part

a) and more than one part b). Generally speaking, part b)
occurs whenever the combination of loading and bound-
ary conditions forces the edges of the crack to close at
some point.

The part a) and part b) are shown in Fig. 14 for the case
of a crack with a general inclination, in which the mouth
of the crack is constrained in the horizontal direction.

Numerical simulation is only possible if the position of
the point S separating the two parts is known. The dom-
inance of Mode I rather than Mode II crack propagation
involves different boundary conditions on the crack sur-
faces, and it is necessary to specify all the boundary con-
ditions before the simulation starts. In general, S is a
function of the load step and crack length, and is, thus,
an unknown of the Mixed-Mode problem. To determine
S, it is necessary to proceed step-wise:

Step I) Evaluate the deformed configuration of the do-
main, by assuming free displacement all over the
crack (giving the step I deformed configuration);

Step II) Use the step I deformed configuration to find
the part b) extension, by assuming zero relative dis-
placement between opposing nodes lying in part b)
(giving the step II deformed configuration);

Step III) Introduce relative displacement between the
opposite nodes lying in part b), and re-evaluate the
extension of part b) (giving the final deformed con-
figuration).

Step III involves introducing FEM contact elements
describing sliding contact [Har (1998), Papadopoulos,
Jones and Solberg (1995), Zhong (1995)].

A more detailed description of the steps necessary to de-
termine the position of S follows.

In the first step (Fig.15), all nodes lying on the crack
are free to move, independent of any displacement con-
straint relative to the opposite crack edge. Hence, no
force acts on the nodes lying on the crack. In part b),
this involves penetration of the nodes below the oppo-
site crack surface. Depending upon the geometry of the
domain, and the boundary conditions, it is also possible
that some nodes lying in the part a) may penetrate below
the opposite crack surface. Thus, the point S’ separating
the part a) and the part b) portions of the crack does not
generally coincide with S after Step I. The position of the
point S’ defines the extent of part b) after step I.
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gure 15:  
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Figure 15 : Deformed configuration of the crack after
Step I

During the second step, the penetration is eliminated, and
the extent of part b) adjusted.

If only one part a) and one part b) occurs along the crack,
(as is the case in Fig.15), the second point which defines
the part b) with S is known. It always coincides with the
tip. Penetration of the nodes into the opposite crack sur-
face must be adjusted starting from a point that belongs
to the actual part b). If the crack contains only one part
a) and one part b), penetration has to be adjusted from
the node at the other end from point S’, since it is not
known whether the point S’ does indeed belong to the
actual part b). (In Fig.15, elimination of the penetrating
nodes occurs from the tip).

A special tool has been developed to eliminate the pen-
etration of nodes between crack surfaces for the case
where only one part a) and one part b) exist. This tool
examines all the nodes along the same surface of the
crack lying in part b) after step I, starting from the node
at the other end from point S’. At each node, the pro-
gram checks to see whether penetration occurs. If this

is the case, the current node is constrained to have the
same displacement components of the opposite node on
the crack (§6).

By specifying equal displacements to the nodes on either
side of the crack, a constraint in correspondence of the
current node is introduced. The reaction forces due to
the imposed constraint are applied to the opposite node
by change of their sign. These applied forces cause the
opposite surface of the crack to deform and, thus, affect
the displacement components of the opposite node. To
ensure that the paired nodes have the same displacement
components (and to re-assess the constraint reactions),
the displacement components of the current node must
be adjusted until a stable solution is reached.

Every time the boundary conditions of a crack node are
changed, the tool re-evaluates the extent of part b), and
re-examines all the nodes lying in part b), starting from
the node at the opposite end to the revised point S’. Every
change in boundary conditions involves a change in the
extent of part b), and hence a change in the number of
nodes lying in part b).

After changing the boundary conditions of a general node
lying in part b), it is possible that a node which has pre-
viously been examined may become subject to tensile
stress. The constraint at this node may no longer be re-
quired, due to the introduction of a new constraint at the
current node.

For this reason, after re-evaluating the extent of part b)
the tool controls whether a node is in traction. If so, de-
formation constraint at the nodes in tension are relaxed
and the extent of part b) is re-evaluated.

Step II gives a deformed configuration that clearly shows
the subdivision of the crack into part a) and part b). The
point separating these two parts, S”, is not yet the actual
point S, as it does not consider the slip between opposite
nodes lying in part b).

Step III estimates the components of relative slip between
opposite nodes lying in part b).

A friction model is used to assess the forces acting across
the crack surfaces. Relative slip can only take place if the
constraining reaction forces for nodes in part b) lie on the
surface of the friction cone (Fig.16).

In Fig.16, R1 is a constraint reaction that lies inside the
friction cone. For this case, the constraint condition
adopted for the current node in step II is correct and no
relative slip occurs between it and the node on the op-
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Figure 16 : Example of the validity (R1) and of non-
validity (R2) of the no relative slip assumption

posite crack surface. R2 is a constraint reaction that lies
outside the friction cone. In the adopted model, reactions
lying outside the friction cone cannot exist. Thus, the
constraint condition adopted at the current node in step
II is not correct, and relative slip will occur between it
and the node on the opposite crack surface. The correct
value of relative slip results in a reaction that lies upon
the conical surface.

The following steps are used to estimate the value of rel-
ative slip:-

• An assumed slip is considered at the current node
(the first approximation relative slip).

• The new constraining reaction force is evaluated
(giving the second approximation of constraining
reaction force).

• If the second approximation constraining reaction
force lies outside the friction cone, the first approx-
imation relative slip is smaller than the actual slip.
Thus, the relative slip is doubled (giving the second
approximation relative slip).

• If the second approximation constraining reaction
force lies within the friction cone, the first approx-
imation relative slip is greater than the actual slip.

Thus, the relative slip is halved (giving the second
approximation relative slip).

• The preceding steps establish upper and lower
bounds on the relative slip. Interval halving is used
to determine the correct slip, for which the upper
and lower bounds are equal (to within a particular
tolerance).

The common value of the upper and lower bounds is used
as the actual value of relative slip.

The node with the maximum angle between the con-
straining reaction force and the normal to the crack sur-
face is considered first when calculating the relative slip.
When relative slip is introduced at the current node, the
constraint reactions force at the other nodes will change.
Three cases can occur:-

1. a constrained node may become subject to tension;

2. a constraint reaction may move to outside from the
friction cone;

3. a node lying in part a) during step II may penetrate
the opposite crack surface.

Every time a value of relative slip is calculated, the tool
checks whether one of these cases has occurred. If this
is the case, the process is repeated with the appropriate
modifications. In subsequent iterations, the tool remem-
bers the relative slips that have previously occurred along
the crack: the same relative slip is maintained between
the nodes in part b), so long as the constraint reaction
force does not move to outside the friction cone. This
allows the energy dissipation associated with each value
of relative slip to be estimated.

Finally, the tool also remembers the relative displace-
ments between nodes in part a). In particular, it remem-
bers the relative displacements in the crack direction. If
a node lies within part a) for a given imposed displace-
ment, and lies in part b) for the next value of imposed
displacement, the relative displacement in the direction
normal to the crack surface goes to zero, while the rel-
ative displacement in the direction of the crack does not
change. Thus, the assumption of zero relative slip dur-
ing step II may be very far from the truth. Consequently,
the simulation may not converge. The tool avoids this
problem by modifying the step II constraint conditions
for all iterations after the first. Nodes that penetrate the
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opposite crack surface are constrained to have the same
displacement component in normal to the crack surface
and to dist in the crack direction by the same relative dis-
placement as in the previous iteration.

Numerical results

The procedure described above for identifying the direc-
tion of crack propagation has been used to model tests
on beams under symmetric and skew-symmetric four
point bending [Ferretti, Viola and Di Leo (2000); Ferretti
(2001)] and on compressed cylindrical specimens [Fer-
retti, Viola, Di Leo and Pascale (1999)] (Fig. 17). Both
the bending and compressive tests have been performed
for concrete specimens.
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Figure 17 : Schematic view of (a) the symmetric bend-
ing test, (b) the skew-symmetric bending test, and (c) the
compressive test

In the beams under symmetric four point bending, the
cracks are subjected to Mode I loading, in the beams un-
der skew-symmetric four point bending, the cracks are
subjected to Mode II loading, and, in cylinders, cracks
are subjected to Mixed-Mode loading.

Experimental observations show that, in the beams un-
der symmetric four point bending, cracks initiate at the
mid-span (Fig.17a) and propagate perpendicularly to the
moment vector, in the beams under skew-symmetric four
point bending cracks initiate at the mid-span (Fig.17b)
and propagate towards the external load, and, in cylin-
ders, cracks initiate on the curved surface, on the two
end caps (Fig.17c), and propagate through the cylinder.

The load at which the cracks initiate is critical in nu-
merical simulations of FM. Most FEM codes of FM are
applied to pre-cracked test parts. In particular, it is dif-
ficult to determine where the crack will start, since the
material is never perfect. Micro-failures and inclusions
always induce local stress concentrations, from which
failure and cracks originate. These defects cannot real-
istically be taken into account numerically in large-scale
models. Consequently, we must either assume the ma-
terial to be perfect or impose the point of crack initia-
tion by pre-cracking the specimen. The specimens in this
study are also pre-cracked, both for Mode I, Mode II, and
Mixed-Mode loading. However, a critical stress criterion
for determining the location of crack initiation is being
studied at the present time.

For the beams under symmetric four point bending, the
crack has been initiated at the bottom-fiber of the mid-
span section. The dimensions of the pre-cracking have
been fixed in such a manner that they do not significantly
modify the stress field around the initiation point.

The computation was performed for only one half of the
beam shown in Fig.17a, due to the presence of an axis of
symmetry. The static analysis has been performed on the
middle longitudinal section.

Starting from the initiation point, the numerical model
predicts near-vertical crack propagation at every stage.
The intra-element propagation technique and the possi-
bility to reduce the dimension of the mesh near the tip
as small as possible have permitted the crack path to be
accurately predicted (Fig.18).

In Fig.19, the numerically-calculated stress field in the
direction of the beam axis is plotted, both with a discrete
2D representation, a continue 2D representation, and a
continue 3D representation.

As regards the beams under skew-symmetric four point
bending, the crack has been initiated both at the bottom-
and at the top-fiber of the mid-span section. In this case
too, the dimensions of the pre-cracking have been fixed
so as not to modify the stress field around the initiation
point significantly.

The skew-symmetry of the displacement field was taken
into account in order to simplify the computation. The
static analysis has been performed on the middle longi-
tudinal section.

The numerical crack path and the stress analysis pre-
dicted by the numerical model are shown in Fig. 20 for
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Figure 18 : Numerically-calculated crack path for a beam under symmetric four-point bending

Figure 19 : Numerically-calculated stress field in the direction of the beam axis for symmetric four-point bending
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Figure 20 : Numerically predicted crack path and stress analysis for five failure stages in a beam under skew-
symmetric four point bending

five failure stages. In accordance with the experimen-
tal evidence, the direction of propagation changes at ev-
ery stage, in such a way that the numerical crack prop-
agates towards the applied load. Even in this case, the
intra-element propagation technique and reduction of the
mesh size near the crack tip allow the crack path to be
accurately predicted.

In the cylinders, the loading plates constrain the crack, so
that it opens parallel to the plates. Thus, in compressed
specimens the cracks are at angle to both the load direc-
tion and to the crack opening direction (§7). The cylin-
drical geometry is described by a combination of Mode I
and Mode II crack propagation, with the same strain field
on every longitudinal section.

The cylindrical symmetry of the cylinder allows the nu-

merical computation to be simplified to a longitudinal
section through the cylinder. In the longitudinal section
of the cylinder in Fig.17c, the two axes of symmetry
are indicated. The presence of a second-order symmetry
permits a further simplification, since only one-quarter
of the longitudinal section need to be considered. The
boundary conditions, loading direction, cracking direc-
tion and crack opening direction are shown in Fig.14 (for
a crack located in the bottom–left quarter of the longitu-
dinal section in Fig.17c). The 2nd-order symmetry of the
section allows the boundary conditions for the whole of
the bottom–left quarter to easily be computed: the dis-
placements of the nodes lying on the axes of symmetry
must be constrained according to a double pendulum.

In the compressive cylinder test model, the pre-cracking
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Figure 21 : Numerically predicted crack path for a com-
pressive cylinder test

gure 22:  
Figure 22 : Experimental crack path for a compressive
cylinder test

has been applied at the initiation point shown in Fig. 17c.
The dimensions of the pre-crack have been fixed so as
not to modify the stress field around the initiation point
significantly.

The Mixed-Mode propagation tool proved to describe the
propagation of the crack through the solid adequately.
The crack path identified by the numerical model agrees
with experimental observations (Figs. 21 and 22). By in-
troducing material properties of the concrete into the nu-
merical model for the cylinder test, the predicted average
slope of the crack path agrees well with the one observed
experimentally. It has a value of approximately 70◦ with
respect to the horizontal direction.

Repeating the static analysis for various slenderness ra-
tios, it was verified numerically [Ferretti (2001)] that the
crack direction (for the same boundary conditions) is a
property of the material and not of the solid geometry.
This also agrees well with experimental experience.

As for the beam tests, the intra-element propagation tech-
nique and reduction of the mesh size near the crack tip
allow the crack path to be accurately predicted.

8 Conclusions

A crack propagation analysis has been presented for use
with the cell method, which combines nodal relaxation,
intra-element propagation and remeshing. This method
permits the mesh dimensions to be refined at specific lo-
cations, to improve the solution accuracy. The adopted
mesh generator analyses multiple domains, and internal
holes.

To describe crack propagation, the crack geometry is up-
dated by introducing an extra node at the new crack tip.
This is accompanied by a relaxation of the node at the
old crack tip.

Both Mode I, Mode II, and Mixed-Mode crack propa-
gation have been considered in this paper. The numerical
model incorporates an original approach, which automat-
ically estimates which part of the boundary is subjected
to Mode I loading, and which part is subjected to Mode
II loading. The numerical model subsequently estimates
the size of the relative displacements between nodes on
the opposite sides of the crack surface subjected to Mode
II loading, allowing sliding contact to be described.

The simulation is displacement-controlled.

All of the steps in the crack propagation process are com-
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pletely automatic. When the crack tip is not stable:-

• the crack propagation direction is calculated;

• the crack geometry is updated;

• the mesh generator is invoked to revise the mesh;

• a static analysis and re-assessment of the crack ge-
ometry are repeated for the same value of displace-
ment until the crack becomes stable.

During remeshing, the form of the mesh in the vicinity
of the crack tip is pre-determined, leaving the mesh gen-
erator to generate the mesh in the remainder of the spec-
imen.

Numerical and experimental results have been compared,
showing that the numerical model is able to predict the
evolution of cracks accurately.

Further studies are currently being undertaken to improve
the efficiency of the numerical model.

The numerical results show that the CM numerical code
can give good predictions for fracture mechanics prob-
lems, and validate the CM theory for fracture analysis.

An interesting development is associated with the crack
propagation technique presented in this paper: by avoid-
ing the discretization stage invoked by differential formu-
lation, the CM requires less processing time than FEM
codes. This aspect deserves additional, more thorough
numerical analysis.

Furthermore, it is apparent that the CM, by using a di-
rect finite formulation, avoids a problem associated with
FEM codes: the stress around the crack tip does not ap-
proach infinity as the crack tip is approached. This repre-
sents the physical nature of the problem, since the 1

/√
r

singularity at the crack tip is based on the hypothesis
of an idealized elastic material [Muskhelishvili (1953),
Westergaard (1939)].

It seems possible to identify a crack tip mesh size for
which the numerical results are mesh independent. If this
is indeed the case, accuracy problems at the crack tip are
no longer a problem. This aspect of the analysis also
deserves further work.
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