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Accuracy of Co-rotational Formulation for 3-D Timoshenko’s Beam

M. Iura 1, Y. Suetake2 and S. N. Atluri3

Abstract: An accuracy of finite element solutions for
3-D Timoshenko’s beams, obtained using a co-rotational
formulation, is discussed. The co-rotational formulation
has often been used with an assumption that the relative
deformations are small. A fundamental question, there-
fore, has been raised as to whether or not the numeri-
cal solutions obtained approach the solutions of the ex-
act theory. In this paper, from theoretical point of view,
we investigate the accuracy of the co-rotational formula-
tion for 3-D Timoshenko’s beam undergoing finite strains
and finite rotations. It is shown that the use of the con-
ventional secant coordinates fails to give satisfactory nu-
merical solutions. We introduce a new local coordinate
system in which a linear beam theory is used to construct
the strain energy function. It is shown that the finite el-
ement solutions obtained converge to those of the exact
beam theory as the number of element increases.

keyword: Co-rotational Formulation, Timoshenko’s
Beam, Finite Element Method, Finite Rotations.

1 Introduction

In a finite element analysis for large displacement prob-
lems of flexible beams, the total Lagrangian formula-
tion together with a fixed global coordinate system has
been used (see e.g. [Iura and Atluri(1988); Iura and
Atluri(1989); Atluri, Iura and Vasudevan(2001), Reiss-
ner(1981); Beda(2003); Zupan and Saje(2003)]). In this
formulation, a highly nonlinear beam theory is indispens-
able even if relative deformations are small.

According to the polar decomposition theorem, the total
deformation is decomposed into the rigid body motion
and the relative deformation (see e.g. [Malvern (1969)]).

1 Tokyo Denki University
Hatoyama, Hiki, Saitama, Japan

2 Ashikaga Institute of Technology
Ashikaga, Tochigi, Japan

3 Center for Aerospace Research & Education
University of California, Irvine
Irvine, CA. 92697, USA

On the basis of this theorem, the relative deformation is
described by using the local coordinate system. With the
help of coordinate transformation, the relative deforma-
tion is expressed in terms of displacement components
associated with a fixed global coordinate system. This
formulation has often been used in the finite element
analysis for nonlinear problems of flexible beams [Cr-
isfield (1990); Goto et al. (2003), Hsio and Lin (2000);
Ijima et al. (2002), Lin and Hsiao (2003), Oran (1973);
Yoshida, Masuda, Morimoto and Hirosawa (1980); Wen
and Rahimzadeh (1983)]. In this paper, this formula-
tion is called the co-rotational formulation. The use of
co-rotational formulation is motivated by the assumption
that the relative deformation is small but the rigid body
motion is finite. A linear beam theory or beam-column
theory has often been used for describing the relative de-
formation. As a result, the stiffness matrix in the local
coordinate system takes a simple form. The highly non-
linear terms are included in the coordinate transformation
of the displacement components. The numerical studies
have shown that, in spite of using the small strain as-
sumption in the local coordinates, satisfactory numerical
results have been obtained by increasing the number of
elements. The accuracy of finite element solutions in the
co-rotational formulation , however, has not fully been
discussed from a theoretical point of view.

Goto, Hasegawa and Nishino (1984) were the first who
investigated theoretically the accuracy of co-rotational
formulation. They have shown for the planar Bernoulli-
Euler’s beam that, when a linear beam theory is used in
the local coordinates, the numerical solutions do not con-
verge to those of exact beam theory. Iura (1994) has pre-
sented another method for the co-rotational formulation
and discussed the accuracy of the numerical solutions. It
has been concluded by Iura (1994) that, even though a
linear beam theory is used in the local coordinates, the
numerical solutions converge to those of the exact beam
theory. Although this conclusion is different from that of
Goto, Hasegawa and Nishino (1984), the numerical ex-
periments show the validity of Iura (1994). For planar
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Timoshenko’s beam, Iura and Furuta (1995) have shown
that, when the secant coordinate system together with a
linear beam theory is used in the co-rotational formula-
tion, the numerical solutions do not converge to those of
the exact beam theory. They have introduced another lo-
cal coordinates, in which the use of linear beam theory
leads to the numerical solutions which converge to those
of the exact beam theory.

It is well known that the rotation in a 3-D space does not
belong to a linear space. Therefore, very few papers have
been published to discuss the accuracy of co-rotational
formulation for 3-D beam. Goto, Hasegawa, Nishino and
Matsuura (1985) have extended their method for planar
beam to 3-D Bernoulli-Euler’s beam. They have con-
cluded that the use of linear beam theory in the local co-
ordinates does not yield the numerical solutions which
converge to those of the exact beam theory. They have
also pointed out that the accuracy of torsional moment
and rotations can not be improved even in the case of the
inextensional deformation of axis.

In this paper, we discuss an accuracy of numerical so-
lutions for 3-D Timoshenko’s beam undergoing finite
strains and finite rotations. The method to investigate
the accuracy is the same as that of Iura (1994). In the
co-rotational formulation for 3-D beam, one of main is-
sues is the definition of a local coordinate system. Most
popular local coordinate system is the secant coordinate
system where the local beam axis is defined by connect-
ing both end-nodes of the deformed beam element. The
in-plane coordinates are chosen in a proper way such that
the local coordinates become orthogonal. It is shown
herein that the use of the secant coordinate system leads
to unsatisfactory numerical results due to the shearing de-
formations. A new local coordinate system is proposed
in this paper. When we use a linear beam theory in the
present local coordinate system, we obtain the finite el-
ement solutions which converge to the solutions of the
exact beam theory.

2 Formulation

We explain the present co-rotational formulation devel-
oped by Iura (1994). When an attention is confined to
configuration-independent loads, the total potential en-
ergy of the beam Π may be expressed as

Π = Πs +Π f (1)

where Πs is the strain energy function and Π f the poten-

tial function of external forces. It should be noted that
the strain energy function is an invariant value. This fact
plays an important role in the present formulation. Let
{u} denote the displacement components referred to the
local coordinates. When the co-rotational formulation is
used, the strain energy function is, at first, expressed in
term of {u}. In the existing literatures, a linear beam
theory or a beam-column theory has often been used to
construct the strain energy function. Let {U} denote the
displacement components referred to the fixed global co-
ordinates. From geometrical consideration, we obtain the
nonlinear relationships between {u} and {U}. Substitut-
ing this relationship into the strain energy function, we
obtain the strain energy function expressed in terms of
{U}. The potential function Π f can be also expressed
in terms of {U}. Finally, therefore, the total potential
energy of the beam becomes a function of {U}.

Following a standard FE procedure, we obtain the dis-
cretized equilibrium equations of the beam, expressed as{

∂Π
∂Um

}
= 0, (2)

where {Um} is the independent variables at each node, re-
ferred to the fixed global coordinates. When the Newton-
Raphson method is used to solve the equilibrium equa-
tions, the tangent stiffness matrix [TG] and the residual
force vector {∆R} are written, respectively, as

[TG] = [
∂2Πs

∂Um∂Un
], {∆R}= −{ ∂Π

∂Um
} (3)

While the convergence rate of numerical solutions de-
pend on the tangent stiffness matrix, the accuracy of nu-
merical solutions depends on the residual force vector. It
is shown from Eq.(3) that the accuracy of residual force
vector depends on the total potential energy of the beam.
The exact expression for the potential function of exter-
nal forces can be easily obtained. Therefore, the accu-
racy of residual force vector depends on the strain en-
ergy function. As mentioned before, in the existing co-
rotational formulation, a linear beam theory or a beam-
column theory has often been used to construct the strain
energy function. The resulting strain energy function is
not exact but approximated one. Since the strain energy
function is an invariant value, a comparison of the present
strain energy function with that of the exact beam the-
ory is enough for the present purpose. In this paper, the
geometrically exact beam theory developed by Iura and
Atluri (1988, 1989) is used as the exact beam theory.
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3 Basic Equations

Let us explain briefly the geometrically exact beam the-
ory, which has been developed on the basis of total La-
grangian formulation (see e.g. [Iura and Atluri (1988,
1989); Reissner (1981)] for more details). We assume,
herein, that there exist no initial curvatures and twist of
the beam; the beam in the reference state is straight. The
strain energy function of the beam is expressed as

Πs =
∫

[
1
2

GA(h1)2 +
1
2

GA(h2)2 +
1
2

EA(h3)2 +

1
2

EI(κ1)2 +
1
2

EI(κ2)2 +
1
2

GJ(κ3)2 ]dx, (4)

where GA is the shearing rigidity, EA the stretching rigid-
ity, EI the bending rigidity, GJ the twisting rigidity, h α
the shearing strain, h3 the stretching strain, κα the bend-
ing strain and κ3 the twisting strain.

E3

E1

U

E2

e 2

e 1

e 3

t

Figure 1 : Undeformed and Deformed Beam

Let EEEm and R denote the undeformed base vectors of the
beam and the finite rotation tensor, respectively. The base
vectors EEEm are transformed, due to the finite rotation ten-
sor, such that eeem = REEEm (see Fig.1). Then the strain ten-
sors are defined as

h1 = eee1 ·ttt, h2 = eee2 ·ttt, h3 = eee3 ·ttt −1,

κ1 =
1
2
(eee2,3 ·eee3 −eee3,3 ·eee2), κ2 =

1
2
(eee3,3 ·eee1 −eee1,3 ·eee3),

κ3 =
1
2
(eee1,3 ·eee2 −eee2,3 ·eee1), (5)

where ( ),3 is the differentiation with respect to the axial
coordinate, and ttt the deformed tangent vector defined by

ttt = U1,3EEE1 +U2,3 EEE2 +(1+U3,3 )EEE3. (6)

in which UUU (= UmEEEm) is the displacement vector at the
beam axis and Um the Lagrangian components of the dis-
placement vector.

It is well known that the rigid body rotation is expressed
by a single rotation of magnitude ω about an axis paral-
lel to some unit vector e, in which Reee = eee. Even though
alternate representations of the finite rotation vector are
possible (see e.g. [Pietraszkiewicz (1979)] ) here we as-
sume for convenience that the finite rotation vector Ω has
the form ( see [Geradin and Cardona (1989); Iura and
Atluri (1988)])

Ω = 4tan
ω
4

eee = αmEEEm. (7)

where αm is the rotational components referred to the
fixed global coordinates. Then the Lagrangian compo-
nents of R(= RmnEEEmEEEn) are expressed by

Rmn =
1

(4−α0)2

[(α2
0−αkαk)δmn +2(αmαn−εmnkα0αk)], (8)

where δmn is the Kronecker’s delta, εmnk is the permuta-
tion tensor and

α0 =
(16−αkαk)

8
. (9)

4 Secant Coordinate System

The commonly used local coordinate system in the co-
rotational formulation is the secant coordinate system, as
shown in Fig. 2. The local beam axis at the current con-
figuration is defined by passing through node i and node
j, or end-nodes of the beam element. A variety of method
have been proposed to define the in-plane coordinates.
We shall not discuss this issue because the in-plane coor-
dinates does not play an important role in the following
discussion. In this paper, we shall show that the stretch-
ing strain defined by the secant coordinate system does
not converge to the exact stretching strain.

Let UUU (i) and uuu(i) denote the displacement vector at the
node i, referred to the fixed global coordinates and the
secant coordinates, respectively. Let aaam be the base vec-
tor associated with the secant coordinate system, where
aaa3 is the base vector associated with the beam axis and
aaam ·aaan = δmn. Because of the definition of the secant co-
ordinate system, the displacement vector at node j in the
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Figure 2 : Secant Coordinate System

local coordinates is expressed as uuu( j) = u( j)
3 aaa3. From ge-

ometrical consideration (see Fig.2), we have

UUU (i) + l aaa3 +u( j)
3 aaa3 = l EEE3 +UUU ( j), (10)

where l is the length of the beam element in the reference
state. It follows from Eq.(10) that

(1+
u( j)

3

l
)aaa3 = EEE3 +

1
l
(UUU( j)−UUU (i)). (11)

It is common for FE analysis of Timoshenko’s beam to
interpolate the displacement into a linear function, ex-
pressed as

um = (1− x
l
)u(i)

m +
x
l

u( j)
m , (12)

where x is the axial coordinate in the local coordinates.
Note that, due to the definition of the secant coordinates,
we have u

(i)
m = 0.When a linear beam theory is used in

the local coordinates, the stretching strain is defined by

ε3 =
du3

dx
=

u( j)
3

l
. (13)

This is the expression for the stretching strain in the se-
cant coordinate system.

Let U
(i)
m denote the displacement component at the node

i, defined by

UUU (i) = U (i)
m EEEm. (14)

Substituting Eqs.(13) and (14) into Eq.(11) and taking
the scalar product of Eq.(11) with itself leads to

(1+ε3)2 = (
U ( j)

1 −U (i)
1

l
)2 +(

U ( j)
2 −U (i)

2

l
)2

+(1+
U ( j)

3 −U (i)
3

l
)2. (15)

Solving Eq.(15) for the stretching strain, we have

ε3 =

√
(
U ( j)

1 −U (i)
1

l
)2 +(

U ( j)
2 −U (i)

2

l
)2

+ (1+
U ( j)

3 −U (i)
3

l
)2 − 1. (16)

This is the expression for the stretching strain in the fixed
global coordinate system. The accuracy of the stretching
strain ε3 is investigated by comparing it with the exact
stretching strain.

According to the exact beam theory, the deformed tan-
gent vector is expressed as

ttt = h1aaa1 +h2aaa2 +(1+h3)aaa3

= U1,3EEE1 +U2,3EEE2 +(1+U3,3 )EEE3. (17)

Taking the scalar product of Eq.(17) with itself leads to

(h1)2 +(h2)2 +(1+h3)2

= (U1,3 )2 +(U2,3 )2 +(1+U3,3 )2. (18)

It follows from Eq.(18) that

h3 =
√

(U1,3 )2 +(U2, )2 +(1+U3,3 )2

− (h1)2− (h2)2 − 1. (19)

This is the expression for the exact stretching strain. It
is common for finite element analysis of Timoshenko’s
beam to interpolate the shape function into a linear func-
tion (see e.g. [Hughes (1984)]), expressed as

Um = (1− X
l
)U (i)

m +
X
l

U ( j)
m , (20)

where X is the axial coordinate in the fixed global coor-
dinate system. The differentiation of displacement com-
ponents with respect to the axial coordinate leads to

Um,3 =
U ( j)

m −U (i)
m

l
(21)

This expression can be obtained also by applying the
forward difference to the first derivative U m,3. As the
length of beam element l decreases or the number of el-
ement increases, Eq.(21) gives a good approximation of
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the first derivative (see e.g. [Atkinson (1978)]). Substi-
tuting Eq.(21) into Eq.(19), we have

h3 =

√
(
U ( j)

1 −U (i)
1

l
)2 +(

U ( j)
2 −U (i)

2

l
)2

+ (1+
U ( j)

3 −U (i)
3

l
)2− (h1)2 − (h2)2 − 1. (22)

By comparing Eq.(16) with Eq.(22), we may conclude
that ε3 is equal to h3 only when h1 = h2 = 0. Since the
shearing strains h1 and h2 do not become zero in general,
the stretching strain ε3 does not converge to the exact
stretching strain even if the number of element increases.
This fact shows that, when we use a linear beam theory
in the secant coordinate system, the numerical solutions
obtained does not approach those of the exact beam the-
ory. The secant coordinate system might be used only
when the shearing deformations can be neglected.

We consider, herein, the geometrical meaning of the
strain defined by Ea.(16). Let U (i) and U ( j) denote the
displacement vectors of the element at nodes i and j ,
defined by

UUU (i) = U (i)
m EEEm, UUU ( j) = U ( j)

m EEEm. (23)

Then the engineering strain ε is defined by

ε = (
∥∥∥U (i)−U ( j) + lE3

∥∥∥− l)/l (24)

Substituting Eq.(23) into Eq.(24), we have ε = ε3. This
result shows that the strain defined by Eq.(13) is the en-
gineering strain which is not conjugate with the present
stress resultant.

5 New Coordinate System

In this chapter, we will present a new local coordinate
system in place of the secant coordinate system. The ori-
gin of new coordinate system is taken at the node i, as
shown in Fig. 3. The base vectors of the new coordinate
system are defined by

bbbm = R(α̂k)EEEm, α̂k =
1
2
(α(i)

k +α( j)
k ), (25)

where α(i)
k is the rotational component of α k at the node

i. It is seen from Eq.(25) that α̂k denotes the mean value
of the rotational components in the element. It should

^
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u(j)

b2
1

Figure 3 : New Coordinate System

be noted that the base vectors bm defined by Eq.(25) are
orthogonal each other. This fact can be shown easily in
the following. The scalar product between bm and bn is
expressed as

bbbm ·bbbn = RkmRkn (26)

At first we consider the case where m=1 and n=2. Sub-
stituting Eq.(8) into Eq.(26) leads to

bbb1 ·bbb2 =
1

(4− α̂2
0)2

[(α̂2
0− α̂2

1 − α̂2
2 − α̂2

3 +2α̂2
1)(2α̂1α̂2 −2α̂0α̂3)

+(2α̂2α̂1 +2α̂0α̂3)(α̂2
0− α̂2

1 − α̂2
2 − α̂2

3 +2α̂2
2)

+(2α̂3α̂1 −2α̂0α̂2)(2α̂3α̂2 +2α̂0α̂1)] (27)

where

α̂0 =
(16− α̂kα̂k)

8
. (28)

A direct calculation shows that b1 · b2 = 0. In a similar
way, we can show that bm ·bn = δmn.

The displacement vector at node j, referred to the local
coordinates, can be expressed as (see Fig.3)

ûuu( j) = û( j)
m bbbm (29)

From geometrical consideration, we have the following
relation:

UUU (i) + û( j)
1 bbb1 + û( j)

2 bbb2 + û( j)
3 bbb3 + l bbb3 = l EEE3 +UUU ( j). (30)

We assume, herein, that the displacement components
û( j)

1 and û( j)
2 are associated with the shearing deforma-

tions (see Fig.4) while the displacement component û ( j)
3
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is associated with the stretching deformation. Since we
employ a linear theory in the local coordinates, we ob-
tain the relationships between the displacements and the
strains, expressed as

γ̂1 =
û( j)

1

l
, γ̂2 =

û( j)
2

l
, ε̂3 =

û( j)
3

l
, (31)

u^ (j)
b3

b1

1

Figure 4 : Shearing Deformation

where γ̂α are the shearing strains and ε̂3 is the stretching
strain. These are the expressions for the strain measures
in the local coordinate system.

Since the base vectors bbbm are orthogonal each other, it
follows from Eqs.(30) and (31) that

γ̂β = {EEE3 +
1
l
(UUU ( j)−UUU (i))} ·bbbβ,

ε̂3 = {EEE3 +
1
l
(UUU( j)−UUU (i))} ·bbb3 −1. (32)

Substituting Eq.(14) into Eq.(32) and using Eq.(25), we
have

γ̂β = {(U ( j)
1 −U (i)

1

l
)EEE1 +(

U ( j)
2 −U (i)

2

l
)EEE2

+(1+
U ( j)

3 −U (i)
3

l
)EEE3} ·R(α̂k)EEEβ,

ε̂3 = {(U ( j)
1 −U (i)

1

l
)EEE1 +(

U ( j)
2 −U (i)

2

l
)EEE2

+(1+
U ( j)

3 −U (i)
3

l
)EEE3} ·R(α̂k)EEE3 −1. (33)

These are the expressions for the strain measures referred
to the fixed global coordinate system.

Next we consider the strain measures of the exact beam
theory. With the use of Eq.(17), the strain measures hm

of the exact beam theory can be written as

hβ = {U1,3EEE1 +U2,3EEE2 +(1+U3,3 )EEE3} ·REEEβ,

h3 = {U1,3EEE1 +U2,3EEE2 +(1+U3,3 )EEE3} ·REEE3 −1. (34)

It is common for FE analysis of Timoshenko’s beam to
use a linear shape function and the one-point Gauss in-
tegration rule. When a linear shape function is used for
Um, we have

Um,3 =
(U ( j)

m −U ( j)
m )

l
. (35)

This expression can be obtained also by applying the for-
ward difference to the first derivative Um,3. Furthermore,
when the one-point Gauss integration rule is used, we
have R = R(α̂k). Then, Eq.(34) can be written as

h3 = {(U ( j)
1 −U (i)

1

l
)EEE1 +(

U ( j)
2 −U (i)

2

l
)EEE2

+(1+
U ( j)

3 −U (i)
3

l
)EEE3} ·R(α̂k)EEEβ,

hβ = {(U ( j)
1 −U (i)

1

l
)EEE1 +(

U ( j)
2 −U (i)

2

l
)EEE2

+(1+
U ( j)

3 −U (i)
3

l
)EEE3} ·R(α̂k)EEE3 −1. (36)

Comparing Eq.(33) with Eq.(36), we obtain

γ̂β = hβ, ε̂3 = h3. (37)

The strain measures in Eq.(36) are obtained by substitut-
ing a linear shape function and one-point Gauss integra-
tion rule into the exact strain measures. This procedure
has often been used in the standard FE formulation. It
has been established that the FE solutions obtained con-
verge to the exact solutions. We may conclude ,therefore,
that the shearing and stretching strains in the new coordi-
nate system approaches the exact ones as the number of
element increases.

Finally, let us consider the bending and twisting strains
in the local coordinates. When we use a linear theory in
the local coordinates, the bending strains are expressed
as

κ̂1 =
φ̂( j)

1 − φ̂(i)
1

l
, κ̂2 =

φ̂( j)
2 − φ̂(i)

2

l
, (38)
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and the twisting strain is expressed as

κ̂3 =
φ̂( j)

3 − φ̂(i)
3

l
. (39)

Since we employ a linear theory in the local coordinate
system, the rotations φ̂(i)

k referred to the local coordinates
are also assumed to be small. Using the infinitesimal ro-

tation vector φ̂φφ(i)
(=φ̂(i)

k bbbk) at node i, we have the relation-

ship such that eee(i)
k = (I +φ̂φφ(i)

)×bbbk. With the help of rota-
tional components, the base vectors at node i are written
as

eee(i)
1 = bbb1 + φ̂(i)

3 bbb2 − φ̂(i)
2 bbb3,

eee(i)
2 = −φ̂(i)

3 bbb1 +bbb2 + φ̂(i)
1 bbb3, (40)

eee(i)
3 = φ̂(i)

2 bbb1 − φ̂(i)
1 bbb2 +bbb3.

In a similar way, the base vectors at node j are obtained
by changing superscript i into j in Eq.(40). According
to Eq.(40), the rotational components at each node are
written as

φ̂(i)
m =

1
2

εmnpeee(i)
n ·bbbp =

1
2

εmnpeee(i)
n ·R(α̂k)EEE p,

φ̂( j)
m =

1
2

εmnpeee( j)
n ·bbbp =

1
2

εmnpeee( j)
n ·R(α̂k)EEE p. (41)

Substituting Eq.(41) into Eqs.(38) and (39), we obtain
the bending and twisting strains in the fixed global coor-
dinate system, expressed as

κ̂m =
1
2

εmnp
(eee( j)

n −eee(i)
n )

l
·R(α̂k)EEE p. (42)

According to the exact beam theory, the bending and
twisting strains are expressed from Eq.(5) as

κm =
1
2

εmnp(eeen,3) · (REEE p). (43)

As mentioned before, it is common for FE analysis of
Timoshenko’s beam to use a linear shape function and
one-point Gauss integration rule. When the one-point
Gauss integration rule is used to integrate the strain
energy function, we have R = R(α̂k). By comparing
Eq.(42) with Eq.(43), we may conclude that the strain

measures κ̂m are equal to the exact strain measures κm

when the following relation holds:

eeen,3 =
1
l
(eee( j)

n −eee(i)
n ). (44)

Equation (44) shows a forward difference of eeen,3. When
the number of element increases or the length of beam
element decreases, the forward difference gives a good
approximation of the first derivative (see e.g. [Atkinson
(1978)]). Therefore, Eq.(44) may hold when the number
of element increases. In such a case, we have κ̂m = κm:
the exact strain measures κm are recovered when the new
coordinate system with a linear theory is employed in the
co-rotational formulation.

As shown before, even if we employ a linear theory in the
new coordinate system, the strain measures in the local
coordinate system approach the exact ones as the number
of elements increases. We may conclude, therefore, the
FE solutions obtained by the co-rotational formulation
converge to those of the exact beam theory.

6 Numerical Examples

It is very hard to obtain the exact solutions for 3-D Tim-
oshenko’s beam undergoing finite strains and finite ro-
tations. Goto, Yoshimitsu and Obata (1990) have ob-
tained the exact solutions for plane elastica with axial and
shear deformations. In this paper, therefore, planar Tim-
oshenko’s beam problems are solved to demonstrate the
validity of the present theoretical results.

     L L

F

V

Figure 5 : Beam with Hinged Ends

The first problem is the beam with hinged ends as shown
in Fig. 5. The concentrated force is applied at the center
of the beam. The slenderness ratio of the beam is 5. Be-
cause of symmetry a half of the beam is discretized and
20 elements are used to obtain the converged solutions.
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The parameter µ (=EA/GA) is taken as 0 and 10. When
µ = 0, the shear deformations are neglected. The FE solu-
tions are compared with the exact solutions in Fig.6. The
solid lines show the exact solutions of the exact beam
theory. The circles and the squares show the FE solu-
tions obtained by using the secant coordinate system and
the new coordinate system, respectively. As shown in
Fig.6, the FE solutions coincide with the exact solutions
when µ = 0. However, once the shear deformations can
not be neglected, the FE solutions obtained by using the
secant coordinate system are different from the exact so-
lutions. When new coordinate system is used, the FE so-
lutions coincide with the exact solutions even in the case
of µ = 10.
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Figure 6 : Numerical Results
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Figure 7 : Cantilever Beam

The second example is the cantilever beam subjected
to an increasing compressive end force and a constant
torque, as shown in Fig.7. The slenderness ratio of the
beam is 4. The number of elements is 20. The parameter
µ (=EA/GA) is taken as 0 and 10. The FE solutions are

compared with the exact solutions in Fig. 8. Once again,
the FE solutions coincide with the exact solutions when
µ = 0. In the case of µ = 10, the FE solutions obtained
using the secant coordinate system (circles) are differ-
ent from the exact solutions. The use of new coordinate
system leads to the complete agreement between FE and
exact solutions.
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Figure 8 : Numerical Results

7 Concluding Remarks

We have discussed the accuracy of co-rotational formula-
tion for 3-D Timoshenko’s beam undergoing finite strains
and finite rotations. It is common for the co-rotational
formulation to use the secant coordinate system as the
local coordinate system in which a linear theory or the
beam-column theory is employed. It is shown herein that
the use of the secant coordinate system together with a
linear theory does not give the satisfactory numerical re-
sults. Instead of the secant coordinate system, we have
introduced a new coordinate system where a linear theory
is used. Then, using the exact coordinate transformation,
we obtain the expressions for the strain measures referred
to the fixed global coordinates. The resulting strain mea-
sures are compared with the exact ones. When a linear
shape function and the one-point Gauss integration rule
are substituted into the strain measures of the exact beam
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theory, a complete agreement between these two strain
measures have been obtained. This fact shows that the
FE solutions obtained by the co-rotational formulation
converge to the solutions of the exact beam theory as the
number of element increases.
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