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Finite Rotations and large Strains in Finite Element Shell Analysis
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Abstract: The objective of this contribution is the de-
velopment of a finite element model for finite rotation
and large strain analysis of thin walled shells involving
geometry intersections. The shell configuration is de-
scribed by a linear polynomial in the thickness coordi-
nate. The director of the shell is multiplicatively decom-
posed into a stretching parameter and an inextensible unit
vector whose rotation is accomplished by an updated-
rotation formulation. A rotation vector with three inde-
pendent components is used throughout the shell which
permits advantageously to consider smooth shells and
compound shells by a unified procedure. This formu-
lation is introduced into an isoparametric four-node ele-
ment. The common locking phenomena are significantly
reduced by an enhancement of the strain field and the as-
sumed strain concept.

keyword: Finite rotation, updated-rotation formula-
tion, compound shells, large strains, enhanced strain con-
cept

1 Introduction

In the first development phase offinite rotation shell el-
ements, shell theories of KIRCHHOFF-LOVE type have
been almost exclusively used for the implementation
(Harte and Eckstein (1986);Nolte (1983)). A disadvan-
tage of this approach is that the kinematic relations in-
volve second order derivatives of thedeflection field.
This requires a relatively lengthy interpolation proce-
dure by means of higher-order polynomials for omitting
locking phenomena. To avoid this difficulty, particu-
larly to provide an easy application of the isoparametric
approach MINDLIN -REISSNER type shell formulations
have been increasingly considered in the last decade in
developing finite rotation shell elements. A comprehen-

1Correspondence to: Ruhr-Universit¨at Bochum, Lehrstuhl f¨ur
Statik und Dynamik, Universit¨atsstraße 150, 44780 Bochum, Ger-
many

sive survey of the works achieved in this context can be
found in (Bas¸ar, Itskov, and Eckstein (2000);Bas¸ar, Ding,
and Schultz (1993)) .

It has been, however, later observed that the MINDLIN -
REISSNERkinematics with 5 independent unknownssuf-
fers from two significant deficiencies. The first one is that
the unit length conditionψ :=‖ d ·d ‖ −1= 0 to be satis-
fied by the shell directord does not provide its unique
determination during the iterative procedure. Conse-
quently, this hypothesis is not directly applicable to finite
rotation phenomena unless suitable modifications are in-
troduced in the numerical procedure. The second defi-
ciency occurs if geometry intersection problems are con-
cerned. Within the MINDLIN -REISSNER hypothesis the
rotation vector prescribable along the intersection lines
is tangential to the midsurface. In dealing with two dif-
ferent geometries, one is therefore faced with two rota-
tion vectors lying in two different planes. Evidently such
a situation is not suitable for theassemblage process to
be accomplished in the finite element formulation. To
remove this difficulty the tangential rotation vector re-
quires, at least along geometry intersections, an addi-
tional twisting degree of freedom as has been introduced
e.g. in (Iura and Atluri (1992)) to develop a membrane
element.

The conclusion from the above discussion is that the
MINDLIN -REISSNER type shell kinematics is not capa-
ble to deal withfinite rotations and geometry intersec-
tions. Both of the cited insufficiencies can be, however,
omitted within a unified procedure by replacing the shell
director by such rotational variables ensuring an a priori
satisfaction of the unit length constraint.

Two different approaches have been used for this purpose
in literature: determination of the director with respect
to a global reference frame by means of EULER angles
(Ramm (1976);Bas¸ar and Ding (1995)) or the determina-
tion of the current director by means of a rotation tensor
(see e.g. Atluri (1984), Brank, Mamouri, and Ibrahimbe-
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gović (2003)). The rotation tensor can be parametrized
by three independent variables in terms of the corre-
sponding RODRIGUESrotation vector which leads to the
so called RODRIGUES formula.

An important issue in deriving the associated tangent op-
erator is the symmetry or nonsymmetry of the second
variation (for a comprehensive review see (Suetake, Iura,
and Atluri (2003),Sansour and Bufler (1992))). A well-
known fact is that the second variation in vector space
leads to a symmetric expression with respect to the inde-
pendent variables. By utilizing the RODRIGUES formula
lengthy expressions have been derived by Parisch (1991).
If the corresponding relation is evaluated by considering
only the incremental values of the rotation vector a sym-
metrical expression is obtained in any case ( see B¨uchter
and Ramm (1992)) even without an explicit parametriza-
tion of the rotation tensor in terms of the RODRIGUESro-
tation vector. This is a very convenient property of the so
called updated rotation formulation originally proposed
by (Simo and Fox (1989);Simo (1993)) particular with
regard to finite element implementations. In this paper
the above mentioned symmetric expression is obtained
by means of a different approach solely on the basis of
the calculus of variation.

The aim of this contribution is to modify MINDLIN -
REISSNER kinematics such that a reliable finite element
formulation for finite rotations can be achieved applica-
ble to smooth andcompound shells (Bas¸ar and Kintzel
(2000)), that means to consider shells with or without
geometry intersections by a unified procedure.

A further aim is the consideration of large strains, which
may occur in dealing with hyperelastic materials. For
this purpose transverse normal strains are included in
the kinematic hypothesis by replacing the first order
term in the thickness coordinate by a multiplicative de-
compositionλ d whereλ describes through-the-thickness
stretches (Simo, Rifai, and Fox (1990);Bas¸ar and Ding
(1995)). To improve the capability of the four-node shell
formulation anenhanced assumed strain concept is used,
which renders the formulation locking-free.

2 Notations

In this paper equations are presented in tensor formula-
tion. Variables associated with the reference configura-
tion are denoted by upper case letters.

Points of the shell continuum are determined by position

vectors, e.g. in the reference configuration :

X=
0
X (θα)+θ3

1
X (θα),

1
X= A3 (1)

with A3 initially perpendicular to the midsurface. The
associated geometrical elements can be evaluated by the
standard procedure (Bas¸ar and Weichert (2000)) leading
to :

Base vectors : Gα = Aα +θ3 A3,α , G3 = A3 ,

Metric tensor : G = Gi ⊗Gi = Gi j Gi ⊗G j ,
Determinant : G = |Gi j| . (2)

3 Finite rotation formulation

3.1 Basic relations

For a systematic derivation we summarize in this section
some useful results (Argyris and Poterasu (1993)). The
rotation of any arbitrary vectorD into its new position
d can be described withoutsingularity by the so-called
RODRIGUES rotation vector ΩΩΩ which describes through
its direction the rotation axis and through its magnitude
‖ ΩΩΩ ‖= Ω the rotation angle. The corresponding relation
reads as (Bas¸ar and Weichert (2000)):

d = R(ΩΩΩ)D

=
(

I +
sinΩ

Ω
Ω̂ΩΩ +

1−cosΩ
Ω2 Ω̂ΩΩΩ̂ΩΩ

)
D

=
(

cosΩ I +
sinΩ

Ω
Ω̂ΩΩ+

1−cosΩ
Ω2 ΩΩΩ⊗ΩΩΩ

)
D (3)

with a rotation tensorR(ΩΩΩ) whose definition is given in
the above relation. Herein the notation( ˆ ) indicates a
vector product with the successing vector.

Now attention is focused on askew-symmetric, second-
order tensorA = −AT having three independent com-
ponents. The simple contraction of this tensor with an
arbitrary vectord is expressible as

Ad = Ω̂ΩΩd = ΩΩΩ×d, Ω̂ΩΩ = ΩΩΩ× (4)

in terms of the so-called axial vectorΩΩΩ with three inde-
pendent components. The tensor function expA can be
expressed as a power-series of the form

expA = expΩ̂ΩΩ = I +Ω̂ΩΩ+
1
2!

Ω̂ΩΩ
2
+

1
3!

Ω̂ΩΩ
3
+· · ·+ 1

n!
Ω̂ΩΩ

n
+· · ·

(5)
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in terms of the axial vectorΩΩΩ. It is now to be proved that
the rotation vectorΩΩΩ used above is identical with that one
from relation (3). Indeed, if we consider the identities

Ω̂ΩΩ
3
= −Ω2ΩΩΩ , Ω̂ΩΩ

4
= −Ω2Ω̂ΩΩ

2
, ... (6)

expressible in a general form as

Ω̂ΩΩ
2n−1

= (−1)n−1Ω2(n−1) Ω̂ΩΩ ,

Ω̂ΩΩ
2n

= (−1)n−1Ω2(n−1) Ω̂ΩΩ
2

, n = 1,2, ..., inf

(7)

equation (5) becomes

expΩ̂ΩΩ = I +
1
Ω

(
Ω− Ω3

3!
+

Ω5

5!
− ...

)
Ω̂ΩΩ

+
1

Ω2

[
1−

(
1− Ω2

2!
+

Ω4

4!
− ...

)]
Ω̂ΩΩ

2

= I +
sinΩ

Ω
Ω̂ΩΩ+

1−cosΩ
Ω2 Ω̂ΩΩΩ̂ΩΩ = R(ΩΩΩ) , (8)

demonstrating that the rotation tensorR defined in equa-
tion (3) in terms of the RODRIGUES rotation vector is
theclosed form of the exponential functionexp Ω̂ΩΩ. This
connection is of significant importance for the following
derivations. The above result is also discussed in further
detail in Atluri and Cazzani (1995).

3.2 Updated-rotation formulation

On the basis of the identities of the previous section the
relations for the updated-rotation formulation can be es-
tablished by means of a solely variational procedure.

Let x = x(θα,θ3) be the position vector of an arbitrary
point of the deformed shell configuration. The basic
assumption of the present development is thatx is de-
scribed by a linear expression in the thickness coordinate
θ3 :

x=
0
x (θα)+θ3 1

x (θα) ,
1
x= λ d (9)

with a multiplicative decomposition
1
x= λ d whereλ =

λ (θα) describes through-the-thickness stretches andd =
d (θα) is a unit vector subjected therefore to the con-
straint :

ψ(θα) := d ·d−1 = 0 . (10)

The above nonlinear constraint does not provide a unique
determination of the directord during the iterative pro-
cedure. If two components ofd = dα iα + d3 i3, e.g.

dα , are given, equation (10) delivers two different values
d3 = ±√

1−dα dα for the third one so that the conver-
gence of the iterative procedure is not ensured for strong
rotations ofd. This difficulty can be removed by replac-
ing the directord by rotational quantities with which the
constraint (10) is satisfied a priori. This will be achieved
by the following updated formulation.

If the nonlinear variational principleδΠ = 0 is linearized
(∆δΠ = 0) the directord is represented in it by its first
variationδd, the linearized form∆d as well as by∆δd.
Thus our purpose is the derivation of suitable expressions
for the cited quantities providing a unique determination
of d in each iteration step. We first introduce forδd and
∆d the ansatzes :

δd =
V
ωωω×d , ∆d =

L
ωωω×d , (11)

where
V
ωωω and

L
ωωω are additionally supposed to be arbitrary

independent vectors satisfying the requirements

∆
V
ωωω= δ

L
ωωω= 0 . (12)

It then follows for∆δd :

∆δd =
V
ωωω×∆d =

V
ωωω×(

L
ωωω×d)

= −d(
V
ωωω · L

ωωω)+
L
ωωω (

V
ωωω ·d) , (13)

and similarly forδ∆d :

δ∆d =
L
ωωω×δd =

L
ωωω×(

V
ωωω×d)

= −d(
L
ωωω · V

ωωω)+
V
ωωω (

L
ωωω ·d) . (14)

As can be deduced from the equalities

∆δd ·d = δ∆d ·d = −∆d ·δd (15)

obtained from (10) the order of variationδ and lineariza-
tion ∆ must be irrelevant in the expression∆δd. Conse-

quently, the variables
L
ωωω and

V
ωωω of the ansatzes (11) are in

view of (13) and (14) subjected to the constraint

∆δd = δ∆d =
V
ωωω×(

L
ωωω×d) =

L
ωωω×(

V
ωωω×d) (16)

permitting to express∆δd in the form :

∆δd = δ∆d =
1
2

(
V
ωωω×(

L
ωωω×d)+

L
ωωω×(

V
ωωω×d)

)
(17)
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which is symmetric with respect to
L
ωωω and

V
ωωω and com-

patible with the requirement that the operations∆ and
δ commute. It can easily be verified that the ansatzes
(11) and the expression (17) deduced from it under the
consideration of the requirement (15) automatically sat-
isfy the conditionsδψ= 0 and∆δψ = 0 derivable from
(10). Note that the equations (11) and (17) will be used
during each individual iteration step for the elimination
of δd, ∆d and ∆δd which automatically provides the
satisfaction of the constraintsδψ= ∆ψ = ∆δψ= 0.

In view of (17),
L
ωωω and

V
ωωω are treated as mutually inter-

changeable quantities so that we denote both in the fol-
lowing simply byωωω. After evaluation of an iteration step
the directord itself is to be constructed so as to satisfy
the constraint (10) exactly. It remains to show that this
can be achieved through a transformation depending on
the vectorωωω, which will be turn out in this context to cor-
respond to the RODRIGUESrotation vector. To derive the
corresponding relation we start from (11) to form higher
order terms in∆ :

∆2 d = ω̂ωω2d , ∆3 d = ω̂ωω3d, ..., ∆n d = ω̂ωωn d . (18)

Consequently the rotated positiond of d due to the in-
cremental rotationsωωω can be expressed by the following
infinite series expansion in terms of higher order terms
∆n d :

d = d+∆d+
1
2!

∆2d+ ...+
1
n!

∆n d+ ...

=
(

I +ω̂ωω+
1
2!

ω̂ωω2 + ...+
1
n!

ω̂ωωn + ...

)
d

= exp(ω̂ωω)d

=
(

I +
sinω

ω
ω̂ωω+

1−cosω
ω2 ω̂ωωω̂ωω

)
d = Rd . (19)

Thusd is expressible in view of (8) by the rotation tensor
R introduced in (19). We observe that the rotation vector
ωωω used in (11) corresponds to the RODRIGUES rotation
vector describing the transformationd → d.

After the accomplishment of an iteration step, equation
(19) will serve to determine the new positiond in an exact
form. Starting fromd = A3, whereA3 is the unit normal
vector of the undeformed midsurface in the first iteration
step, it is clear that the relation (19) provides an exact
satisfaction of the constraint (10).

In the numerical procedure the vectorωωω is used with
components defined with respect to an orthonormal

global basisi i :

ωωω= ωi i i , (20)

and with components

ωωω= ω̂α eα + ω̂3 d (21)

referring to an orthonormal local basis. Both kinds of
components can be transformed into each other by

ω̂k = ωωω·ek = ωi (i i ·ek) . (22)

If the decomposition (21) is used, relation (11) delivers :

δd = (ω̂α eα + ω̂3 d)×d = (ω̂α eα)×d (23)

showing that in this case the third componentω̂3 in direc-
tion of d is irrelevant for the determination ofδd. Thus
neglecting the componentω̂3 transformation (17) can be
replaced for this special case by

∆δd = −d(ωωω·ωωω) . (24)

To construct the base vectorsei, needed for the decom-
position (21), we make use of a rotation tensorR defined
as follows :

d = Ri3 ,

R = (d · i3) I

+(i3×d)×+
1

1+d · i3 (i3×d)⊗ (i3×d) ,

eα = Riα (25)

transforming the global basisi α into eα . Already at this
stage we note that the decomposition (21) with the trans-
formation (24) will be used at all nodes, which are not
placed along geometry intersection curves and which are
referred to as being regular nodes. Futher details on this
are given in section 5.4.

In closing this section we recall that the directord is rep-
resented in the linearized principle∆δΠ = 0 presented
in section 4 byd, ∆d, δd and∆δd. The ansatzes (11)
and (12) as well as the expression (17) deduced from it
under the consideration of the requirement∆δd = δ∆d
provides an exact satisfaction of the constraintsδψ =
∆ψ = 0 and∆δψ = 0 during any iteration step for ar-

bitrary vectors
V
ωωω and

L
ωωω. After the evaluation of an itera-

tion step, the constraintψ = 0 itself will be satisfied ex-
actly trough (19). Finally the variableωωω used instead of
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∆d as primary displacement quantity will be determined
in the standard FE-procedure to satisfy the stationarity
condition∆δΠ = 0, that means, the nonlinear shell equi-
librium conditions. Accordingly, the proposed approach
satisfies the variational principle together with an exact
enforcement of the constraintd · d = 1 imposed on the
director.

4 Strain measures, constitutive law

As strain measure we use the GREEN-LAGRANGE strain
tensorE defined by

E := Ei j Gi ⊗G j =
1
2

(gi ·gj −Gi ·G j) Gi ⊗G j . (26)

The GREEN-LAGRANGE strains of the shell continuum
have to fulfill the shell kinematics (1) and (9). By adopt-
ing these relations the deformed and undeformed base
vectors of the shell continuumgi andGi as well as the
corresponding base vectorsai andA i of the midsurface
can be evaluated. The consideration of the shell kine-
matics leads to the 3D-strains given in Tab. 1.

Table 1 : Ec for the present kinematic assumption.

Eαβ =
0
Eαβ +θ3 1

Eαβ +(θ3)2 2
Eαβ

0
Eαβ = 1

2

(
aα ·aβ−Aα ·Aβ

)
1
Eαβ = 1

2

(
aα · (λ d),β +aβ · (λ d),α
−Aα ·A3,β−Aβ ·A3,α

)
2
Eαβ = 1

2

(
(λ d),α · (λ d),β−A3,α ·A3,β

)

Eα3 =
0
Eα3 +θ3

1
Eα3

0
Eα3 = 1

2 (λ d ·aα)
1
Eα3 = 1

2 (λλ ,α )

E33 =
0
E33

0
E33 = 1

2

(
λ2−1

)

By using bilinear interpolation functions for the dis-
placement field the finite element formulation suffers
from several locking phenomena. However, these de-
ficiencies can be advantageously prevented by using

mixed methods. If displacements and stresses are re-
garded as independent quantities in the framework of
the HELLINGER-REISSNER-principle (Bas¸ar, Ding, and
Krätzig (1992)) a mixed hybrid formulation is obtained.
On the basis of the three-field variational principle of
HU-WASHIZU (Simo and Rifai (1990);Simo and Armero
(1992);Betsch, Gruttmann, and Stein (1996)) the dis-
placements, the stresses and strains, respectively, can be
interpolated independently from each other. If, how-
ever, an orthogonality condition is imposed such that
the stress-interpolants can be disregarded, only the dis-
placements, leading to compatible strains, and the in-
compatible strains are the independent quantities in the
framework of the so calledenhanced-strain-formulation.
Furthermore, it has been proved numerically (Andelfin-
ger and Ramm (1993);Bischoff and Ramm (1997)) and
theoretically (Yeo and Lee (1996)), that both methods
are equivalent , if the polynomial space of the stress-
interpolants related to the mixed hybrid formulation
and the polynomial space of the strain-interpolants of
the enhanced-strain concept form a complete bilinear
polynomial space (in case of 4-noded elements). In
this contribution the above mentioned enhanced-strain-
formulation is used, in which additionally to the compat-
ible strains denoted byEc incompatible strainsEinc are
introduced such thatE = Ec +Einc. The HU-WASHIZU-
type functional reads as follows :

ΠHW =
∫

B
Ws

(
Ec +Einc)dV −

∫
B

S̃ : Einc dV −Πext
HW ,

(27)

whereΠHW andΠext
HW are the total and external potential

energy, respectively. If the condition
∫

B S̃ : Einc dV = 0
is fullfilled, the stress term drops out and the functional
ΠHW reduces to :

ΠHW =
∫

B
Ws

(
Ec +Einc)dV −Πext

HW . (28)

The related stationary condition (δΠHW = 0) reads then
as :
∫

B

∂Ws

∂E
: δEc dV +

∫
B

∂Ws

∂E
: δEinc dV − ∂Πext

HW

∂u
·δu = 0 .

(29)

The next step is to introduce the constitutive law. It
should be mentioned that, through the inclusion of
transversal normal strains, the current finite element for-
mulation permits an easy implementation of arbitrary
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three dimensional material laws. In this contribution
attention is restricted to the ST. VENANT-KIRCHHOFF

material with the strain energy density :

Ws =
1
2

λ (tr E)2+µtr E2 . (30)

The partial derivation of the strain energyWs with respect
to the GREEN-LAGRANGE strain tensor finally leads to
the 2nd PIOLA-KIRCHHOFF stress tensor :

S= Si jGi ⊗G j =
∂Ws

∂E
= λ( tr E)G+2µE (31)

as energy conjugate quantity toE. The linearization
of (29) with respect to the compatible and incompatible
strains as well the displacements is obtained as

∫
B

∆Ec : C : δEc dV +
∫

B
∆Einc : C : δEc dV

+
∫

B
∆Ec : C : δEinc dV +

∫
B

∆Einc : C : δEinc dV

+
∫

B
S : ∆δEc dV + fint − fext = 0 (32)

with the unbalanced forces

fint =
∫

B
S : δEc +

∫
B

S : δEincdV , (33)

the external forcesfext , and with the fourth-order material
tensor :

C =
∂2Ws

∂E∂E
= λ I ⊗ I +2µ

(4)
I . (34)

5 Finite element formulation

5.1 The interpolation of independent displacement
variables

Starting from the incremental formulation (32) afour-
node finite shell element is developed according to the
isoparametric approach. The independent kinematic
quantities entering in the assumption (1) and (9) are in-
terpolated by means of bilinear polynomials expressible
as

NK =
1
4
(1+ξK ξ)(1+ηK η) (35)

in terms of the natural basis(ξ,η) ∈ {−1,1} and the co-
ordinatesξK , ηK referring to the nodes. The correspond-
ing equations read as

0
x=

4

∑
K=1

NK
0
x K , λ =

4

∑
K=1

NK λK , (36)

where indexK denotes nodal values. Starting from the
expressions (36) the quantititiesδaα ,∆aα, · · · can be ob-
tained easily. Note in this context that∆δaα = ∆δλ = 0,
since the midsurface position vector and the stretching
parameter are independent quantities.

5.2 The interpolation of the shell director

Now attention is focused to the directord, which needs
in view of the constraint (10) a special treatment in the
numerical procedure. In this context it is important to
note that the variationδd and the linearization∆δd of
this variable is of relevance during an iteration step. For
the implementation of the considered quantities we make
use of two different approaches. In the first oneδd and

Table 2 : Variation of the director (Version A)

δd =
4
∑

K=1
NK(δdk)

δd,α =
4
∑

K=1
NK ,α(δdk)

A1: ∆δd = 0
∆δd,α = 0

A2: ∆δd =
4
∑

K=1
NK(∆δdk)

∆δd,α =
4
∑

K=1
NK ,α(∆δdk)

∆δd are directly interpolated similar to (36) and are then
expressed in terms of the nodal rotation vectorωωωk and
nodal directordk according to (11) and (17) leading to :

δdk = ωωωK ×dK ,

∆δdk =
1
2
(

V
ωωωK × (

L
ωωω K ×dK)+

L
ωωω K × (

V
ωωω K ×dK)) .

(37)

The basic relations of this approach derived from (37)
are summarized in Tab. 2 and denoted as approachA2.
On the contrary, in the second approach the transforma-
tions (11) and (17) are considered with the directord and
the rotation vectorωωω at the corresponding GAUSS-point
which are interpolated according to (36). The basic re-
lations of this alternative denoted as versionB are sum-
marized in Tab. 3. The rotation vectorωωω= ωi i i is to be
used with three independent components with respect to
the global basisi i throughout the shell. However, in case
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Table 3 : Variation of the director (Version B)

δd = (
4
∑

K=1
NK ωωωK)×d

δd,α = (
4
∑

K=1
NK ,α ωωωK)×d+(

4
∑

K=1
NK ωωωK)×d,α

∆δd =
1
2
((

4

∑
K=1

NK
V
ωωω K)× ((

4

∑
L=1

NL
L
ωωω L)×d)

+(
4
∑

K=1
NK

L
ωωω K)× ((

4
∑

L=1
NL

V
ωωω L)×d))

∆δd,α =
1
2
((

4

∑
K=1

NK ,α
V
ωωω K)× ((

4

∑
L=1

NL
L
ωωω L)×d)

+(
4
∑

K=1
NK

V
ωωω K)× ((

4
∑

L=1
NL,α

L
ωωω L)×d)

+(
4
∑

K=1
NK

V
ωωω K)× ((

4
∑

L=1
NL

L
ωωω L)×d,α)

+ terms with
V
ωωω and

L
ωωω interchanged)

of smooth shells or at regular nodes of compound shells
the simplification (24) can be used (see section 5.4). The
director is in both cases exactly updated by using the ro-
tation tensorR :

Version A :
n+1
d K =R

n
d K ,

n+1
d =

4
∑

K=1
NK

n+1
d K ,

Version B :
n+1
d =R

n
d .

(38)

It then follows for the derivative of the director :

Version A :
n+1
d,α =

4
∑

K=1
NK ,α

n+1
d K ,

Version B :
n+1
d,α =R,α

n
d + R

n
d,α .

(39)

A detailed derivation of the above relation is given at the
end of the paper. In the first iteration step we set :

0
d,α=

4

∑
K=1

NK ,α AK
3 , (40)

whereA3 denotes the unit normal vector of the middle
surface in the reference configuration. In Version B we

additionally normalize the director
0
d and use the cor-

responding derivative instead of (40) such that the unit
length condition is fullfilled a priori.

5.3 Stabilization procedure

The above described finite element formulation is sub-
jected to various locking phenomena, namely shear,
membrane and POISSOŃ s locking. Now our aim is to
describe the stabilization algorithms used for reducing
these deficiencies.

To eliminate shear locking thenatural assumed-strain
concept [Bathe and Dvorkin (1985)] is applied, where
the transversal shear strains are interpolated according to

E13 = 1
2(1+η)EA

13+ 1
2(1−η)EC

13 ,

E23 = 1
2(1−ξ)EB

23+ 1
2(1+ξ)ED

23 ,

where the superscript denotes the collocation point at
which the strain components are computed, at point A
(ξ = 0,η = 1), B (ξ = −1,η = 0), C (ξ = 0,η = −1) and D
(ξ = 1,η = 0), respectively.

To reduce membrane locking theenhanced-strain con-
cept is used. Within the frame of this concept the mem-
brane strains are enriched by incompatible strains which
are assumed to be of the form :


 Ξ11

Ξ22

2Ξ12


 =


 ξ 0 0 0 ξη 0 0

0 η 0 0 0 ξη 0
0 0 ξ η 0 0 ξη


·




α1

α2
...

α7


 .

(41)

whereα1, α2, · · · are constant parameters. Note that the
rows and columns of the above matrix are linearly inde-
pendent. Furthermore, the present polynomials for the
incompatible strains have no counterpart in the polyno-
mial space of the compatible strains. To satisfy the patch
test the orthogonality condition

∫
B S̃ : EincdV = 0 has to

be fulfilled for at least constant assumed stressesS̃, lead-
ing to the condition :

∫
B

EincdV = 0 . (42)

To meet the above requirement, also for distorted ele-
ments, the incompatible strains (41) are to be referred to
the basis of the centre point of the shell element. The in-
compatible strains at an arbitrary point can be obtained
through the following transformation :

0
E inc

αβ =
√

A0√
G

(Gα ·Aρ
0)Ξρλ (Aλ

0 ·Gβ) , (43)
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with index “ 0 ” denoting the value of a variable at the
considered element centre.

For the elimination of POISSON ´s locking we enhance
the constant transversal normal strain similar to (41, 43).
For this case the interpolationprocedure reads as (Betsch,
Gruttmann, and Stein (1996)) :

Ξ33 =
[

1 ξ η ξη
]



α8

α9

α10

α11


 , (44)

1
E inc

33 =
√

A0√
G

Ξ33 . (45)

In addition to the existing nodal degrees of freedomu T
j

u =
[
uT

1 uT
2 uT

3 uT
4

]T
,

uT
j =

[
0
x1

0
x2

0
x3 ω1 ω2 ω3 λ

]
j
, j = 1,2,3,4

(46)

the finite element formulation now involves eleven free
parameters, which can be arranged similar to (46) to a
column vector :

ααα = [α1,α2, · · · ,α11]
T . (47)

For the sequel it is suitable to summarize the strain-
displacement relations for the compatible and incompat-
ible strains in matrix notation. The corresponding result
being of the form :

δEc = BV δu , δEinc = GV δααα , ∆δEc = ∆uT BT
V Lδu .

(48)

Inserting the above equations into (32) the following ma-
trix equation is obtained :
[

KT KT
E

KE KEE

][
∆u
∆ααα

]
=

[
fext

0

]
−

[
fc
int

finc
int

]
, (49)

with

KT =
∫

B
BT

V CBLdV +
∫

B
ST BV LdV , (50)

KE =
∫

B
BT

V CGLdV , KEE =
∫

B
GT

V CGLdV . (51)

Since BV = BL, GV = GL and BV L = BLV all related
matrices are symmetric. The integrations over the shell

volume are to be carried out numerically after the well
known procedure (Bathe (1996)) setting :

dV =
√

Gdθ3dξ dη . (52)

Since the parametersααα need not to satisfy interelement
compatibility conditions their elimination at the element
level is suitable. After condensation equation (49) re-
duces to :

(KT −KT
E K−1

EE KE)∆u = KT
E K−1

EE finc
int − fc

int + fext , (53)

which can be put into short form :̃KT ∆u = f̃. After each
iteration step the incompatible degrees of freedom have
to be updated according to

αααn+1 = αααn −K−1
EE

n
KE

n ∆u−K−1
EE

n
finc
int

n
. (54)

5.4 Transformation into a local basis

Table 4 : Flow chart of the finite element program.
• first iteration step ?

– yes : initialized andd,α
initialize ααα

– no : read lastd andd,α
read lastααα, K−1

EE , KE , finc
int and updateααα

• rotated andd,α

• loop overn1 gausspoints overξ
– loop overn2 gausspoints overη

∗ compute the compatible strainsδEc and∆δEc

∗ loop overn3 gausspoints overθ3

· compute the incompatible strainsδE inc

· compute the material tensorC

· compute the internal stressesS

· compute and add upK T , KE , KEE , fcint ,
finc
int

∗ ENDLOOP
– ENDLOOP

• ENDLOOP

• invert KEE

• computeK̃T and f̃

• saveK−1
EE , KE andf inc

int

• regular point ?

– yes : transformK̃T andf̃
set stiffnessK into diagonal entry ofK̃T
at the positions related tôω3

retransformK̃T andf̃

• save newd andd,α

The above described finite element procedure holds for
shells involving geometry intersections. If, however,
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smooth shells or regular nodes of compound shells are
considered a slight modification is necessary to prevent
the singularity of the tangent stiffness matrix. For this
purpose the rotational degrees of freedom are first trans-
formed into the local basisei :

ω̂i = ωωω·ei = ωk(ik ·ei) = Γi
.k ωk (55)

defined in (25). Then this transformation is considered to
replace the stiffness matrix by

K̃ l = ΓΓΓ K̃T ΓΓΓT
. (56)

This in turn requires the construction of the hyper matrix
ΓΓΓ, which is given by

ΓΓΓ =


 eT

1
eT

2
eT

3


 ΓΓΓ =




I 0 0 . . .

0 ΓΓΓ 0 . . .
0 0 1 . . .
...

...
...

.. .


 . (57)

Next all rows and columns of̃K l related to the local com-
ponentω̂3 are to be set to zero in order to avoid possible
coupling effects, although they should be actually zero by
applying (24). Finally the diagonal entry associated with
ω̂3 is to be set to a valueK, which can be arbitrarily se-
lected in the numerical procedure. It has been observed,
that the magnitude ofK does not affect the solution.

A similar modification is to be performed also to the
force vector according to :

f̃l = ΓΓΓ f̃ , (58)

subsequently setting the components off̃l related toω̂3

to zero. After this procedure the force vector and the
stiffness matrix are transformed back by using the corre-
sponding inverse relations to (56) and (58).

To give an overview over the discussed finite element for-
mulation, the flow chart of the finite element program is
summarized in Tab. 4.

6 Numerical examples

Now attention is given to some numerical examples in or-
der to show the prediction capability of the derived finite
element formulation. With the aim of systematic compar-
isons benchmark tests from literature or examples with
given analytical solutions will be analysed.
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Figure 1 : Diamond shaped frame. Frame hinged at edge B,
rigidly jointed at edge A and subjected to vertical line load p.

6.1 Large deflection of a diamond shaped frame

At first we consider a diamond shaped frame (Fig. 1), for
which analytical solutions are given by (Jenkins, Seitz,
and Przemieniecki (1966)) to assess the accuracy of the
finite element results. In view of the symmetry of the
structure we discretize only one half of the figure with a
geometry intersection at edge A and a hinge at edge B us-
ing a(10+10)×2 mesh. The computation is performed
with the kinematic assumptionA2 given in Tab. 2. The
computed results in steps ofη 2 = λ = 0.1 are presented
in Fig. 2. Note thatη2 is given as follows

η2 =
2(λp)L2

EI
= λ (59)

The results are in good agreement with the exact solution.

6.2 Pinched hemispherical shell with a circular hole

The hemispherical shell illustrated in Fig.3 is commonly
regarded as a reliable benchmark to test the capability of
the finite element formulation to deal with (nearly inex-
tensible) bending dominated deformations. First a linear
convergence analysis is performed through mesh refine-
ment. Fig. 4 illustrates the results of the convergence
analysis for the displacementX 1

A and the displacement
X3

A in dependence upon the element number per side. The
result obtained for the vertical displacementX 1

A = 0.9343
with a 32×32-mesh agrees well with the exact solution



226 Copyright c© 2003 Tech Science Press CMES, vol.4, no.2, pp.217-230, 2003

� � � � �

� � � � �

� � � � �

Jenkins

0.32 0.40.240.160.0800

0.2

0.4

0.6

0.8

1

horizontal elongation
vertical  contraction

2v/L,2u/L

lo
ad

fa
ct

or
λ

Figure 2 : Load factor-displacement diagram for horizontal
elongation 2u/L at A and vertical contraction 2v/L at B.
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Figure 3 : Pinched hemispherical shell.

X1
Are f = 0.94 (Simo, Fox, and Rifai (1989)). To give

an insight how theenhanced-strain concept improves the
solution the results of the pure displacement model (with-
out enhancement) are compared in Tab. 5 for the lin-
ear case (λ = 1) and nonlinear case (λ = 20) with those
obtained with membrane or transversal strain enhance-
ments. The last two rows in Tab. 5 contain results of the
nonlinear analysis. It is observable that both enhance-
ments forE33 and Eαβ are indispensable to achieve an
accurate solution. This example has also been analysed
by using different kinematic assumptions summarized in
Tab. 2 and 3. First note that the above discussed solu-
tions refer to formulationA. If the versionB from Tab.
3 is used in the analysis following results are obtained:

X  displacement

X  displacementA

A

3

1

32/32 mesh

0.9

0.94

0.98

0 4 8 12 16 20 24 28 32

number of elements per side

Figure 4 : Convergence analysis for the linear load step.

Figure 5 : Deformed configuration atλ = 20.

Table 5 : Comparison of enhanced and unenhanced solutions.

16×16 without
1
E inc

33

0
E inc

αβ both

X1
A/X2

B 0.9272 0.9303 0.9291 0.9327
X1

A 3.8751 3.9687 3.9518 4.0449
X2

B −7.4652 −7.7934 −7.7508 −8.1058

X1
A = 0.9334 in the linear case andX 2

B = −8.0448 and
X1

A = 4.0276 for the load factorλ = 20 with a 16×16-
mesh. The comparison of the results with those involved
in Tab. 5 (enhanced solution) shows discrepancies about
7.5 per thousand for the nonlinear case. The discrep-
ancy for the linear case is insignificant (0.75 per thou-
sand). Consequently, in this example a decision can not
be reached about the superiority of the versionsA andB.
It has been shown that the considerationof∆δd (assump-
tion A2) accelerates the iteration procedure considerably
in contrast to assumptionA1, where∆δd = 0. This can
be deduced from the number of iteration steps given in
Tab. 6. An energy criterium with the convergence accu-
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Figure 6 : Load-deformation plot of hemispherical shell.

racy level of 10−10 has been used for obtaining the results
given there. Regarding the number of iteration steps the
formulationB is practically equal to formulationA2. At
the whole it should be pointed out that the consideration
of the second order term∆δd is of major significance to
save computational effort.

Table 6 : Number of iteration steps for ass.A1, A2 andB.

16×16 A1 A2 B
λ = 0→ λ = 2 12 11 11

λ = 18→ λ = 20 13 6 6

The examination shows the good performance of the fi-
nite element formulation for kinematic assumptionA2.
This can be also confirmed by the plots given in Fig. 6
for the displacement, where for comparison also the re-
sults due to (Simo, Fox, and Rifai (1990)) for a 16×16-
mesh and from STANDER for a 32× 32-mesh (given in
Chróścielewski, Makowski, and Stumpf (1997)) are il-
lustrated. The solutions are in good agreement.

6.3 Sickle Shell problem

The next example, the sickle shell problem illustrated in
Fig. 7, was proposed by SIMO (Simo (1993)). The lin-
ear solutionX A

3 = 0.1499 computed by the present ele-
ment with a(24+ 24)× 4-mesh agrees very well with
the exact solutionX A

3 = 0.15. In the cited article results
are not given for the deep nonlinear range. However, in
(Chróścielewski, Makowski, and Stumpf (1997)) results
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Figure 7 : Sickle shell problem.
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Figure 8 : Load-deformation plot of sickle shell.

can be found until the load factorλ = 600 computed with
a 9-node degenerated shell element with uniform reduced
integration(URI). The absolute values of the displace-
ments at point A subjected to the force F by means of the
A2-formulation with a(24+24)×4-mesh are compared
with the reference solutions for a(10+10)×2-mesh in
Fig. 8. TheX3

A-displacement slightly deviates from that
obtained with the SELe9 element, but the displacements
X1

A andX2
A are nearly identical.

6.4 Channel-section beam

The last example is a channel-section beam, which is il-
lustrated in Fig. 10. From the examination of the hemi-
spherical shell it could be concluded that the finite ele-
ment works well for smooth shells. This example is suit-
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Figure 9 : Undeformed and deformed configuration (λ = 50).

Table 7 : Channel-section-beam: Linear solutions.

reference mesh displ. wA ×10−3

Betsch 10×36 1.0998
Chróścielewski CAM5×6e9 1.1373

rigid 10×36 1.1
without modif. 10×36 1.148

able to test the capability also for compound shells. The
beam has two intersection lines. The intersection lines
can be modelled rigidly by locking the seventh degree
of freedom, the stretching parameterλ, at each node lo-
cated at the intersection curves. By doing this we obtain
the same solution as given in (Betsch, Gruttmann, and
Stein (1996)) in the linear case. This has its cause in
the similarity between both finite element formulations.
We perform the computation solely for the(2,6,2)×36-
mesh and compare the solutions with the results of the
above cited reference and (Chr´ościelewski, Makowski,
and Stumpf (1992)). In the last mentioned paper a 9 node
Langrangian finite element has been used with a 5× 6-
mesh. In the first version we model the intersection lines
rigidly in the way mentioned above. In the second ver-
sion we make no modification. The nonlinear and linear
results forF = 1 are compared with the above cited ref-
erences in Fig. 12 and in Tab. 7.
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Figure 10 : Channel-section beam.

�

Figure 11 : Deformed structure atwA = 4.0 for a 15× 54-
mesh.
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Figure 12 : Load-Deformation plot of channel-section beam.
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7 Conclusion

In this contribution a four-node isoparametric fi-
nite element is proposed for large strain and
finite rotation analysis of arbitrary shell struc-
tures. The original aspects of the development
as distinct from the earlier derivations, cover
• the foundation of updated rotation procedure solely

by the calculus of variation
• the consideration of second order variational terms

for the determination of the director
• the inclusion of transverse strains and accordingly

arbitrary three dimensional hyperelastic constitutive
laws

• the consideration of single and compound shells in
a unified approach

Due to the usedenhanced strain concept membrane and
POISSOŃ s locking effects are significantly reduced.
The numerical procedure explained in Section 5.4 for
regular nodes avoids effectively the singularity of the
tangential stiffness matrix. The inclusion of second or-
der variational terms accelerates the iterative procedure
considerably.

But in any case the updated rotational procedure, al-
though very effective in simulation of finite rotation,
is and will remain as a variationally not consistent ap-
proach. The reason is that it does not define independent
variational rotational quantities allowed to be directly in-
terpolated. Accordingly the selection of interpolation
polynomials can not follow to a well-defined procedure.
Through the inclusion of several alternatives for this pur-
pose it has been shown in this paper that this does not
influence the reliability of the response, so that from a
numerical point of view, it is at the whole not a weighty
failure. The derivative of the current director is exactly
evaluated at each node as follows :

n+1
d,α =−sin(ω)ω,α

n
d +cos(ω)

n
d,α

+
(cos(ω)ωω,α −sin(ω)ω,α)

ω2 ωωω× n
d

+sin(ω)
ω

(
ωωω,α×

n
d +ωωω× n

d,α

)

+(sin(ω)ω2ω,α − (1−cos(ω))2ωω,α)
ω4 (ωωω· n

d)ωωω

+1−cos(ω)
ω2 ((ωωω· n

d)ωωω,α +(ωωω,α ·
n
d)ωωω

+(ωωω· n
d,α)ωωω) .

(60)

with ω=
√

ωωω·ωωω andω,α = ωωω,α·ωωω
ω and

ωωω=
4

∑
L=1

NL ωωωL ωωω,α =
4

∑
L=1

NL,α ωωωL (61)

evaluated at the corresponding GAUSS-point.
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Constrained finite rotations in dynamics of shells and
newmark implicit time-stepping schemes.CMES: Com-
put Model Eng Sciences, vol. 4, No. 1.
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