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A new finite element formulation of three-dimensional beam theory based on
interpolation of curvature

D. Zupan!, M. Sajet

Abstract: A new finite element formulation of the
‘kinematically exact finite-strain beam theory’ is pre-
sented. The finite element formulation employs the gen-
eralized virtual work in which the main role is played
by the pseudo-curvature vector. The solution of the gov-
erning equationsisfound by using a combined Gal erkin-
collocation agorithm.
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1 Introduction

Deformation of beams, plates, and shellsis often charac-
terized by large rotations. Because the spatial rotations
are elements of a multiplicative group, the configuration
gpace of deformations is a hon-linear manifold. That is
what makes the study of these engineering structures so
interesting and challenging. Although therigid rotations
are indeed essential for the overall deformation of the
structure, they have no effect on its deformation energy.
This suggests that strain measures and not rotations are
natural variables for the description of the deformation
energy.

Therotational strain and therotationsare related by kine-
matic equations in the form of differential equations.
Thus, the two variables, the rotations and the rotational
strain, are not independent. By the use of kinematic
equations one may (at least formally) express the rota-
tional strain measures by the rotationsand thus eliminate
the rotational strain as independent variable of the prob-
lem; or vice versa, the rotations can be substituted by
the rotational strain. The application of the former ap-
proach where the rotations (as well as displacements) are
taken to be primary variablesisatypical characteristic of
modern three-dimensional beam theories [Cardona and
Géradin (1988); Crisfield and Jeleni€ (1999); Hsiao and
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Lin (2000, 2003); Ibrahimbegovic (1995, 1997); luraand
Atluri (1988, 1989); Jeleni¢ and Crisfield (1999); Atluri,
lura and Vasudevan (2001); Jeleni¢ and Saje (1995); Li
(1998); Nour-Omid and Rankin (1991); Simo (1985);
Simo and Vu-Quoc (1986)]. By contrast, the present
formulation employs the approach in which the rota-
tional strain —the curvature vector —entirely replacesthe
rotations. For the curvature vector approximation, the
additive-type of interpolation can be used without aloss
of the objectivity of the strain measures, i.e., their invari-
ance to rigid-body motions. Thisisin contrast to some
well established finite element beam formulations [see
the discussion in Crisfield and Jeleni€ (1999) and their
solution to the problem], which are not rotational strain
objective.

Another issue, also discussed by Crisfield and Jeleni€
(1999) and Jeleni¢ and Crisfield (1999), is the path in-
dependence of the finite element formulation for conser-
vative problems. Many of the established finite element
formulations of three-dimensional beams are not path-
independent. By way of numerical examples we show
the path independence of the present formulation.

In order to apply the curvature vector as a basic vari-
able we follow and extend the work by Planinc, Sgje and
Cas (2001) and propose a modified principle of virtual
work for the so caled ‘kinematically exact finite-strain
beam theory’ [Simo (1985)] in which the only degree of
freedom that needs to be interpolated along the element
is the variation (or iterative increment) of the curvature
vector. The displacement and rotational vectors are not
interpolated. This ‘one-field’ formulation does not only
result in the fact that the locking never occurs but also
an enhanced accuracy for the given number of degrees
of freedom is achieved. Moreover, the element enables
more accurate descriptions of strain and stress distribu-
tions within the element which is of utmost importance
in describing the behaviour of plastic materia in the re-
gions of localized strain.



302 Copyright (€ 2003 Tech Science Press

Asiswell known, the stress-resultants as obtained from
the equilibrium equations, and those cal culated from the
constitutive equations, do not equal in standard finite ele-
ment formulations. The corresponding computed error in
internal forces may be considerable, especially for mate-
rially non-linear problems. This ‘inconsistency of equi-
librium at cross-sections' is here solved by enforcing the
consistency condition to be satisfied in a set of prede-
fined points (here taken to coincide with the interpola-
tion nodes) (the ‘collocation’). A similar strategy was
employed by Vratanar and Sgje (1999) for elastic-plastic
analysis of plane frames. In addition, in the present for-
mulation, the determination of internal forces does not
require the differentiation with respect to the arc-length
of the beam axis, x. Thisis an important advantage com-
pared to formulations where the derivatives with respect
to x are needed for the evaluation of internal forceswhich
may significantly lower the accuracy of results.

The tangent stiffnessmatrix and the residual force vector
of a finite element are here derived with respect to the
global coordinate system. The coordinate transformation
from thelocal to global system isthus not necessary. An
arbitrary initial curvature and deformation of the beam
are assumed at theinitial unloaded configuration.

2 Geometry and kinematics of the beam

Geometry of the three-dimensional beam is described by
the line of centroids of cross-sections and by the family
of the cross-sections not necessarily normal to the line
of centroids. The geometric shape of the cross-sections
is assumed to be arbitrary and constant along the beam.
The Bernoulli hypothesisis assumed that a cross-section
suffers only trandation and rigid rotation during defor-
mation. Two different configurations of the beam need to
be distinguished:

(i) the reference configuration where al geometrical
and mechanical variables are known;

(ii) the deformed configuration where the loading is
prescribed while the remaining geometrical and me-
chanical variables are unknown.

The physical space of the motion of the beam is the Eu-
clidean linear vector space IR? spanned by two orthonor-

mal bases. The spatial (or global) basis {al,az,ag} is
an arbitrary fixed basis. Together with a reference point
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Figure1: Kinematics of the reference and the deformed
configurations of the beam.

O the basis defines a spatial Cartesian coordinate system.
The deformed confi gurai on of the beam is described by
the position vector r of the line of centroids, and by the

[N

material (or local) basis {Gl, Gy, Gg}, which definesthe
rotated position of cross—segti ons. Bothghe position vec-
tor 1, and the base vectors Gy, Gy, and Gg, are dependent
on x, the arc-length parameter of the line of centroids of
cross-sections at the reference configuration. Theinitial,
unloaded configuration will here be taken to be referen-
tial. The material basis is chosen such that the vectors
G, and G3 are directed along tﬁe principal axes of inertia
of the croéss—segtion,éand that G; isnormal to the cross-
section; G1 = G x Ggz. It should be pointed out that the
vector G is generaly not parallel to the tangent vector

of the line of centroids, G; # T (x). (Here and hence-
forth the prime () denotes the derivative with respect to
x.) Similarly, the reference configuration is described by
. ~0 —0 —0

I‘o and {Gl,Gz,G?,}.

The reference and the current deformed material bases
are related to the spatial basis by the orthogonal map-
ping. Let Rp and R denote the corresponding rota-
tion matrices; Ro (x) maps the basis {61,62,63} into
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~0 0 0
the basis {Gl (x),G5(x),G5 (x)}, while R(x) maps
{61, 62, 63} into {Gl (x),G2(x),G3 (x)}. A vector, V,
can be expressed with respect to either of the two bases

V =Vg10q +Vg2 092 +Vg393 = V6161 + V6262 + Va3 Gs.

For convenience, the components of the vector,
{Vgl,ng,Vgg,} and {VG17VG27VG3}1 areaso repreﬁented in
the matrix form by one-column matrices

VG3
Both, vy and vg, aong with the corresponding basis,
equivalently represent the vector v. The relationship be-
tween the two one-column matrices, vy and vg, is given

by

Vg = RvG.

(1)

Here, another meaning of the rotation matrix is revealed:
it rotates a vector, but it also represents the coordinate
transformation between the components of a vector with
respect to spatial and material bases.

In what follows, vectors will be replaced by one-column
matrices and marked by a bold-face font. In the text they
will till be termed vectors, however. E.g., the position
vector 1 will be replaced by r and termed the position
vector.

3 Stressresultants, strain measures and constitutive
equations

3.1 Stressresultantsand equilibrium equations

The stress-resultant force vector over the cross-section
is denoted by N and the resulting moment vector by
M. Both, N and M, are referred to the material basis.
We consider a beam subjected to the external distributed
force and moment vectors n and m per unit length of the
reference line of centroids. n and m are taken to be given
with respect to the spatial basis. The equilibrium equa-
tions of an infinitesimal element of abeam, asillustrated
inFig. 2, are given by the differential equations

n(x) =~ RN
m(x) = —[R(X)M ()] —r’" (x) xR(X)N ().

(2)
©)
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Figure 2 : The equillibrium of an infinitesimal element
of abeam.

3.2 Strain measures

For an element of the beam, bounded by the cross-
sectionsat x = x; and X = Xy, the principle of virtual work
may be stated in the following form:

X2

/XZ(N-6y+M-6K)dx:/ (n-&r +m-33)dx

X1 X1

+[8-5+P- 392, (4)

Theleft-hand side of Eq. (4) determines the virtual work
of internal forces, while the right-hand side defines the
virtual work of external forces. In (4) & and &9 are vari-
ations of the position vector and the rotational vector of
the material basis of the cross-section of the beam. Inthe
virtual work of internal forces, two quantities are intro-
duced that further need to be elaborated upon. These are
the variations of strain vectors y and K with components
given with respect to the material basis.

Remark 1 Note that the variation of a one-column ma-
trix of vector components, given with respect to the ma-
terial basis, requires the variation of components only,
without taking the variation of the base vectors of the
material basis into account. Thisis in accord with the
notion of ‘ objective rates'; see, eg., Smo (1985).

Inserting Eqgs (2)—«3) into (4) and applying the partial in-
tegration yields the relationships between the variations
of kinematic vector variables (r,9) and strain vectors

(Y.K)
dy=RT (&r'— &% xr’)
3k =R'59'.

()
(6)
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Egs (5) and (6) relate the variations of strains, displace-
ments, and rotations, and indicate that the variations of
the quantities mentioned above are not all independent.
Following the approach similar to that of Reissner (1981)
and Ibrahimbegovic (1997) we can show that Egs (5) and
(6) can be integrated for strain measures (Y,K) as func-
tions of displacements and rotations (ir, &), which gives

(7)
(8)
Here, vectors ¢ and e are variational constants to be de-

termined from the known strains and kinematics at the
reference configuration by the equations

vy=R'r' +c
K=R'w+e.

c=yo—R(r}
e=Ko— R} .

(9)
(10)

One-column matrix w introducedin (8) isthe axial vector
of the antisymmetric matrix Q = R'RT. Its components
are given with respect to the spatial basis. In dynamics,
where parameter x is replaced by timet, w is commonly
referred to as the angular velocity. For obvious reasons,
w is here termed the curvature. Note, however, that @
is not the curvature of the centroid axis of the beam, so
that the term ‘ pseudo-curvature’ is here more adequate.
For further descriptions of the angular velocity vector,
see, e.q., Argyris (1982), Atluri and Cazzani (1995), and
Crisfield (1997).

Remark 2 The strain measures, derived in (7)—8), are
in complete agreement with those obtained by Smo
(1995) and termed material strain measures (see his Eq.
(4.82)).

For the reasons which will become clear later, an addi-
tional strain measure, k*, will be introduced as follows.
Vector 0K has been introduced as the energy comple-
ment to the stress-resultant M. Both, ok and M, are one-
column matrices of components with respect to the ma-
terial basis. The spatial form of M can easily be found
using Eq. (1):

Mg = RM. (11)

If weintroduce the vector dk* by the equation

OK* = RoK (12)
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and put it into the scalar product Ml - &k, we obtain

M-3k =M R73k* =RM-&K* = Mg - K" (13)

As observed from this result, the vector dk* introduced
aboveistheenergy complement to the moment Mg given
with respect to the spatia basis. It is clear from the def-
inition of dk* that it depends on the rigid rotation. In
contrast — as it can easily be shown — the strains y and K
do not. Despite of thisshortcoming, dk* andk* are found
to be useful in devel oping the beam governing equations
aswell asin the update procedure.

Upon inserting Eq. (12) into Eqg. (6) we obtain the rela-
tionship between ok* and &9’

OK* = &9’ (14)

The integration of (14) in the sense of variations is now
easy

K'=9'+d. (15)
Here d marks a variational constant (dd = 0) to be ob-
tained from the data in the reference configuration

d =kj—9y. (16)
The relationship between k* and K is also needed for fur-
ther use. It is obtained by employing the known relation-
ship between w and 8’. The devel opment of the relation-
shipisrather lengthy and can befound, e.g., in Atluri and
Cazzani (1995). The result can be written in the follow-
ing form

w=T9)9. (17)

Employing (17) in (8) yields

K=R'Tk*—R'"Td+e (18)
=R"Tk* +f. (19)

3.3 Congtitutive equations

The virtual work principle assumes that Nl and M depend
on strainsy and K. Thus, the material form of constitutive
equations is needed. The constitutive law between the
stress resultants and strains is taken to be given by the
equations

(20)
(21)

N = Gn (Y—Yo,K —Ko)
M = G (Y—Yo,K —Ko) .
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The operators Cy and Gy must be invariant under super-
imposed rigid-body motions; otherwise are arbitrary op-
erators describing material of the beam. We assume that
at least the first derivatives with respect toy, K, and x of
both, C\ and Cu, exist. It is clear from Egs (20)—<21)
that N = 0 and M # 0 could be assumed at the reference
configuration.

4 Generalized virtual work principle
4.1 Virtual work principle

Rewriting the virtual work principle (4) for a beam of
initial length L gives

L L
/O(N-éy—i—M-ék)dx:/o (n-& +m-59)dx

+S°. a0+ P0.590+S-- &t +P-- 59 (22)
Here, S, P°, S+, P- arevectors of theexternal point loads
at the boundariesx =0and x =L. Theindices0 and L
mark the value of a variable at the fixed values of the
arc-length parameter x = 0 or x = L. Hence, &° and &r-
are variations of the positionvectorr at x =0and x =L,
and 890 and 89" are variations of the rotational vector at
x=0andx=L. It should be noted thatin (22) y, K, r, and
9 are not mutually independent because kinematic con-
ditions (7), (8), (15), and (17) hold. The only arbitrary,
independent variational variablesin (22) are 33 and &r.

4.2 Generalized virtual work principle

The four Egs (7), (8), (15), and (17) are the constraining
equations for six strain and deformation measures y, K,
K*, @, r, and 9 and their variations. Once K and w are
eliminated using (8) and (17), two independent Eqgs (7)
and (15) remain the constraining equations for y, K*, r
and 9, and their variations. By analogy with the method
of Lagrangian multipliersin constrained problems of cal-
culus of variations, the constraining equations

Ry—-r'—Rc=0
K'—8%'—-d=0

(23)
(24)

are scalarly multiplied by arbitrary, independent, at |east
once differentiable vector functions a(x) and b(x). The
multipliers are taken to be given with respect to the spa-
tial basis; their physical background is at the present
stage of derivation not clear. The scalar products of the
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multipliers and the constrained equations (23) and (24)
are integrated along the length of the beam

/OLa-(Ry—r’—Rc)dx_O (25)
/OLb-(K*—S’—d)dx—O (26)
and varied withrespect toa, b, y, k*, r, and 9
/OLéa-(Ry—r’—Rc)dx

+/0La- (3Ry+R3y— &' — 5Rc) dx =0 @7)
/Léb- K 9’ —d) dx

+/ —~59')dx=0 (28)

The difference of the terms dRy and dRc is transformed
into a more useful form applying a well known formula
for the variation of the rotation matrix (8R = 6OR):

OR(y—c)=0OR(y—c)=09xR(y—c). (29)

Thetermsa- o’ and b- 89’ are partially integrated and
therelationship dk* = Rk is employed. Then we obtain

L L
/éa- (Ry—r’'—Rc) dx+/ a-Rdydx
0

gAY

-(89x R(y—c))dx

—[a-6r]0+/ a5 dx =0 (30)
0
L L
| @ (k" ~9'~d)dx+ [ "b-Rax o
0 0
L
—[b-63]5+/0 b 59 dx =0, (31

By adding Eqgs (30) and (31) to (22) and rearranging the
terms, the following equation is derived

/OL [dy- (N—RTa) +3k - (M —R'b)] dx

of o
_/0 [5a- (Ry—r'—Rc) +3b- (k8 —d)] dx
+80. (8°+a°%) +389°- (P +b°)
+ort.(s-—-a) +89-- (P-—bH) =0.

—m-b'+axR(y—c)) —& - (n+a)] dx

(32)
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InEq. (32) the variationsdy, oK, &3, or, da, and db are ar-
bitrary and independent functions, because the constrain-
ing equations have been added. The variations &r°, 99,
&L, and 39* are also arbitrary and independent. Asthe
consequence of the fundamental theorem of calculus of
variations [ Troutman (1983)] it follows that all the coef-
ficients at the variations vanish and the following Euler-
Lagrange equations of the three-dimensional beam are
obtained

N—-RTa=0 (33)
M—-R'b=0 (34)
n+a =0 (35)
m+b' —axR(y—c)=0 (36)
Ry—-r’'—Rc=0 (37)
K'—8'-d=0 (38)

together with the boundary conditions
S+a’=0 (39)
P°+b°=0 (40)
S-a=0 (41)
P-—b-=0. (42)

N and M depend onk andy throughthe constitutiveequa
tions (20) and (21). In Eqgs (20)—(21), k is substituted by
K* and & using Eq. (18). Upon considering these addi-
tional relations, Eqgs (33)—38) constitute a system of six
matrix equations for six unknown vector functions y(x),
K*(X), r(x), 8 (x), a(x), and b(x) for a given set of loads,
described by n, m, S, P°, S+, and P“.

Eqgs (35)—38) constitutefour ordinary differential vector
equations of the first order. Their solutions can be for-
mally expressed by the following integral equations

a(x =2~ [ () )
b(x) b~ [ "m(&)c

+ [ @) <RYE —c(@)]cE @
00 =1+ ["Ry() ~c(E))d ()
90 =9%+ [ k() ~d(®)dk. (40
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Eqgs (45) and (46) represent the relationship between the
deformation and kinematic variables. Eqs (43) and (44)
are the force and moment equilibrium conditions. The
physical meaning of the Lagrangian multipliersa and b
is now obvious from (43) and (44): a(x) is the cross-
sectional force resultant at point x; b(X) is the cross-
sectional moment resultant at point x, both given with
respect to the spatial basis. We have already introduced
the cross-sectional force and moment resultants as com-
puted from the strains by the constitutive equations (20)—
(21). These resultants are termed the constitutive force
and moment, Nc and Mc, respectively. By contrast, the
cross-sectional force and moment resultants, a and b, sat-
isfy the equilibrium equations and will hence be referred
to as the equilibriumforce and moment. Thus, Egs (33)
and (34) require that the equilibrium force and moment
vectors a and b are equal to the constitutive force and
moment vectorsN and M, respectively. These conditions
yield the so called ‘ consistent equilibrium at the cross-
section’. For an application of these important consis-
tency conditionsin the elastic-plasticfinite element anal-
ysis of plane frames, see the paper by Vratanar and Sgje
(1999).

Remark 3 The discrepancy of equilibrium and consti-
tutive forces and moments (or more generally, stresses)
is a common characteristic of standard displacement-
based finite element formulations. It may be a substan-
tial source of error of a method especially in materially
non-linear problems. The present formulation enforces
the consistency condition to be satisfied in a set of prede-
fined points of the centroid axis. The points are taken to
coincide with the interpolation nodes.

Let us take that the set of Eqs (43)—46) is exactly satis-
fied whenn, m,y, 8, and K are known at any point of the
line of centroids. We further assume that the strain vec-
tor y can uniquely be determined from (20) provided K,
Ko, and yp are known. As aresult, Eq. (34) remains the
only equation of the system (33)—(38) that still needs to
be solved. The virtual work principle (32) then reduces
to

L
| o (M—R"b)x
0
+ar. (8 +a°% +89°- (PO +b°)

+ort.(s-—-a) +89-- (P-—bH) =0. (47)
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In the reduced principle of virtual work (47), the func-
tional is dependent on the function i (x) and on a set of
boundary values. a- and b“ are computed using (43)—
(44):

L
a(L) =al— /0 n(g) dé (48)
b(L) =b°— [ m(g) g
[ (e <R(y(®) — (&) de 49)

In order to embed the element of the beam into the phys-
ical space, the boundary conditionsat x = L for r and 9
have to be specified using Egs (45) and (46):

L
r(L) =1+ [ "RY() —c (&) dk (50)

L
9(L) =9+ [ (¢ () —d (@) ek, 59

Employing (48)—(51) and considering that the variations
in (47) arearbitrary, yieldsthefinal form of the governing
equations of the three-dimensional beam:

Mg (x) —RTbg (x) =0 (52)

’5—’8—/OLR(VG—CG) dx=0 (53)
L

35—38—/0 (k; —dg) dx=0 (54)

§+ag=0 (55)

Pg-+bg =0 (56)
L

%—ang/o ngdx =0 (57)
L

Pg_bg_/o [aQXR(yG_cG)—mg dx=0. (58)
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Egs (52)—(58) and auxiliary relations (59)—66)

(%) =2~ [ "y (£) & 59
by () b3~ | "my (£) &
+ [ aa® <RE Ve @ —co @1 (60
(0 =18+ [ R(®) Ve (&) —ca (@) de (61)
990 =93+ [ iy (€) —dy (8)] 08 6
Ke =RTTKj+ fg (63)
N =RTay (64)
NG = (v (Ys —Yc,0,Kc —Kg) (65)
Mc = Cu (Yo —Yc,0.Ke —Kg0) (66)

congtitute the complete set of equations of the three-
dimensional beam. The indices, indicating the basis
used, are added for the clarity of notation in these equa-
tions.

5 Finitedement formulation

5.1 Component form of governing equations

To develop the algorithm for the numerical solution of
the system of equations (52)—(58), the component forms
of equations are needed. They read

fi () = Mi (X) = Rji (x) bj (x) = 0 (7
L
hi:riL—riO—/ Rij (vj —¢j)dx=0 (68)
0
L
ho.i =9~ 90— [ (kj ~d)dx =0 (69)
heyi = SO - aio =0 (70)
hoyi = I:)io - biO =0 (71)
L
h1oi :SL—a,o—i—/o nidx =0 (72)
L
h16+i - I:)il__bio"i'/o m; dx
L
- /O &mamRn; (Vj —Cj) dx=0. (73)

Here, indicesi, j, k, I, m, n, r takethevalues1,2,3. The
summation convention is used that the repeated index is
the summation index. The components ¢; and d; of vec-
torsc and d are defined at the reference configuration of
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the beam. The components a;, Vi, M;, b; are determined
from Eqgs (59)—(66) given in the component form

%) =a— [ o (74)
bi (X) = bio—i—/ox [amaar,- (yj — Cj) — m] dé (75)
ri(x)_rio—i—/oxRij(yj—cj)dE (76)
8100 =90+ [ (k —d) (77)
Ki = RjiTjk + i (78)
N = Rjiaj (79)
N =G (y1— Y10 ---,K3 —Kap) (80)
Mi = GM (V1 — VY10, - --,K3 —K30). (81)

Symbol &k is the permutational symbol [Sokolnikoff
(1951)]. The components of the rotation matrix, Rj;, are
determined by the Rodriguesformula

sind 1—cosd
9 92

where |jj are the components of the unit matrix, 8 =

\/92+93 493, and ©;; isdefined by

Rij =lij+

Gij+ OikOyj, (82)

©;=0, if i=]
O = -0z =—J3
O13=-03 =97

O3 =—03 = —31.

Recall that & = 8161 +82§2 +83§3. The components
of the transformation matrix T are given by [Atluri and
Cazzani (1995)]

9 —sind
93

Tij :lij+7l ;gsa@ij+ OikOj- (83)
Remark 4 Eqs(82) and (83) have a singularity point at
9 = 0. The singularity can be eiminated in the follow-
ing way. When & equals to zero it follows that the rota-
tion and the transformation matrix are unit matrices. In
numerical calculations a strict use of Eqgs (82) and (83)
would lead to indefinite expressions, if 9 were less than
the machine precision. However, when 3 is replaced by
the value of the machine precision, Eqgs (82) and (83)
appear to be evaluated exactly with respect to the finite

precision arithmetic of the computer.
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5.2 Discretization of governing equations

Thearguments of theintegralsin Egs (68)—(69) and (72)—
(73) are too complicated for the anaytical solution to
be possible; therefore, the numerical integration is in-
troduced where the integrations are substituted by finite
sums over the global integration nodes x,

L N
/ F0dx— 3 Wo (xp). (84)
0 &

which introduces an error of the discretization method.
The values of the weights, wp, and the abscisae, X, of
nodes where function f isto be evaluated, are dependent
on their number N and on the quadrature rule used. For
the sake of simplicity, we will omit the summation oper-
ator and write

pd

1

(85)

p

where fP denotes the value of the function at the global
integration node xp. The integrals of the external dis-
tributed force and moment vectors are, without the loss
of generality, assumed to be evaluated analytically. The
notation

niL_/OLni (x) dx

mL_/OLm(x)dx

(86)
(87)
will be used in the sequel.

Making use of the numerical integration, we get a dis-
crete form of (68)—(73)

h=rF—r?—wpRf (yf—c?) =0 (88)
hai =9F -9 —wp (kP —dP) =0 (89)
heii = +a’=0 (90)
ho i = P’ +bf =0 (91)
hioyi =8 —al+nt =0 (92)
hissi = PE —bY +mt

—Wp [amaf (Rﬁj (yjp — cf))} =0. (93)

The selection of the positions of the integration nodes
also concerns the way Eq. (67) is discretized. That is,
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we require that Eq. (67) is satisfied at integration nodes

only:

fi (Xp) = F‘17+p+i = M (Xp) — Rji (Xp) bj (Xp) = 0,
i=123 p=12..N.

(94)

The resulting discretized system constitutes a system of
18+ 3N non-linear algebraic equations of the beam el-
ement for the unknowns r{, r9, rg, 89, 89, 99, a2, a3,
a3, b?, bS, B3, r, r5, 1, 9L, 95, 9L, k1P, k3P, k3P
(p=1,2,...,N). Note that no kind of interpolation has
been introduced so far. In order to determine values of
the dependent variables a; (x), b; (X), ri (x), and 9; (x) at
nodes x,, from the nodal curvaturesk;®, k5P, k3P, aset of
additional local (or internal) integrals needs to be eval-
uated numerically. A low order local integration which
would employ only global integration nodes could be
used. However, we do not wish to restrict ourselves
by the order of the numerical integration. For that pur-
pose, some interpolation of the curvatures must be intro-
duced. The space of the curvature vectorsis clearly non-
linear. The conseguences of non-linearity are discussed
in agreater detail in the section on the update procedure
in Newton'siteration. At thispoint it sufficesto say that
the non-linearity of the curvature vector forced usto in-
terpolate the variations of k', i.e.

3K (X) = I (X) 8K ™. (95)

The space of the variations of K is found to be linear,
so the additive-type of interpolationis correct. |, (x) are
the interpolation functions (not necessarily polynomials
and not necessarily continuousfunctions) through thein-

tegration points x,,, such that

1, p=q
I = Opg = ’ : 96
p(Xq) = Opq {07 p+£q (96)
The interpolation of dk;" and not of K} iscrucial and has
adirect influence on Eq. (89), which should be recast in

itsvariationa form

hgyi = 59 — 39 — w0k P = 0. (97)
Remark 5 Replacing Eg. (89) with its weak form (97)
still achieves its goal, as any increment dK; preserves
kinematically exact boundary incremental rotations.

The local integrals over closed intervals [0,xp] are re-
placed by quadrature rules of order N,. Theinterpolation
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of dk; allowsusto introduce the numerical integration of
any order. The quadrature rules used are formulated as

Xp NP .
JALIGE S > W () (98)

Sp=

withWws, being theweightsand ys, abscisae of the quadra-
ture for any fixed interval [0,x,]. The range of index sp
istaken tobe 1,...,Np, where N, denotes the number of
points of the local numerical integration. Note that N
dependson‘p’.

Remark 6 In the computer programming of the algo-
rithm, an effective step-by-step computation of the local
integrals can be implemented. In each integration step,
solely the quadrature between the two subsequent global
integration nodesis applied and theresult isadded to the
previously obtained one. Unfortunately, such algorithm
can not be conveniently written in a simple expression.
Hence, for simplicity, the formasin Eq. (98) will instead
be used in the text.

An example showing an element using 4-node global
Gaussian integration (N = 4), and 3-point local Gaus-
sian integration between the global integration nodes is
illustrated in Fig. 3. Note that we need no local points
between the last globa node, xy, and the right bound-
ary point, because, for the integration over the whole el-
ement, solely the global integration nodes are needed.

e interpolation, collocation, global integration, nodes
o local integration points
I boundary points

O—@—0 L d
0 X1 X9 X3 X4 1

Figure 3 : The interpolation, the collocation and the
global integration nodes; and the local integration points.

Remark 7 Observe that the Galerkin-type of the finite
element method would employ the interpolation of func-
tions OK; (x), as given in (95), in the virtual work princi-
ple (47). In such manner, one would obtain from (47) N
integral equations

L
/ (Mi —=Rjibj)1pdx=0, p=12,..,N,
0
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which would be replaced by the summations using the
numerical integration

Rji (Xq) bj (Xq)) Ip (Xq) =0,

When choosing the inter polation through the integration
points, it follows | , (Xq) = 8pq, Which yields

Mi (Xp) —

This is exactly the same result as that given in (94) and
obtained without employing the interpolation functions.

Wq (Mi (Xq) — p=1,2,...,N

Rji (Xp) bi (Xp) = 0.

5.3 Linearization of discretized equilibriumequations

In order to find the solution of the system of non-linear
algebraic equations (88)—94), Newton'smethod is used.
Thecrucial step of the method isthe generation of the Ja
cobian matrix of the system, commonly referred to asthe
tangent stiffnessmatrix. Therefore, the partial derivatives
of functions fy, ..., hig, 3y with respect to all unknowns
need to be obtained. The deduction of the derivativesis
greatly simplified if the partial derivatives of the quanti-
ties present in the equations are prepared in advance:

(99)

wa- = —Cii () Cir3 (%) Ray (X) 1g(X)
—Cii (X) €jnmQq (X) Rni (X) @ (%) -

The proof of the relations (99) is found in Appendix A.
The components Cj; introduced above stem from thelin-
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earization of the congtitutive equations and read

acN acN
Gij :—ay'_ : Ci,j+3:—aK'_
] ]
g " (100)
C.g.faCi .3.3J3€i
i+3,) = J, 0 “iH3j+3 =
T oy, ek

The notation Cy; is used for the components of the in-
verse of the matrix Cyy = [Gij]; ;_; 5. Vector compo-
nents Qq (x) designate the mtegrals of the interpolation
functions (Qq (x) = J3'14(§)d€). The non-zero partial
derivativesof the discrete governing equationsare asfol-
lows:

oh . oh _
ord ok
oh R o o 0 0V
o s (01 1) "0
-
oo~ " g
of oRY ) 4P 6v,-p
e oha.i oha.i
399 a9" aP
ohgyi ohgyi G
9a0 0 1 T30 1
& ob; 0a;
aFl16+i aRp p P p ayjp
og [a'”""f 350 (V7 —<f) +amaPRl 06
Ohue. p p 6pr
aag = —Wp arnérkan (V ) +arnar an aag
ohe _ 1
300
N i aer?j PP P 6yj
aK:%q = —Wp [arnaPaK—%q (Vj —Cj> +amar an I =—q |-

By substituting relations (99) into the above partial
derivatives, we obtain the components of the tangent
stiffness matrix of an element. A more precise obser-
vation is taken only upon the derivatives of functions
h17:pti, p=1,...,N. Employing the numerical integra-
tion in place of the analytical for b (xp) yields

F]17+p+i C Rp |:b Wspejrnar Rnl (y| _C| ) m?i|
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With the help of Eqgs (100) we obtain

~ b 0
OMuriori _ cp o R
i,
09y 190 990 )
~ S, aRSp S, s P aysp
+Rlpiwsp &jrnar’ as?zl (ylp_clp) +ejrnarpRn'|’ﬁ
aﬁ17+p+i AP aLJp
0ad | i gal
B\ S (P P Sp RSP 6ylsp
+RjiWsp ejrnénerI (yl —CI )+ejrnar Rm@
(101)
M — _RP_
)
~ p , 5
ON17:psi —cP %+ o OKj  ORj ,
6K:§1q 3+, ] 6Kﬂq 3+i,3+] 6K:§1q 6K:§1q i

OR® oy
emar 3 1 (" — 67 + emar Ry =

+REVs,

On substituting (99) into (101), the result is completed.
The global tangent stiffness matrix of a structure is ob-
tained by assembling of tangent stiffness matrices of all
beam elements. It, however, should be emphasized, that
the tangent stiffness matrix of an element is described in
the global (spatial) coordinate system from the outset, so
that no coordinate transformation from the local to the
global coordinate system is needed.

5.4 The update procedure

Following Newton’s iteration scheme, at each iteration
stepn=0,1,2,... asystem of linear equationsis solved

Kay = —h", (102)
where K denotes the global tangent stiffness matrix,
h" isthe vector of functions hy, ..., hig,an, both initera-
tion n, and Ay isavector of corrections, whichisin clas-
sical Newton's method in linear vector spaces added to
the previous solution iterate vector Y™ of the non-linear
problem. Unfortunately, the configuration space of the
three-dimensional rotationsis not linear, which does not
allow usto sum the corrections of rotational vectors and
other quantities connected with rotational vectors.

Asaresult of an iteration step, the corrections of the un-
knownsare obtained, Ar?, AP, A&?, ALD, Ark, ASF, AkP
(p=1,2,...,N). New values of the position vector and
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stress resultants are obtained by adding the corrections
to the previous values

rOM L — O A0 (103)
r = e At (104)
"t ="+ 0a) (105)
2 = 2 4 ARP. (106)

The other variables are, however, not additive. A9?
and AS' are incremental rotational vectors at bound-
ary points. Because the rotations are the multiplicative
group, the corresponding boundary rotation matrices are
obtained by the multiplications
R = ARGRY

Lin+1 L
Ri™ = aRGR™.

(107)
(108)

The Spurrier algorithm [Spurrier (1978)] is then used to
extract new components of the boundary rotational vec-
ojn+1 Lin+1 o[n-+1 Lin+1

tors &7 and 9™ from RY™ and R,

The rotation matrix, the rotational vector, and the cur-
vature vector along the axis of the beam are obtained as
follows. The corrections of the components Ak " at any
point of the axis of the beam are obtained using the inter-
polation (95)

AK; (X) = 1p (x) Ak P (109)
Inserting (109) into (77) and integrating givesthe correc-
tions of the components of the rotational vector
AY; (x) = A9° 4 Qp (X) Ak;P. (110)
With the corrections of the rotational vector evaluated,
the incremental rotation matrix is found by employing
Eq. (82), and new components of the total current rota-
tion matrix are obtained by the multiplication of the two
rotation matrices, AR (x) and R (x)

R (%) = AR () RY (x).

(111)
From the updated total rotation matrix, the total rota-
tional vector is extracted. It is easy to see that the update
of the components of the curvature vector can be made
using the relationship (78) between k;®, 8P, and kP in
the exact incremental form

DK g (X) = Tij (AD (x))AK’j‘ (X). (112)
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Observe that, for the sake of clarity, the components of
the curvature vector have been expressed with respect to
the spatial basis. In fact, prior to the curvature update
they must be transformed into the material basisin itera-
tionstepn+1

Ak (x) = R (%) Ak g (%). (113)
Only then the curvature vectors are additive
K™Y (%) = k™ (%) + Ak (). (114)

The proof of the additivity of the curvature vectors is
analogousto the one for the additivity of the angular ve-
locity vectors. See, e.g., Shabana (1998).

Remark 8 The update procedure proposed above is dif-
ferent from procedures employed by other formulations.
Itiscrucial for the objectivity of the discrete strain mea-
sures, and for the path independent results in conserva-
tive systems.

6 Numerical examples

In this section, we consider several numerical examples
to demonstrate the performance and accuracy of the pro-
posed formulation. For comparison with other formula-
tions, in all numerical examples a linear elastic material
is employed in which the operators Cn and Gy in (20)—
(21) are taken to be diagonal matrices

[ EA; O 0
N=| 0 GA, 0 ] (Y—Yo)
| 0 0 GAg
[ GJ; O 0
M= 0 EJ, 0 ](KKo).
0 0 EJ

Here E and G denote eastic and shear moduli of ma-
terial; A; is the cross-sectional area, J; is the torsional
inertial moment of the cross-section; A, and Az are the
shear areasintheprincipal directions2 and 3 of the cross-
section; J, and J; are the cross-sectional inertial moments
about the principal axes 2 and 3.

Different types of elements are used in order to inves-
tigate the influence of the number of interpolation (and
global integration) nodes and the order of the local inte-
gration on the accuracy of numerical solutions. To distin-
guish between elements, each element is marked by the
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symbol ‘E’ and equipped by twoindices, En_m; N isthe
number of the interpolation nodes, and M is the number
of additional internal points between the two subsequent
global integration nodes used for the local integration.
Recall that the incremental curvatures are interpolated
by the polynomials of degree N — 1. Each element has
thus 18 + 3N degrees of freedom (see Section 5.2). The
storage of local 3MN valuesof the rotational vector com-
ponents is needed as explained by the update procedure
presented in Section 5.4.

The quadratic convergence of Newton's method was
achieved in al numerical examples. The iteration was
terminated when the Euclidean norm of the vector of
nodal unknowns, ||Ay||,, and of the vector of unbalanced
forces, ||h||,, was lessthan 1013,

Based on the present finite element formulation, a spe-
cia computer code was written for Matlab, release 11
for Windows [The MathWorks (1999)]. Numerical ex-
amples were run on an Intel based PC.

6.1 Illustration of objectivity

The present example shows — by the way of numerical
testing — the objectivity of the discrete strain measures
of the present formulation. We assume a given deformed
configuration of asingle element with the components of
the curvature k; known at 30 local points of the axis in
addition to the global nodes of the element (see Fig. 4)

1.2
*+K
1k +K;
0.8} " * Kz
0.6; M
0.4} x *
0of% '
Mo s
0Ff th"‘-t** B e ¥ he
+ + o
+ x +
_0.2' + + % ++-H'+ . x
-0.4' oy x x X *
-0.6

0 01 02 03 04 05 06 0.7 08 09
X

Figure 4 : Curvatures of the axis of an element at local
poins.

Then a variety of rigid-body rotations Rg was superim-
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posed. They were parametrized by a randomly chosen
rotational vector & g. From the prescribed rigid rotational
vector the corresponding displacements and rotations of
the boundary nodes of the element were calculated and
inserted into the right-hand side of the iteration scheme
(102). Using the tangent stiffness matrix of the previous
deformed configuration and new value of the right-hand
side vector, the current composed configuration was ob-
tained in one iteration step, describing the consequences
of the superimposed rotation. New values of the compo-
nents of the curvature vector at previously chosen local
points were obtained and compared with their previous
values.

[9rll, 9% max. absolute error in K
1.08 [0.8,0.7,02 1.11.10°%°
392 [18,27,22 111-107%
9.75 [4.8,6.7,5.2] 166-10716
11.29 [4.8,9.7,3.2] 555-10~Y

Table 1: Thetest of objectivity of strain measures

Because the strain measures are invariant under a super-
imposed rigid-body motion, new values should be equal
to the old ones. Only very small differences are alowed
due to the finite arithmetic of the computer. We used an
Intel based PC with afloating point arithmetic of the ma-
chine precision of order 2- 10716, In the numerical tests,
the absolute error of al components of the curvature vec-
tor were calculated. Very small differences were found
indeed. Therefore, only the maximum of all absolute er-
rors of al the 90 components is stated. In Tab. 1 we
present the results for four different rigid rotational vec-
tors. Each of the results show that the order of maximum
absolute error of the curvatures is less than the machine
precision (2- 10716), irrespective of the size of therigid
rotation.

6.2 lllustration of path independence

In order to study the path independence, a cantilever un-
der alarge point force at itsfree end was considered. The
force was applied to the cantilever in different number of
loading steps, A = 1, 2, 10, 50, and 100. The absolute
errors of all mechanical variables (including the stress
resultants) with respect to the results at A = 1 were cal-
culated. Only very small differences (lessthen 10~14) be-
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tween the results using different number of loading steps
were found (see Tab. 2). Thisindicatesthe path indepen-
dence of the present formulation.

A max. absolute error of results

2 10bP
10 100
50 10°1°
100 10~

Table 2 : Thetest of path independence

6.3 Lateral buckling of a cantilever

We consider a straight, inextensible, shear and in-plane
bending stiff cantilever, subjected to the point force at its
free end (see Fig. 5). The lateral out-of-plane buckling
load F; is sought. The numerical results are compared
with the analytical solution provided by Timoshenko and
Gere (1961).

Figure5: Lateral buckling of a cantilever.

The numerical solutionis obtained iteratively employing
the condition that the critical load represents the load at
which the tangent stiffnessmatrix becomes singular. The
inextensibility, shear and in-plane bending rigidity were
approximated by taking large values for GAy, GA;, EA,
and EJy (Fig. 5). Theselected propertiesof the cantilever
were

GA, = GA,=EA=EJ, = 10"

G) =50
L = 100.
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et. dof. n=1 Ne =2 Ne=>5 ne =10 ne=20
Ex o 0.112219000 0.101432352 0.100349434 0.100317209 0.100315118
Ex 10 0.112219000 0.101432352 0.100349434 0.100317209 0.100315118
E3 > 540 0.101375990 0.100349169 0.100315163 0.100314987 0.100314984
B33 540 0.101375990 0.100349169 0.100315163 0.100314987 0.100314984
E3 10 540 0.101375990 0.100349169 0.100315163 0.100314987 0.100314984
Es 2 300 0.100405493 0.100315809 0.100314980 0.100314984

Es 4 300 0.100406687 0.100315886 0.100314980 0.100314984

Es 10 300 0.100406687 0.100315886 0.100314980 0.100314984

Es 2 0.100320170 0.100314984 0.100314980

Es_5 0.100320935 0.100315007 0.100314980

Es_10 0.100320935 0.100315007 0.100314980

Es_> 180 0.100315089 0.100314970 0.100314980

Es.s 180 0.100315404 0.100314984 0.100314984

Es_10 180 0.100315404 0.100314984 0.100314984

E; o 78 0.100314839 0.100314981

E; 7 78 0.100315000 0.100314984

Ez 10 78 0.100315000 0.100314984

Eg », 42 0.100314980

Eg 5 42 0.100314983

Eg g 42 0.100314983

analytical solution 0.100314984

e.t.=element type, ne=number of elements

Table 3 : The out-of-plane buckling load.

In Tab. 3 the influence of the number of elements, the
number of interpolation nodes of an element, and of the
number of local integration points on the critical load is
displayed. Higher accuracy of the numerical solutionis
obtained by increasing the number of elements and/or by
increasing the number of interpolation nodes of an ele-
ment. The influence of the order of the local integration
isalso displayed, although itsinfluence is only minor.

When employing a single element with two nodes, a
rather substantial error isfound. Increasing the number
of two-node elements, yields a more accurate result. To
obtain a nine-digit accurate solution, 20 elements with 3
nodes are required; such a mesh has 540 degrees of free-
dom. Equally accurate results are obtained by using one
8-node element with 42 degrees of freedom. We should
emphasize the similarity of our results to the results of
the element proposed by Jeleni¢ and Sgje (1995). The
resultsfully agree, the only difference being that the for-
mulation by Jeleni¢ and Sgje requires the interpolation
polynomial of one degree higher compared to the present
formulation.

6.4 Cantilever bent to a helical form

We consider a very interesting example, presented by
Ibrahimbegovic (1997). When a straight in-plane can-
tilever is subjected to a point moment at its free end, it
deforms into a part of a circle which results in a pure
bending of the cantilever. A much more interesting be-
havior is observed when an out-of-plane point force is
added at the free end of the cantilever. The out-of-plane
force causes displacements of a beam in the out-of-plane
direction. When the two point loads are applied smulta-
neously, the beam bendsinto the helical form.

We took the same geometric and material properties of
the cantilever as in Ibrahimbegovic (1997) :

GAy = GA, = EA=10*
EJ, = EJ, = G = 10

L=10
M = 200mA
F = 50A.
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Figure 7 : Displacementsof thefree end of the cantilever and their projections on the coordinate planes of the spatial

coordinate system.

Figure6: Ilustration of a one-element, 8-node model of
cantilever subjected to the point load and moment at its
free end.

The two loads increase incrementally. We used values
from A = 0to A = 1 with the step 0.001. The beam was
modelled by a mesh of 5 elements with 8 interpolation
nodes. The nodes chosen are the points of the Gaussian
integration on the interval [0, L], asillustrated in Fig. 6,

and are therefore not equally spaced. Thischoiceresulted
in a higher accuracy of integration.

The displacements of the free end of the cantilever are
shown in Fig. 7. The projections on the planes (* shad-
ows') are added to give a reader better impression. The
comparison of the values of the components of the free-
end displacements in the direction of the applied force
shows almost complete agreement with the results by
Ibrahimbegovic (Fig. 8).

7 Conclusions

A new finite element formulation of thekinematically ex-
act three-dimensional beam theory based on the interpo-
lation of curvature is presented. The essential character-
istics of the formulation are;

(i) A modified principle of virtual work is proposed in
which the only independent unknown functionisthe
variation of the curvature vector.
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(i)

(iii)

(iv)

v)

(vi)

Copyright (© 2003 Tech Science Press

CMES, vol.4, no.2, pp.301-318, 2003

0 100 200 300 400

500

600 700 800 900 11000

Figure 8 : Displacements of the free end of the cantilever in the direction of the applied force.

Hence it followsthat the only function that needs to
beinterpolatedistheiterativeincrement (or the vari-
ation) of the curvature vector K*; this vector repre-
sents the energy complement to the moment vector
M given with respect to the spatial basis. The num-
ber of interpolation points marks the order of the
finite element.

Displacements and rotational vectors (or their vari-
ations) are not interpol ated.

The consistency condition that the equilibrium and
the constitutive internal force and moment vectors
are equal, is enforced to be satisfied at the interpo-
lation points (the ‘collocation’). This considerably
improves the accuracy of the calculated internal
forces and moments in materially non-linear (e.g.,
visco-plastic) problems. The abscisae of Gaussian
integration points were here employed as the inter-
polation points although the choice is arbitrary.

The determination of internal forces and moments
does not require the differentiation. It then follows
that the accuracy of theinternal forces and moments
isof the same order asthe accuracy of the basic vari-
able—the curvature. Thisisan important advantage
compared to formulations where the derivatives are
needed for the evaluation of internal forces.

The matrices of afinite element are derived with re-
spect to the global coordinate system. The coordi-
nate transformation from the local to the global sys-

(vii)

(viii)

(ix)
)
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tem isthus not necessary. An arbitrary initial curva-
ture and deformation of the beam can be assumed at
theinitial unloaded configuration.

The abjectivity of the discrete strain measures, i.e.,
their invariance to rigid-body motions, as imple-
mented in the present finite element scheme, was
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The path independence for conservative loadings
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The present finite elements are free of locking.
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Appendix A: Derivation of equations (99)

Partial derivatives are obtained using the connection be-
tween the variation of a scalar function and the variation
of itsvariables

of of

of (X1,..., %) = =—1 +... + =—Xy.

11
0xq 0Xn (115)

By inserting the interpolation (95) into (14) and integrat-
ing the equation, we obtain

59 (x) = 590+ /0 1 (€) Bk PdE
= &9+ Qp (x) 3" (116)

From (115) it follows

09

Rl B |
990

0
P Qp

while all the other partial derivatives of 9; vanish. By
rewriting the variation of the rotation matrix R = dOR
into the component form
ORij = —&kmOImR;j (117)

and inserting (116) into (117), we obtain the partial
derivatives of the components of the rotation matrix

R,

390 = —6kmRj
6Rij
3P —&kmQpRkj-

From (12) and (95) the variations of K; are expressed by
5Ki = Rji|p5K]fp,
which leadsto

aKi
—= =Rjilp.

*P e
6KJ-
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The partia derivatives of y; are obtained by varying Eq.
(79) in conjunction with (80)

CiN — Rji aj = 0.
Using (100) gives
CikOWk + Ci r 130K, —ORjia; — Rjidaj = 0. (118)

Inserting (116) and (117) into (118), and taking into ac-
count that daj = éa? in the case of conservative loads,
yields

Cikd¥k + Ci r+3Rm | péKjr;wp
+ €jnm (6'881 + QpéK:fnp) Rni aj — Rjiéa? =0.

By rearranging terms, the variation of yy is expressed by

the variations of the basic unknown variablesaf, 97, and

KiP as

CikdWk = Rjiéa? — €jnmRniq; 5'8%
— (Gir43Rnrlp +€nmQpRnia;) OKyP.

Hence, the partial derivatives of yi are

vk =
X CuRi
aa? ki FRji
0 ~
613% = —Cki€jnmRnia;
m
0 ~ ~
aszp = —GCiCir13Rmrlp — Chi€jnmQpRnia;.-
m

Here, C; denotesthe componentsof theinverse matrix of
the 3 x 3 upper left-corner sub-matrix of material tangent
matrix C:
Cuu Cr2 Gz
Ca Cx Cz

Cs2 Cs3

—1
Ca1



