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On Deformation of an Euler-Bernolli Beam Under Terminal Force and Couple

P.B. Béda1

Abstract: The paper studies the behavior of a spa-
tial Euler-Bernoulli beam loaded by a terminal thrust-
ing force and a couple. The classical Clebsch-Kirchhoff
equilibrium equations are written by using appropriate
angular coordinates describing the finite rotations of the
local frames attached to each cross-sections of the beam
with respect to a fixed system. When we have geomet-
ric boundary conditions at one end and dynamic bound-
ary conditions (a force and a couple) at the other the set
of equilibrium equations form and initial value probem
which can easily be solved with standard Runge-Kutta
method.

keyword: spatial Euler-Bernoulli beam, finite rotation,
terminal thrust and couple.

1 Introduction

Buckling of slender beams under a terminal thrusting
force is a classical stability problem of structural me-
chanics [Euler (1749)]. Quite similar phenomenon hap-
pens when the rod is loaded by a couple [Kovari (1969)].
The critical force and moment can be obtained by using
analytic method for linearized equilibrium equations, but
if also nonlinear terms are included we find essentially
different behaviors of the two cases at the critical load-
ing [Kovari (1969)]. When the rod is loaded by a force
the result of the application of static bifurcation theory
[Atanackovic (1997), Béda, Steindl, Troger (1992)] leads
to a so-called supercritical pitchfork bifurcation. In such
case at the loss of stability and uniqueness of the trivial
straight line solution stable buckled shapes appear near to
it. However, at critical moment the way of the loss of sta-
bility is a subcritical pitchfork. Then there are no nearby
stable equilibrial shapes, if the trivial one loses stabil-
ity. One of our previous papers [Béda, Steindl, Troger
(1992)] studied the case of the combined loading [Green-
hill (1883)]. It was an analytic nonlinear study thus the
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investigation was restricted into a small neighbourhood
of the trivial straight line solution. In that paper we could
determine the transition from the supercritial to the sub-
critical bifurcation and we could even detect a secondary
buckling for some values of the critical loading force and
couple. The next question is: what happes beyound these
critical loads. Such studies are generally performed by
using finite element method for the same load [Hsiao, Lin
(2003)] or for various types of tip moment loadings [Go-
tou, Kuwataka, Nishihara, Iwakuma (2003)] or even for
the more sophisticated Timoshenko beam model [Atluri,
Iura and Vasudevan(2001); Iura, Suetake, Atluri (2003)]

This paper aims to formulate the spatial equilibrium
equations in a form wich is suitable for numerical analy-
sis and then perform the calculations and find shapes of
the elastica for postcritical loads. We would also like to
compare the result of this numerical study with our ana-
lytic one [Béda, Steindl, Troger (1992)].

The starting point is the set of classical Clebsch-
Kirchhoff equilibrium equations of the spatial Euler elas-
tica. A fine classical descrition of the model and the
system of equilibrium equations can be found in [Love
(1927)], for a more contemporary study see [Atanack-
ovic (1997)]. In that model we assume that the axis of
the rod is inextensible and and the cross-sections remain
perpendicular to that axis. To describe the rotations of the
cross-sections along the center line of the beam we use
local frames x,y, z attached to them, which suffer finite
rotations on loading. These are described by three angu-
lar variables ϕ1 (s) ,ϕ2 (s) ,ϕ3 (s) which are functions of
the arc length s . Assume that one end (point P1) of the
rod is clamped and other one is free (point P2). The load-
ing force Q and moment W acts at P2. Then unknown
functions ϕ1 (s) ,ϕ2 (s) ,ϕ3 (s) can be calculated by solv-
ing a set of ordinary differential equations with the in-
dependent variable s . Because of the special geometric
boundary conditions (geometric at P1 dynamic one at P2)
we have an initial value problem to solve.
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2 Coordinate systems

Firstly, we define the global X ,Y,Z and local frames x,y, z
in Fig.1.

Figure 1 : Global and local frames of the spatial elastica

The relative angular position of the local coordinate sys-
tem with respect to X ,Y,Z can be described by three rota-
tional angles ϕ1 (s) ,ϕ2 (s) ,ϕ3 (s) . Firstly, a rotation with
angle ϕ1 is performed around axis X . It moves axes Y into
Y ′ and Z into Z ′. Then we rotate frame X ,Y ′,Z′ around
axis Y ′ with angle ϕ2 and get frame X ′′,Y ′,Z′′ and the
last rotation is around axis Z ′′ with angle ϕ3 to obtain
the local system x = X ′′′,y = Y ′′′, z = Z′′ . In Figs.2,3,4.
these rotations are shown. Each of them can be given by
appropriate orthogonal matrices R i (ϕi), (i = 1,2,3), for
example the first transformation matrix is

R1 (ϕ1) =




1 0 0
0 cosϕ1 sinϕ1

0 −sinϕ1 cosϕ1


 .

Thus a vector v[X ,Y,Z] given by coordinates in system
X ,Y,Z can be transformed into the local frame x,y, z as

v[x,y,z] = Tv[X ,Y,Z] (1)

where T = R3 (ϕ3)R2 (ϕ2)R1 (ϕ1) thus

T =




c3c2 s3c1 −c3s2s1 s3s1 +c3s2c1

−s3c2 c3c1 + s3s2s1 c3s1 − s3s2c1

−s2 −c2s1 c2c1


 ,

and abbrevations ci = cosϕi, si = sinϕi, i = 1,2,3 are
used. The inverse transformation T−1 is also very impor-

Figure 2 : Rotation on axis X

Figure 3 : Rotation on axis Y

tant if we need the tangent vector

t[X ,Y,Z] =
d
ds




X
Y
Z


 (2)

or in the local frame

t[x,y,z] =




0
0
1


 . (3)
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Figure 4 : Rotation on axis Z

While t[X ,Y,Z] = T−1t[x,y,z] we have

dX
ds

= sinϕ2, (4)

dY
ds

= −sinϕ1 cosϕ2,

dZ
ds

= cosϕ1 cosϕ2.

3 The equilibrium equations

Let us use curvatures p,q and twist r to describe the
deformation of the rod. In the local system x,y, z from
[Goldstein (1980)] we find that

p = ϕ′
1 cosϕ2 cosϕ3 +ϕ′

2 sinϕ3,

q = −ϕ′
1 cosϕ2 sinϕ3 +ϕ′

2 cosϕ3, (5)

r = ϕ′
3 +ϕ′

1 sinϕ2,

where prime denotes derivative d
ds of the lenght s of the

axis of the rod considered to be inextensible in Euler-
Bernoulli beam model. The equilibrium equations of
the rod can be obtained in form [Béda, Steindl, Troger
(1992)]

EJ1 p′ − (EJ2 −GJT )qr = Q2

EJ2q′ − (GJT −EJ1)rp = −Q1 (6)

GJT r′ −E (J1 −J2) pq = 0,

where E,G are elasticity moduli, J1,J2,JT are moments
of inertia in the local system x,y, z of principal axes of
each cross-sections. By using transformation (1) the lo-
cal components of the loading force

Q =




0
0

−Q




[X ,Y,Z]

are

Q1 = −Q(sinϕ1 sinϕ3 −cos ϕ1 sinϕ2 cosϕ3) , (7)

Q2 = −Q(sinϕ1 cosϕ3 +cosϕ1 sinϕ2 sinϕ3) .

In order to be able to perform an analytic study [Béda,
Steindl, Troger (1992)] we had to assume that the cross-
section has a circular ellipse of inertia

J1 = J2 (≡ J) . (8)

We keep this assumption even now, because we would
like to compare results of the two different investigations.
Remark that it is not a necessary restriction in our numer-
ical treatment. We could do almost the same calculation
if (8) is not satisfied.

From the third equation of (6)

GJT r = const. (9)

Assume that the direction of twisting moment W is of the
local axis z at the end of the rod (s = �) . Then the value
of the constant in (9) is W thus

r =
W

GJT
. (10)

Now by using (8) and (10) the system of three equilib-
rium equations (6) can be reduced to

p′ − W
GJT

(EJ −GJT )
EJ

q =
Q2

EJ
, (11)

q′+
W

GJT

(EJ −GJT )
EJ

p = −Q1

EJ
.

To substitute angles ϕ 1,ϕ2,ϕ3 into (11) we need deriva-
tives p′,q′

p′ =
(
ϕ′′

1 cosϕ2 +ϕ′
2ϕ′

3 +ϕ′
1ϕ′

2 sinϕ2
)

cosϕ3

+
(
ϕ′′

2 −ϕ′
1ϕ′

3 cosϕ2
)

sinϕ3, (12)

q′ = −(
ϕ′′

1 cosϕ2 +ϕ′
2ϕ′

3 +ϕ′
1ϕ′

2 sinϕ2
)

sinϕ3

+
(
ϕ′′

2 −ϕ′
1ϕ′

3 cosϕ2
)

cosϕ3.

Then from (6), (11), (12) and (7) the equations of motion
in angular coordinates are
(
ϕ′′

1 cosϕ2 +ϕ′
2ϕ′

3 +ϕ′
1ϕ′

2 sinϕ2
)

cosϕ3

+
(
ϕ′′

2 −ϕ′
1ϕ′

3 cosϕ2
)

sinϕ3 (13)

− A−C
AC

W
(−ϕ′

1 cosϕ2 sinϕ3 +ϕ′
2 cosϕ3

)

+
Q
A

(sinϕ1 cosϕ3 +cos ϕ1 sinϕ2 sinϕ3) = 0
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and

−(
ϕ′′

1 cosϕ2 +ϕ′
2ϕ′

3 +ϕ′
1ϕ′

2 sinϕ2
)

sinϕ3

+
(
ϕ′′

2 −ϕ′
1ϕ′

3 cosϕ2
)

cosϕ3 (14)

+
A−C

AC
W

(
ϕ′

1 cosϕ2 cosϕ3 +ϕ′
2 sinϕ3

)

− Q
A

(sinϕ1 sinϕ3 −cosϕ1 sinϕ2 cosϕ3) = 0.

From (13) and (14) ϕ′′
1 and ϕ′′

2 can be expressed as

ϕ′′
1 =

−ϕ′
3ϕ′

2 +ϕ′
1ϕ′

2 sinϕ2 +W A−C
AC ϕ′

2 − Q
A sinϕ1

cosϕ2
, (15)

ϕ′′
2 = ϕ′

1ϕ′
3 cosϕ2 −W

A−C
AC

ϕ′
1 cosϕ2 − Q

A
sinϕ2 cosϕ1,

where A = EJ and C = GJT .

Remark that the first equation of (15) is singular at
cosϕ2 = 0 and it restricts the use of such formulation
to small angles ϕ2. In the numerical analysis below we
study the behavior of the rod near to its trivial form
ϕ1 ≡ 0,ϕ2 ≡ 0,ϕ3 ≡ 0 thus this singularity does not ap-
pear. Unfortunately, (15) contains three variables thus we
need one more equation. Let us return to the third equa-
tion of (6). Previously it was used to eliminate variable r
from the other two. Here we use (10) to obtain an equa-
tion for ϕ ′

3. From (10) and (5)

ϕ′
3 =

W
C

−ϕ′
1 sinϕ2 (16)

Now equations (4), (15) and (16) are suitable to calculate
the shape of the elastica under force Q and moment W.

We need also boundary conditions to perform cal-
culations. At one end (point P1) a clamped
boundary is assumed, thus we should prescribe
ϕ1 (s = 0) ,ϕ2 (s = 0) ,ϕ3 (s = 0), for the derivatives
ϕ′

1 (s = 0) ,ϕ′
2 (s = 0) , and x(s = 0) ,y(s = 0) , z(s = 0) .

The other remains unconstrained, but the load (force Q
and moment W) is present as dynamic boundary condi-
tion. That is, we treat the problem as an initial value
problem , the dynamic boundary conditions at the free
end are already included into the equilibrium equations.

4 Numerical analysis

The system of equations (4), (15) and (16) can be solved
by a standard Runge-Kutta method. In our analytic work
[3] the post-buckling of the rod was studied by using
static bifurcation theory [1], that is, we searched for the

appearance of a non-trivial solution near to the trivial one
ϕ1 ≡ 0,ϕ2 ≡ 0,ϕ3 ≡ 0 by quasistatic change of the loads.

While this trivial solution is always a solution for all
vales of loading parameters Q,W to search for nontriv-
ial shapes in numerical calculation a small initial im-
perfection should be added otherwise we obtain always
solution ϕ1 ≡ 0,ϕ2 ≡ 0,ϕ3 ≡ 0. In our calculations
we selected imperfection in initial values ϕ 1 (s = 0) =
1 ·10−5,ϕ′

1 (s = 0) = 1 ·10−5 and zeros for all the others.
We set the ratio A

C = 3
2 and use parameters ρ = Q

A ,w = W
C

for loading.

Some of the solutions obtained are shown in the follow-
ing figures. Figs. 5,6 show the initial state, when there is
no load at all. Remark that because of the imperfect ini-
tial conditions Fig.6 is not really a straight line, but note
that the values of axis Y are multiplied by 10−3.
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Figure 5 : X(Z) no load

If we add pure twist we find the formation of a helical
shape Fig. 7, 8

When the load is only a thrusting force a buckling hap-
pens Figs. 9,10,11 Fig.10 shows that the rod is in the
plane Y,Z while in Fig.11 we can see the buckled shape
in coordinates X ,Y,Z..

Now let us see, what happens when a coexistent thrustig
force and twisting couple is applied Figs. 12,13. The
comparison of Figs. 10,12 shows that additional twist
effects a jumps out of plane Y,Z.

Let us now inrease twist Figs. 14,15. In Fig.14 the curve
of the elastica ”shrinks” due to the increased thurst. If
we compare Fig.15 with Fig.8 at pure twist we find a
definite decrease of the extension in directions X ,Z and
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Figure 6 : Y(Z) no load
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Figure 7 : Y(X) at pure twist w = 1

a secondary looping.

5 Concluding remarks

In the paper by using a fixed and a local coordinate sys-
tems. This second was connected to the cross-sections of
the Euler-Bernoulli beam and suffered finite rotations by
applying a combined load of a terminal thrust and couple.
By using angular coordinates to describe such rotations
we could derive a system of differential equations, which
describes the shape of the rod.

We prescribed quite special boundary conditions and it
enabled us to study the problem by solving ordinary dif-
ferential equations numerically. As a result we find the
same as the classical analytical studies [Beck (1955),
Euler (1749), Greenhill (1883), Kovari (1969), Love
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Figure 8 : 3D (X ,Y,Z) plot at pure twist w = 1
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Figure 9 : Y(Z) at pure twist ρ = 0.1

(1927)], both simple thrust and twist may lead to a buck-
led shape of the rod. Moreover, when a buckled (by pure
thrust) rod is additionally loaded by a twisting couple a
secondary buckling happens and the elastica jumps into
a looped helical form.
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Figure 10 : Y(X) at pure thrust ρ = 0.1
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Figure 11 : 3D plot at pure thrust ρ = 0.1
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Figure 12 : Y(X) (couple and force) ρ = 0.1,w = 0.1
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Figure 13 : 3D plot (couple and force) ρ = 0.1,w = 0.1
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Figure 14 : Y(X) (couple and force) ρ = 0.1,w = 1
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Figure 15 : 3D plot (couple and force) ρ = 0.1,w = 1
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