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Finite Rotations and large Strains in Finite Element Shell Analysis

Y. Bagar, O. Kintzel*
Institute for Structural Mechanics, Ruhr-University Bochum, Germany

Abstract:  The objective of this contribution is the de-ssive survey of the works achieved in this context can be
velopment of a finite element model for finite rotatiofound in (Basr, Itskov, and Eckstein (2000);BasDing,
and large strain analysis of thin walled shells involvingnd Schultz (1993)) .

geometry intersections. The shell configuration is df-has been, however, later observed that theiiN -
scribed by a linear polynomial in the thickness coordirg ssnerkinematics with 5 independent unknowns suf-
nate. The director of the shell is multiplicatively decon¥ers from two significant deficiencies. The first one is that
posed into a stretching parameter and an inextensible YR ynit length conditiony :=||d-d || —1= 0 to be satis-
vector whose rotation is accomplished by an updategkq by the shell directod does not provide its unique
rotation formulation. A rotation vector with three indegetermination during the iterative procedure. Conse-
pendent components is used throughout the shell whighently, this hypothesisis not directly applicable to finite
permits advantageously to consider smooth shells a@glation phenomena unless suitable modifications are in-
compound shells by a unified procedure. This formynduced in the numerical procedure. The second defi-
lation is introduced into an isoparametric four-node elgfency occurs if geometry intersection problems are con-
ment. The common locking phenomena are significanfi¥rned. Within the NNDLIN -REISSNER hypothesis the
reduced by an enhancement of the strain field and the @gation vector prescribable along the intersection lines
sumed strain concept. is tangential to the midsurface. In dealing with two dif-
ferent geometries, one is therefore faced with two rota-

keyword: Finite rotation, updated-rotation formUIa'tion vectors lying in two different planes. Evidently such

tion, compound shells, large strains, enhanced strain CQituation is not suitable for trassembl age process to

cept be accomplished in the finite element formulation. To
remove this difficulty the tangential rotation vector re-

1 Introduction quires, at least along geometry intersections, an addi-
tional twisting degree of freedom as has been introduced

In the first development phase firfite rotation shell el- e.g. in (lura and Atluri (1992)) to develop a membrane
ements, shell theories of IKCHHOFFLOVE type have glement.

been almost exclusively used for the implementati . . L
(Harte and Eckstein (1986):Nolte (1983)). A disadva(rﬁ]e conclusion from the above discussion is that the

tage of this approach is that the kinematic relations iB-INDLIN'REISSNERtype shell kinematics is not capa-

volve second order derivatives of thflection field. - to deal withfinite rotations and geometry intersec-

. ) . . . tions. Both of the cited insufficiencies can be, however,
This requires a relatively lengthy interpolation proce-

dure by means of higher-order polynomials for Omi,[tinomitted within a unified procedure by replacing the shell

locking phenomena. To avoid this difficulty, particu-g're.c'[Or by such rota_tlonal variables ensuring an a priorl
: o ) satisfaction of the unit length constraint.
larly to provide an easy application of the isoparametric

approach MNDLIN-REISSNER type shell formulations TWO different approaches have been used for this purpose
have been increasingly considered in the last decaddhditerature: determination of the director with respect
developing finite rotation shell elements. A compreheff2 @ global reference frame by means afLER angles
(Ramm (1976);Baw and Ding (1995)) or the determina-
LCorrespondence to: Ruhr-UnivestitBochum, Lehrstuhl i tion of the current director by means of a rotation tensor

Statik und Dynamik, Universiifsstral3e 150, 44780 Bochum, Ger{see e.g. Atluri (1984), Brank, Mamouri, and Ibrahimbe-
many
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govi¢ (2003)). The rotation tensor can be parametrizedctors, e.g. in the reference configuration :

by three independent variables in terms of the corre-

sponding RDRIGUES otation vector which leads to the ¢ (9u)+93>1( (69), X= As (1)
so called RDRIGUESformula.

An important issue in deriving the associated tangent opith A3 initially perpendicular to the midsurface. The
erator is the symmetry or nonsymmetry of the secoadsociated geometrical elements can be evaluated by the
variation (for a comprehensive review see (Suetake, lustggndard procedure (Barsand Weichert (2000)) leading
and Atluri (2003),Sansour and Bufler (1992))). A wellto :

known fact is that the second variation in vector space _ 3
leads to a symmetric expression with respect to the indedse vectors . Gg = Aq +i9 Asa; i Gs=As,

pendent variables. By utilizing thed®RIGUES formula Metrictensor: G=Gi®G =G;;G ®G,

lengthy expressions have been derived by Parisch (19SH terminant: G=1Gijl - (2)

If the corresponding relation is evaluated by considering . .

only the incremental values of the rotation vector a sym- Finite rotation formulation

metrical expression is obta_ined in any case ( seerﬁ'r_ 31 Basicreations

and Ramm (1992)) even without an explicit parametriza-

tion of the rotation tensor in terms of th@BRIGUESro- For a systematic derivation we summarize in this section
tation vector. This is a very convenient property of the ®me useful results (Argyris and Poterasu (1993)). The
called updated rotation formulation originally proposetptation of any arbitrary vectoD into its new position

by (Simo and Fox (1989);Simo (1993)) particular witl can be described withosingularity by the so-called
regard to finite element implementations. In this papBODRIGUES rotation vector Q which describes through
the above mentioned symmetric expression is obtairiggidirection the rotation axis and through its magnitude

by means of a different approach solely on the basis|0f2 [|= Q the rotation angle. The corresponding relation
the calculus of variation. reads as (Bas and Weichert (2000)):

The aim of this contribution is to modify MDLIN - RIO\D
ReIssNERkinematics such that a reliable finite eleme& Q) )
formulation for finite rotations can be achieved applica- _ <| L SnQg 1o CZSQ ﬁﬁ) D
ble to smooth and compound shells (Baar and Kintzel Q Q

i i ‘ snQ . 1-—cosQ
(2000)), that means to con5|d.e.r shells with or without _ 0S| + Ay QzQ)D (3
geometry intersections by a unified procedure. Q2

A further aim is the consideration of large strains, which
may occur in dealing with hyperelastic materials. Fof
this purpose transverse normal strains are includedﬂi}? : )
the kinematic hypothesis by replacing the first orddfctor product with the successing vector.

term in the thickness coordinate by a multiplicative ddlow attention is focused on skew-symmetric, second-
compositior d where\ describes through-the-thicknesgrder tensoA = —AT having three independent com-
stretches (Simo, Rifai, and Fox (1990);Basnd Ding Ponents. The simple contraction of this tensor with an
(1995)). To improve the capability of the four-node shefirbitrary vectod is expressible as

formulation arenhanced assumed strain concept is used,
which renders the formulation locking-free.

ith a rotation tensoR(Q) whose definition is given in
above relation. Herein the notation ) indicates a

Ad=Qd=Qxd, Q=Qx (4)

in terms of the so-called axial vect® with three inde-
2 Notations pendent components. The tensor function/xgan be

: . _ ?xpressed as a power-series of the form
In this paper equations are presented in tensor formula-

tion. Variables associated with the reference configura- . . .
tion are denoted by upper case letters. eXpA=expQ =1+Q+ - Q

Points of the shell continuum are determined by position (5)

| =

2 123 1.
' +—-Q _|_..._|__Qn_|_...
3! n!

N
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in terms of the axial vectd®. It is now to be proved thatd?®, are given, equation (10) delivers two different values
the rotation vecto€ used above is identical with that onel® = ++/1— d, d® for the third one so that the conver-
from relation (3). Indeed, if we consider the identities gence of the iterative procedure is not ensured for strong
.3 ) 4 5 A2 rotations ofd. This difficulty can be removed by replac-
Q' =-0°Q, Q=-0°Q, .. (6) ing the directod by rotational quantities with which the
constraint (10) is satisfied a priori. This will be achieved

expressible in a general form as . _
by the following updated formulation.

A2n—1

Q = (—)"1Q2n-DQ, If the nonlinear variational principlén = 0 is linearized
Q" - (—1)"-1Q2n-1) Q’ n=12 ... inf (A3 = 0) the directod is represented in it by its first
7) variationdd, the linearized formAd as well as byAdd.
Thus our purpose is the derivation of suitable expressions
equation (5) becomes for the cited quantities providing a unique determination
of d in each iteration step. We first introduce fid and
expQ = |+l (Q_Q_3_|_Q_5_m> o) Ad the ansatzes :
Q 3! 5! y )
1 Q2 ot A2 dd=wxd, Ad=wxd, 11
(22 ) o a
snQ »  1-cosQ 4 A wherew andw are additionally supposed to be arbitrary
= I+ Q Q-+ Q2 QQ=R@Q), (8 independent vectors satisfying the requirements

demonstrating that the rotation ten$ddefined in equa- v L
tion (3) in terms of the RDRIGUES rotation vector is & @= dw=0. (12)
thecloseq fo.rm oflthe. _expor.lentlal functioexp Q. ThIS. It then follows forA3d -
connection is of significant importance for the following
derivations. The above result is also discussed in furthAegd B X)xAd —X)x((&)xd)
detail in Atluri and Cazzani (1995). - Y : Ly

_ _ = —d(w w+w(wd), (13)
3.2 Updated-rotation formulation
On the basis of the identities of the previous section tiR@d similarly ford Ad :
relations for the updated-rotation formulation can be es-

L LV
tablished by means of a solely variational procedure. dAd = @ xdd = x(w xd)
Let x = x(8%,8%) be the position vector of an arbitrary — (&)' X))+ o ((&)-d) ' (14)

point of the deformed shell configuration. The basic

assumption of the present development is thig de- As can be deduced from the equalities

scribed by a linear expression in the thickness coordinate

83: Add-d=0Ad-d=—-Ad-od (15)

0 1 1
x=x (8%)+86°x (8%), X=Ad (9) obtained from (10) the order of variatidand lineariza-

_ o 1 tion A must be irrelevant in the expressifdd. Conse-
with a multiplicative decompositioxx= Ad whereA =

A (6%) describes through-the-thickness stretchescaad
d (8%) is a unit vector subjected therefore to the co
straint :

P(e%):=d.-d—1=0. (10)

L v
quently, the variable&® andw of the ansatzes (11) are in
I3(_iew of (13) and (14) subjected to the constraint

VoL LV
Add =dAd =w x (W xd) = x (w xd) (16)

) i ) . permitting to expresA dd in the form :
The above nonlinear constraint does not provide a unique

determination of the directat during the iterative pro-
cedure. If two components af = d%iq + d3is, e.g.

ABd = 5Ad — % (&x(bxd)+éx(&xd)) (17)
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which is symmetric with respect i@ and & and com- global basis; :

patible with the requirement that the operatidnhgand _Ji (20)
0 commute. It can easily be verified that the ansatzes b
(11) and the expression (17) deduced from it under thgd with components

consideration of the requirement (15) automatically sat-

isfy the condition® = 0 andAd ) = O derivable from w= &" ey +&*d (21)
(10). Note that the equations (11) and (17) will be used _ _
during each individual iteration step for the eliminatiof€’€ring to an orthonormal local basis. Both kinds of
of 5d, Ad and A3d which automatically provides theComponents can be transformed into each other by

satisfaction of the constraindsp = Ap =AdY =0. O = - = o (ii - &) . 22)

L . . . .

In view of (17), @ andX) are treated as mutually inter!f the decomposition (21) is used, relation (11) delivers :
changeable quantities so that we denote both in the fol- -3 ~a

lowing simply by@. After evaluation of an iteration step8d = (e +@°d) xd = (&) xd (23)

the directord itself is to be constructed so as to Sati5f¥howing that in this case the third componéstin direc-
the constraint (10) exactly. It remains to show that thig), of d s irrelevant for the determination 8. Thus

can be achieved through a transformation depending MYlecting the componer# transformation (17) can be
the vectoiw, which will be turn out in this context to cor- replaced for this special case by

respond to the BDRIGUESrotation vector. To derive the

corresponding relation we start from (11) to form high&xdd = —d (w- ) . (24)
order terms i\ :

) > 3 A3 N n To construct the base vectags needed for tﬂe decom-
Ad=w'd, Ad=wd .., Ad=wd. (18) pusition(21), we make use of a rotation tenBatefined
Consequently the rotated positidrof d due to the in- as follows:

cremental rotation&® can be expressed by the following

infinite series expansion in terms of higher order termg Ris,
A"d: R = (d-ig)l
g - 1, 1an iz xd) X+t (i3x d)® (i3 x d
d = dtadt 5 Adt.+ A (i3xd) 1+d-i3(3 )@ (i3 xd),
& = Rigq (25)

1. 1.
— <|+w+—w2+...+—w”+...>d
2! n!

= exp(@)d transforming the global basig into ey. Already at this

. stage we note that the decomposition (21) with the trans-
= <| 4 smooaH_ l—cosoo&&> d=Rd. (19) formation (24) will be used at all nodes, which are not
w W placed along geometry intersection curves and which are
Thusd is expressible in view of (8) by the rotation tensofeferred to as being regular nodes. Futher details on this
R introduced in (19). We observe that the rotation vectare given in section 5.4.
w used in (11) corresponds to the@BRIGUES rotation |n closing this section we recall that the direatkis rep-
vector describing the transformatidn- d. resented in the linearized principle3 M = 0 presented
After the accomplishment of an iteration step, equatidm section 4 byd, Ad, 6d andAdd. The ansatzes (11)
(19) will serve to determine the new positidim an exact and (12) as well as the expression (17) deduced from it
form. Starting fromd = A3, whereAs is the unit normal under the consideration of the requiremAdid = dAd
vector of the undeformed midsurface in the first iteratigirovides an exact satisfaction of the constrabs=
step, it is clear that the relation (19) provides an exabdt) = 0 andAdy = 0 during any iteration step for ar-

. . . \VJ L

satisfaction of the constraint (10). bitrary vectorsw andw. After the evaluation of an itera-
In the numerical procedure the vectaris used with tion step, the constraint = 0 itself will be satisfied ex-
components defined with respect to an orthonorneadtly trough (19). Finally the variabl@® used instead of
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Ad as primary displacement quantity will be determinemlixed methods. If displacements and stresses are re-
in the standard FE-procedure to satisfy the stationarggrded as independent quantities in the framework of
conditionAd T = 0, that means, the nonlinear shell equthe HELLINGER-REISSNERprinciple (Basr, Ding, and
librium conditions. Accordingly, the proposed approadkratzig (1992)) a mixed hybrid formulation is obtained.
satisfies the variational principle together with an exa€n the basis of the three-field variational principle of
enforcement of the constraidt d = 1 imposed on the HU-WASHIzu (Simo and Rifai (1990);Simo and Armero

director. (1992);Betsch, Gruttmann, and Stein (1996)) the dis-
placements, the stresses and strains, respectively, can be
4 Strain measures, constitutive law interpolated independently from each other. If, how-

ever, an orthogonality condition is imposed such that
the stress-interpolants can be disregarded, only the dis-
placements, leading to compatible strains, and the in-
. 1 . _ compatible strains are the independent quantities in the
E:=EjG'®©G =5(6-9i-Gi-G))G'@G . (26) framework of the so calleenhanced-strain-formulation.
_ ) Furthermore, it has been proved numerically (Andelfin-
The GREEN-LAGRANGE strains of the shell contlnuumger and Ramm (1993):Bischoff and Ramm (1997)) and
have to fulfill the shell kinematics (1) and (9). By adopiggretically (Yeo and Lee (1996)), that both methods
ing these relations the qleformed and undeformed bagsg equivalent , if the polynomial space of the stress-
vectors of the shell continuugy andG; as well as the jyierpolants related to the mixed hybrid formulation
corresponding base vectasandA; of the midsurface 54 the polynomial space of the strain-interpolants of
can be evaluated. The consideration of the shell kinge enhanced-strain concept form a complete bilinear
matics leads to the 3D-strains given in Tab. 1. polynomial space (in case of 4-noded elements). In
this contribution the above mentioned enhanced-strain-
Table 1: E€ for the present kinematic assumption.  formulation is used, in which additionally to the compat-
ible strains denoted b€ incompatible straing™ are

As strain measure we use th&@ EEN-LAGRANGE strain
tensorkE defined by

Eep = Eas +03 éaB +(8%)? éaB introduced such thdf = E€+ E'™. The HJ-WASHIZU-
0 _ 1 type functional reads as follows :
Eap = 3(3-a3—Aa-Ap)
1 . .
Ep = L(ac-(A\d)p+ag-(A\d)q Mew = [ Wo(ES+E™)av — | 8:E™av -,
—Aq-Azpg—Ap-Azg 5 5
2 1 ' ' (27)
Eapg = 5((Ad)a-(Ad)pg—Asz,q-Asp) _
wherelpw andrgy, are the total and external potential
£ : Ig 93é energy, respectively. If the conditiofy; S: E"dV =0
PR 08" Eas is fullfilled, the stress term drops out and the functional
Eas = 3(Ad-aq) Muw reduces to :
1
_ 1 )
Eaz = 2 ()\)\7(1 ) Muyw = /@WS (EC + Elnc) dv — I—Iﬁ(tw ) (28)
0 . iy

Ezz = Ea3 The related stationary conditiod {1gw = 0) reads then
0 .
Ess = 5(A\2-1) as-

W% W5 i anet

— :8ESaV /—: EMdv - —HY .5y =0.

36E6d+@6E6d 3 du=0
(29)

By using bilinear interpolation functions for the dis-The next step is to introduce the constitutive law. It
placement field the finite element formulation suffershould be mentioned that, through the inclusion of
from several locking phenomena. However, these deansversal normal strains, the current finite element for-
ficiencies can be advantageously prevented by usimglation permits an easy implementation of arbitrary



222 Copyright(© 2003 Tech Science Press CMES, vol.4, no.2, pp.217-230, 2003

three dimensional material laws. In this contributiowhere indexK denotes nodal values. Starting from the
attention is restricted to the ST.EWANT-KIRCHHOFF expressions (36) the quantititi®ay,Aay, - - - can be ob-

material with the strain energy density : tained easily. Note in this context th@day = AdA =0,
1 since the midsurface position vector and the stretching
Ws = > A(trE)?+utrg2. (30) parameter are independent quantities.

The partial derivation of the strain enefgi with respect 52 The interpolation of the shell director

to the (REEN-LAGRANGE strain tensor finally leads to o ) ]
the 2nd POLA-K IRCHHOFF stress tensor ° Now attention is focused to the directdy which needs

in view of the constraint (10) a special treatment in the
s=9igG, G| = % = A(trE)G +2uE (31) numerical procedure. In this con_text i_t is_important to
note that the variatiodd and the linearizatioAdd of
as energy conjugate quantity 8 The linearization this variable is of relevance during an iteration step. For
of (29) with respect to the compatible and incompatibtée implementation of the considered quantities we make

strains as well the displacements is obtained as use of two different approaches. In the first @rband
/,BAEC :C:OE AV + /,BAEmC :C:0E dV Table 2: Variation of the director (Version A)
+/AEC:c:aEi”Cdv+/AEi”C:c:aEi”Cdv 7
3 3 dd = 3 Ng(dd¥)
K=1
+/S:A6E°dv+f- e =0 (32 7
B n . ( ) 5d,a = Z NK.a(édk)
K=1
with the unbalanced forces Al: Add = 0
. c . inc Aéd_a = 0
fim:/s.éE +/S.6E av | (33) , \
g g A2: ASd = 3 Nc(Add¥)
the external forces, and with the fourth-order material K4:1
tensor : Addy = 3 Nkq(A8dY)
K=1
ANA (4)
C_aEaE_)\I®I+2u [ (34)
5 Finite element formulation Add are directly interpolated similar to (36) and are then

_ _ . _ expressed in terms of the nodal rotation vearand
5.1 The_zaLrllterpoIatlon of independent displacement ,qq directod® according to (11) and (17) leading to :
variables

Kk _ K
Starting from the incremental formulation (32)f@ur- od® = ‘fKVX d®,

node finite shell element is developed according to the\dd* = Z=(wX x ((&)K x df)+ @K x (X)K x d€)) .
isoparametric approach. The independent kinematic 2 (37)
guantities entering in the assumption (1) and (9) are in-

terpolated by means of bilinear polynomials expressibige pasic relations of this approach derived from (37)
as are summarized in Tab. 2 and denoted as appré&ch

1 On the contrary, in the second approach the transforma-
Nie = Z(1+ &k &)(1+nkn) (35) tions (11) and (17) are considered with the directand

in terms of the natural basi,n) € {—1,1} and the co- the rotation vectow at the corresponding & ss-point

ordinatest, Nk referring to the nodes. The correspond?Nich are interpolated according to (36). The basic re-
ing equations read as lations of this alternative denoted as vers®are sum-

marized in Tab. 3. The rotation vectar= i is to be
used with three independent components with respect to

o & . og 4 K
= él N X A= élNK)\ ’ (36) the global basis throughout the shell. However, in case
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Table 3: Variation of the director (Version B) 5.3 Stabilization procedure

5d — 4 Nk &) x d The above described finite element formulation is sub-
N Kél K jected to various locking phenomena, namely shear,
4 4 membrane and ®ssoN's locking. Now our aim is to
= N N ) o : .
0da (Kél K’awK) 8 d+(;<§1 K 6) xdg describe the stabilization algorithms used for reducing
1 & v 4 L h ficiencies.
ASd - 5(( Nk 60K) ((Z Ny L) x d) t esg d.e iciencies . |
= =1 To eliminate shear locking theatural assumed-strain
4 3 &V t [Bathe and Dvorkin (1985)] is applied, where
+( 3 Ng @) x N.wb) xd concep . : P
(Kél k0% ((él L") xd)) the transversal shear strains are interpolated according to
1.2 Vo LA
Adda = 5l :1NK=0' W) x ((LleL“’ )xd) 1 E= %1(l+n)Ei;3+%(l—n)E§3,
4 v 4 L Exs=5(1-&)Ex+5(1+&)Ex,
+( 3 Nc@X) < (3 N @b) xd) ’ ’
K4:1 Vo Lil L, where the superscript denotes the collocation point at
+(K21NK w"*) x ((LZlNL w-) xdq) which the strain components are computed, at point A

€=0n=1),B(E&=-1n=0),C(E=0n=-1)andD

(§ =1,n=0), respectively.

To reduce membrane locking tleahanced-strain con-
cept is used. Within the frame of this concept the mem-

brane strains are enriched by incompatible strains which
of smooth shells or at regular nodes of compound shells, 3ssumed to be of the form :

the simplification (24) can be used (see section 5.4). The

LV L .
+ terms with @ and w interchanged

director is in both cases exactly updated by using the ro- a;
tation tensoRr : =11 &E 000¢E& O O a0y
Z22 |=|{0n 00 0 & O (-] .
) n+1 n nt1 4 nt1 2= 0 0 0 O :
VersionA : dK=Rdf, d= 3 N d¥, 12 & n &n a7
K=1
. n+1 n 41
VersionB : d =Rd . (41)
(38) whereay, a,, --- are constant parameters. Note that the
o _ rows and columns of the above matrix are linearly inde-
It then follows for the derivative of the director : pendent. Furthermore, the present polynomials for the
il 4 il incompatible strains have no counterpart in the polyno-
VersionA : dg= Y Nkq d K, mial space of the compatible strains. To satisfy the patch
_ Nl Kzln n (39) test the orthogonality conditioffi; S : E'™dV = 0 has to
VersionB : dg=Raod+Rdg - be fulfilled for at least constant assumed streSésad-

. L . ing to the condition :
A detailed derivation of the above relation is given at the

end of the paper. In the first iteration step we set : / ENqV — 0. (42)
B

0 4
da= ; NK,aAg ) (40) To meet the above requirement, also for distorted ele-
=1 ments, the incompatible strains (41) are to be referred to

whereA denotes the unit normal vector of the middithe basis of the centre point of the shell element. The in-

surface in the reference configuration. In Version B v2MPatible strains at an arbitrary point can be obtained

. . _ 0 through the following transformation :
additionally normalize the directog and use the cor-

responding derivative instead of (40) such that the urllzjqnc VA

Py = A
length condition is fullfilled a priori. o = %(Ga -AB) Zpr (A5 - Gp) , (43)
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with index “ 0 ” denoting the value of a variable at thevolume are to be carried out numerically after the well

considered element centre. known procedure (Bathe (1996)) setting :
For the elimination of BISSON “s locking we enhance 3

2 V =+vGde dgdn . 52
the constant transversal normal strain similar to (41, 4:%. VG &dn (52)

For this case the interpolation procedure reads as (BetsSimce the parameters need not to satisfy interelement

Gruttmann, and Stein (1996)) : compatibility conditions their elimination at the element
level is suitable. After condensation equation (49) re-
ds ducesto:
E33:[1 & n én ] a9 ) (44) Tu-1 Ty -1«
a10 (Kt —Kg KgeKg)Au = Kg Kgg fing — iy +fex ,  (53)
Q11

which can be put into short formK tAu = f. After each

e VAo_ iteration step the incompatible degrees of freedom have
B35 =" /5 =% (45) {0 be updated according t

G pdated according to
In addition to the existing nodal degrees of freedofn g™ = a" — Kz "Kg"Au— K2 fine" (54)

TuT T 717 4 Tr rmation into al '
u=[u]ululul]’ . 5 ansformation into a local basis
T 0 0 0 .
“j:[xl X2 X3 W1 Gp W3 A}.71—1,2,3,4 N
J Table 4: Flow chart of the finite element program.

(46) o first iteration step ?

the finite element formulation now involves eleven frge - yes'imlttiglilzzgzandd’”
parameters, which can be arranged similar to (46) to a — no: read lastl andd. ¢
column vector : read last, K2, Ke , fi"° and updater

e rotated andd,y
a=[0g,0p, - ,O(ll]T ) 47) e loop overnl gausspoints ovey

— loop overn2 gausspoints ovey
For the sequel it is suitable to summarize the strain- * compute the compatible straid&° andASE®
displacement relations for the compatible and incompat- « loop overn3 gausspoints over?
ible strains in matrix notation. The corresponding result . compute the incompatible straidg "
being of the form : - compute the material tens6r
- compute the internal stresses
OE® =Bydu, SENC — Gvoa , ABE® :AUTB\-ELGU . - compute and add uf 1, Kg, Kee, &,
(48) frt
+ ENDLOOP

Inserting the above equations into (32) the following ma- ~ ENDLOOP
trix equation is obtained : ¢ ENDLOOP

e invertKgg
[ Kr K¢ ] [ Au ] _ [ foxd ]_ [ fe ] (49) . compuE?KT andf "

Ke Kge Ad 0 f:p‘g ) e saveK ., Kg andfjf;

e regular point ?

with — yes: transfornK 1 andf )
set stiffne_ss_K into diagorlasl entry oKt
Kr=[,BlCB.V+ [ STBuAv,  (50) e Domens e
e save newd andd, o

KE:/ BICGLAV , KEE:/G\T,CGLdV. (51)
B B

SinceBy = B, Gy = G| and By = By all related The above described finite element procedure holds for
matrices are symmetric. The integrations over the sheliells involving geometry intersections. If, however,
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smooth shells or regular nodes of compound shells are S
considered a slight modification is necessary to prevent

the singularity of the tangent stiffness matrix. For this Geometry:
purpose the rotational degrees of freedom are first trans- ':120
L =

formed into the local basis : h=0 1

& =w-d =(ix-€) =", (55)

~ 'H

defined in (25). Then this transformation is considered to Ma‘terial' X’
replace the stiffness matrix by St Venant-Kirchhoff
E=1.2-10°
R, =TRT . (56) =0
x! Load:
This in turn requires the construction of the hyper matrix p=0.1

I", which is given by

Figure 1 : Diamond shaped frame. Frame hinged at edge B,
rigidly jointed at edge A and subjected to vertical line load p.

i |
Il

|
eI 0
r= 0

T
g

oo
= O O

(57)
6.1 Largedeflection of a diamond shaped frame

Next all rows and columns &€, related to the local com-Atfirst we consider a diamond shaped frame (Fig. 1), for
ponent&)® are to be set to zero in order to avoid possib\’éhiCh analytical solutions are given by (Jenkins, Seitz,
coupling effects, although they should be actually zero B"d Przemieniecki (1966)) to assess the accuracy of the
applying (24). Finally the diagonal entry associated witiite element results. In view of the symmetry of the
&3 is to be set to a valuk, which can be arbitrarily se- Structure we discretize only one half of the figure with a
lected in the numerical procedure. It has been observ8g0metry intersection at edge A and a hinge at edge B us-

that the magnitude df does not affect the solution.  iNd 8(10+-10) x 2 mesh. The computation is performed

- e with the kinematic assumptiof2 given in Tab. 2. The
A similar modification is to be performed also to the .

: . computed results in steps gf = A = 0.1 are presented
force vector according to :

in Fig. 2. Note that)? is given as follows
fi=Tf, 58) , 2mpL?

S A (59)
subsequently setting the componentsfofelated to®? _ _ .
to zero. After this procedure the force vector and tHe!€ results are in good agreement with the exact solution.
stiffness matrix are transformed back by using the corre-

sponding inverse refations to (56) and (58). 6.2 Pinched hemispherical shell with a circular hole

To give an overview over the discussed finite element for-

mulation, the flow chart of the finite element program ishe hemispherical shellillustrated in Fig.3 is commonly
summarized in Tab. 4. regarded as a reliable benchmark to test the capability of

the finite element formulation to deal with (nearly inex-
tensible) bending dominated deformations. First a linear
convergence analysis is performed through mesh refine-
Now attention is given to some numerical examples inanent. Fig. 4 illustrates the results of the convergence
der to show the prediction capability of the derived finitanalysis for the displacemedti and the displacement
element formulation. With the aim of systematic compaX3 in dependence upon the element number per side. The
isons benchmark tests from literature or examples witBsult obtained for the vertical displacemiit= 0.9343
given analytical solutions will be analysed. with a 32x 32-mesh agrees well with the exact solution

6 Numerical examples
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0,98 32/32 mesh ---
A el X, displacement o i
= | | X; displacement ®
o
3}
8
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]
o .
0.2 Jenkins — | L
horizontal elongationo | | T®Te—e—e— >
vertical contraction ®
0 008 016 024 032 a4 9% 4 g 12 16 20 24 28 B
2v/L,2u/L number of elements per side

Figure 2 : Load factor-displacement diagram for horizontal Figure 4 : Convergence analysis for the linear load step.
elongation 2/L at A and vertical contraction/ZL at B.

x3 Geometry:
R=10
h =0.04
)

18 Material: >, <
St. Venant-Kirchhoff K o
E = 6.825-107 SNSRI TTITTNKS KRS AT AL 24

SRS SSSX S A2

Load:
F=10.0

Figure 5: Deformed configuration at = 20.

Table 5: Comparison of enhanced and unenhanced solutions.

1. 0.
16x 16 | without ESs Eop both
Xi/X5 | 0.9272 | 0.9303 | 0.9291 | 0.9327
Xx 3.8751 | 3.9687 | 3.9518 | 4.0449

Figure 3: Pinched hemispherical shell. Xé —7.4652 | —7.7934 | —7.7508 | —8.1058

Xa.of = 0.94 (Simo, Fox, and Rifai (1989)). To give

an insight how thenhanced-strain concept improves the X1 = 0.9334 in the linear case axZ = —8.0448 and
solution the results of the pure displacement model (withz = 4.0276 for the load factok = 20 with a 16x 16-

out enhancement) are compared in Tab. 5 for the lmesh. The comparison of the results with those involved
ear caseX = 1) and nonlinear case & 20) with those in Tab. 5 (enhanced solution) shows discrepancies about
obtained with membrane or transversal strain enhan@es per thousand for the nonlinear case. The discrep-
ments. The last two rows in Tab. 5 contain results of ttaancy for the linear case is insignificant (0.75 per thou-
nonlinear analysis. It is observable that both enhanaand). Consequently, in this example a decision can not
ments forEss and Eqg are indispensable to achieve abe reached about the superiority of the versidrasdB.
accurate solution. This example has also been analy#idths been shown that the consideratioA &t (assump-

by using different kinematic assumptions summarizedtion A2) accelerates the iteration procedure considerably
Tab. 2 and 3. First note that the above discussed sdlucontrast to assumptiofil, whereAdd = 0. This can
tions refer to formulatiorA. If the versionB from Tab. be deduced from the number of iteration steps given in
3 is used in the analysis following results are obtainediab. 6. An energy criterium with the convergence accu-
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18+ o R |
16+ o . |
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3 8 i Material:
8 St. Venant-Kirchhoff
- o Simo — 1 E=3.0-107
4r ) Stander SA4--- | 0.3
2F X.displacement © |
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Xdisplacement e Load:
%1 2 3 4 5 6 7 8 9 F=0.001

displacementX3 andx3

Figure 6 : Load-deformation plot of hemispherical shell.

Figure 7 : Sickle shell problem.
racy level of 101°has been used for obtaining the results

given there. Regarding the number of iteration steps the 20

formulationB is practically equal to formulatioA2. At
the whole it should be pointed out that the consideration
of the second order terthdd is of major significance to o 1
save computational effort. g
8 1001 B
Table 6: Number of iteration steps for as&l, A2 andB. -ffﬁ) g SELe9(URI) —
T 50 X:displacement ©
16x 16 Al | A2 | B X displacement ©
A=0—-A=2 | 12|11 |11 . | deisplagement .
A=18—-A=20|13| 6 | 6 % 5 10 15 D

displacementX, X2 andX3

Figure 8 : Load-deformation plot of sickle shell.

The examination shows the good performance of the fi-

nite element formulation for kinematic assumptiag.

This can be also confirmed by the plots given in Fig. &n be found until the load factar= 600 computed with

for the displacement, where for comparison also the @9-node degenerated shell element with uniform reduced
sults due to (Simo, Fox, and Rifai (1990)) for ax@86- integration(URI). The absolute values of the displace-

mesh and from $ANDER for a 32x 32-mesh (given in ments at point A subjected to the force F by means of the
Chréscielewski, Makowski, and Stumpf (1997)) are ilA2-formulation with a(24+ 24) x 4-mesh are compared

lustrated. The solutions are in good agreement. with the reference solutions for(@0+ 10) x 2-mesh in
Fig. 8. TheX3-displacement slightly deviates from that
6.3 Sickle Shell problem obtained with the SELe9 element, but the displacements

The next example, the sickle shell problem illustrated ﬁg\“ andX; are nearly identical.

Fig. 7, was p;oposed byigo (Simo (1993)). The lin- 6.4 Channdl-section beam
ear solutionXs' = 0.1499 computed by the present ele-
ment with a(24+ 24) x 4-mesh agrees very well withThe last example is a channel-section beam, which is il-
the exact solutioiX' = 0.15. In the cited article resultslustrated in Fig. 10. From the examination of the hemi-
are not given for the deep nonlinear range. However,spherical shell it could be concluded that the finite ele-
(Chroscielewski, Makowski, and Stumpf (1997)) resulthent works well for smooth shells. This example is suit-
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Figure 9: Undeformed and deformed configuratidn£ 50).

Table 7: Channel-section-beam: Linear solutions.

reference mesh displ.wa x 1073
Betsch 10x 36 1.0998
Chroscielewski| CAM5 x 6e9 1.1373
rigid 10x 36 1.1
without modif. 10x 36 1.148

able to test the capability also for compound shells. Ttﬁ
beam has two intersection lines. The intersection linfg.gp
can be modelled rigidly by locking the seventh degree

of freedom, the stretching paramelerat each node lo-

cated at the intersection curves. By doing this we obtain 54

CMES, vol.4, no.2, pp.217-230, 2003

Geometry:
L=36

H=6

W=2
h=0.05

Load:
F=1.0

Material:
St. Venant-Kirchhoff
E=1-107

(& 0.333

ure 11: Deformed structure ata = 4.0 for a 15x 54-

the same solution as given in (Betsch, Gruttmann, and

Stein (1996)) in the linear case. This has its cause in

the similarity between both finite element formulations. ’gloo
We perform the computation solely for thi2 6, 2) x 36- g
mesh and compare the solutions with the results of theg
above cited reference and (©Bcielewski, Makowski, ‘_g 50l
and Stumpf (1992)). In the last mentioned paper a 9 node

Langrangian finite element has been used with-a65

Betsch et. al —

Chroscielewski et. al---
10/36—-mesh o
10/36—mesh rigid ¢

mesh. In the first version we model the intersection lines 05
rigidly in the way mentioned above. In the second ver-
sion we make no modification. The nonlinear and linear

1 2 3 4
Deflection at load point

results forF = 1 are compared with the above cited refrigure 12: Load-Deformation plot of channel-section beam.

erences in Fig. 12 and in Tab. 7.
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: . W, W
7 Conclusion with w = v/ - wandwq = —¢5— and
In this contribution a four-node isoparametric fi- 4 ] 4 ]
nite element is proposed for large strain arf@= Z N w Wy = Z NL o @ (61)
=1 =1

finite rotation analysis of arbitrary shell struc-

tures. The original aspects of the developmeglayated at the corresponding @ s-point.
as distinct from the earlier derivations, cover

¢ the foundation of updated rotation procedure solel

by the calculus of variation eferences
e the consideration of second order variational termf3ndelfinger, U.; Ramm, E. (1993):  Eas-elements
for the determination of the director for two-dimensional, three-dimensional, plate and shell

e the inclusion of transverse strains and accordinglygtructures and their equivalence to hr-elementsit J
arbitrary three dimensional hyperelastic constitutidimer Methods Eng, vol. 36, pp. 1311-1337.

laws Argyris, J.; Poterasu, V. F. (1993): Large rotations
¢ the consideration of single and compound shells irevisited application of lie algebra. Comput Methods
a unified approach Appl Mech Eng, vol. 103, pp. 11-42.

Due to the useenhanced strain concept membrane and tluri, S. N. (1984): Alternate stress and conju-

Poi N's lockin ff re significantly reduced, . . o s
OISSON's locking effects are significantly 8?“6 strain measures, and mixed variational formulations

The numerical pro_cedure egplalned n Sectlgn >4 fmvolving rigid rotations for computational analyses of
regular nodes avoids effectively the singularity of thﬁnitely deformed plates and shells: Part i. theoGom-
tangential stiffness matrix. The inclusion of second or

- ) ) uters& Sructures, vol. 18, No. 1, pp. 93-116.
der variational terms accelerates the iterative procedure P

considerably. Atluri, S. N.; Cazzani (1995): Rotations in compu-
. , tational solid mechanics. Archives for Computational
But in any case the updated rotational procedure,

though very effective in simulation of finite rotation, ethodsin Engg., vol. 2, No. 1, pp. 49-138.

is and will remain as a variationally not consistent agdasar, Y.; Ding, Y. (1995): Interlaminar stress analysis
proach. The reason is that it does not define independehg¢omposites: layer-wise shell finite elements including
variational rotational quantities allowed to be directly intransverse strainsComposites Engineering, vol. 5, No.
terpolated. Accordingly the selection of interpolatioR, Pp. 485-499.

polynomials can not follow to a well-defined proceduraagar, Y.; Ding, Y.; Kr atzig, W. B. (1992):  Finite-

Through the inclusion of several alternatives for this pufotation shell elements via mixed formulatiorComput
pose it has been shown in this paper that this does mgéch, vol. 10, No. 3/4, pp. 289—-306.

influence the reliability of the response, so that from @agar Y.: Ding, Y.: Schultz, R. (1993): Refined shear-
numerical point of view, itis at the whole not a We'gh%eformation models for composite laminates with finite

failure. The derivative of the current director is exaC“Votations. Int J Solids Struct, vol. 30, pp. 2611-2638.
evaluated at each node as follows :

Bagar, Y.; Itskov, M.; Eckstein, A. (2000): Compos-
ite laminates: Nonlinear interlaminar stress analysis by

"dla = Sin(®) g d +co5®) da multi-layer shell elementsComput Methods Appl Mech
. oozn N Bagr, Y.; Kintzel, O. (2000): Large rotation analysis
+&(E)w) (w,ax d +wx d,a> of thin-walled shells. In Atluri, S. N.(Ed):Advancesin
(sin(w) P wg — (1—cogw)) 2wwyg) . n, . computational engineering and sciences, ICES 2K 20.-
E— — (@ d)® 25 August 2000, pp. 818-823. Tech Science Press.

+1_C7025(w)((w a)mﬁa + (Wg- a)m Bagar, Y.; Weichert, D. (2000): Nonlinear continuum

( (r(f o) mechanics of solids. Springer Berlin New York.

+(w W) .

“ Bathe, K. J. (1996): Finite element procedures.

(60)
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