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Finite Displacement Analysis Using Rotational Degrees of Freedom
about Three Right-angled Axes

Humihiko Gotou 1, Takashi Kuwataka1, Terumasa Nishihara1 and Tetsuo Iwakuma1

Abstract: The stiffness equation in finite displacement
problems is often derived from the virtual work equa-
tion, partly in order to avoid the complicated formulation
based on the potential functional. Describing the virtual
rotational angles by infinitesimal rotational angles about
three axes of the right-angled Cartesian coordinate sys-
tem, we formulate tangent stiffness equations whose ro-
tational degrees of freedom are described by rotational
angles about the three axes. The rotational degrees of
freedom are useful to treat three rotational components
in nodal displacement vectors as vector components for
coordinate transformation, when non-vector components
like Euler’s angles are used to describe finite rotations.
In this paper accuracy of the formulations is numerically
demonstrated.

keyword: Euler’s angles, rotational pseudo-vector, ro-
tational degrees of freedom

1 Introduction

Since finite rotational displacements in space can not be
expressed as linearly independent components on lin-
ear space, rotational degrees of freedom in finite dis-
placement analysis for spacial beams and plates are of-
ten treated as some kinds of three independent param-
eters, by which a rotation group, that is, a transforma-
tion matrix is described. Finite displacement formula-
tions are often derived from the first variation of the to-
tal potential energy, that is, the virtual work equation,
so that it is not necessary to define the potential func-
tional on the manifold which includes the rotation group.
Substitution of strain-displacement relationship into the
internal virtual work derives a stiffness equation. In or-
der to express the displacement field, one can use a ro-
tation group (transformation matrix) described by three
independent parameters such as: axial-vector compo-
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nents (rotational pseudo-vector [Argyris (1982); Kamita
and Kondo (1995); Atluri and Cazzani (1995); Ishihara
(1996); Okamoto and Omura (2003)], Rodrigues param-
eters [Argyris (1982); Cheng and Gupta (1989)], Eu-
ler’s angles [Goto, Li, Kasugai and Obata (1995); Go-
tou, Kobayasi and Iwakuma (1997); Gotou, Koyabasi,
Saiki and Iwakuma (1998); Béda (2003) ] or direction
cosines expressed as nine dependent components [Goto,
Morikawa and Matsuura (1998)]. Any displacement
fields expressed by those rotational components more or
less make strain-displacement relationship complicated.
It is difficult to directly derive the finite element formu-
lation by substitution of the strain-displacement relation-
ship into the internal virtual work. In place of that, it is
usual to utilize the linear stiffness equation which holds
in the local coordinate system co-rotating with rigid body
displacement components of a element. In order to trans-
form the nodal displacement vector of the element de-
scribed in the local coordinate system into that in the
global coordinate system, one can use transformation
matrix described by functions of the rotational parame-
ters. On the other hand, one can derive the relationship
to transform nodal external force vectors in the local co-
ordinate system into those in the global coordinate sys-
tem, by equating the external virtual work in the local
coordinate system with that in the global coordinate sys-
tem. Based on such derivation, one can choose infinitesi-
mal rotational angles about three axes of the right-angled
Cartesian coordinate system as rotational degrees of free-
dom, because the virtual displacements are infinitesimal.
In this paper we derive one of such formulations, whose
rotational degrees of freedom are angles about the three
axes and numerically demonstrate the accuracy.
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Figure 1 : Nodal displacement vectors

2 Formulation for beam element

2.1 Nodal relative displacement

Consider a straight beam element lying along z-axis in
a spacially fixed coordinate system (x, y, z) as shown in
(Fig. 1). Firstly we denote the nodal displacement vector
by

d ≡ �dT
1 d

T
2 �T (1)

di ≡ �ui vi wi θxi θyi θzi λi�T (i = 1,2)

where ui, vi and wi are translational displacements in the
directions of x, y and z-axes respectively; θxi, θyi and θzi

are rotational angles in the right-hand-screw directions of
x, y and z-axes respectively; and λ i is dθzi

dz .

θxi, θyi and θzi in Eq. 1 can not express finite rotations
but we use them to define infinitesimal relative rotational
angles between two nodes later on.

Secondly we denote the same nodal displacement vector
using Euler’s angles (α, γ, φ) as follows so that they can
express finite rotations.

d ≡ �d1
T d2

T �T (2)

di ≡ �ui vi wi αi γi φi λi�T (i = 1,2)

When an element whose node 1 is located at the point
(0,0, z0) and whose node 2 is located at the point

(0,0, z0 + �) moves as a rigid body, the nodal displace-
ment vector of the node 1 is written as follows.

D1 ≡ �u1 v1 w1 θx1 θy1 θz1 0�T (3)

Using the displacement vector of node 1 D1 we can write
the nodal displacement vector of the node 2 as

D2 =







u1

v1

w1


+T




0
0
�


−




0
0
�




θx1

θy1

θz1

0




(4)

where T is a transformation matrix which transforms lo-
cal coordinates (x�, y�, z�) into the global ones (x, y, z)
on the spacially fixed coordinate system and is written as
follows [Gotou, Kobayasi, Saiki and Iwakuma (1998)].

T(α,γ,φ) = (5)


cosφcosγ −sinφcosγ cosα sinγ
−sinφsinα sinγ −cosφsinα sinγ

sinφcosα cosφcosα sinα

−cosφsinγ sinφsinγ cosα cosγ
−sinφsinα cosγ −cosφsinα cosγ




Here we name the displacement vector D1 or D2 ‘rigid
body displacement vector’ of the each node and write the
nodal rigid body displacement vector of one element as
follows.

D ≡ � D1
T D2

T �T (6)

Suppose that the element was deformed and now has dis-
placements expressed by d . Here we define local coor-
dinate system (x1, y1, z1), whose origin is located at the
node 1 and whose z1-axis is tangent to the element axis
at the node 1 as shown in Fig. (1). We define relative dis-
placement components of d to the rigid body displace-
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ment vector D as follows.

r ≡ �rT
1 rT

2 �T (7)

r1 ≡ d1 −D1 = �0 0 0 0 0 0 λ1�T

r2 ≡ d2 −D2

=







u2 −u1

v2 −v1

w2 −w1


−T




0
0
�


+




0
0
�




θx2 −θx1

θy2−θy1

θz2 −θz1

λ2




In this way the rigid body displacement vector D 1 repre-
sents rigid body motion of the element so that the rela-
tive displacement vector r 2 represents substantial defor-
mation of the element. Increasing number of element di-
visions so that r 2 becomes small, we can evaluate the
relative displacement within the small displacement the-
ory, if the small strain assumption holds on all deforma-
tion paths. As mentioned above, θxi, θyi and θzi can not
express finite rotations but their small relative rotations
in Eq.7 can be approximately related with the compo-
nents of Euler’s angles by geometrical consideration as
follows [Gotou, Kobayasi and Iwakuma (1997); Gotou,
Kobayasi, Saiki and Iwakuma (1998)].



∆θx

∆θy

∆θz


 �


 −cosγ 0 sinγcosα

0 1 sinα
sinγ 0 cosγcosα







∆α
∆γ
∆φ


 (8)

Replacing infinitesimal angle components in Eq.8 by the
relative rotations of the node 2 to the node 1 and replac-
ing the finite Euler’s angles in Eq.8 by average rotational
angles of the both nodes, the following approximation is
derived.

r2 = (9)


u2 −u1 − �cosα1 sinγ1

v2 − v1 − �sinα1

w2 −w1 − �(cosα1 cosγ1 −1)
 −cos γ1+γ2

2 0 sin γ1+γ2
2 cos α1+α2

2
0 1 sin α1+α2

2
−sin γ1+γ2

2 0 cos γ1+γ2
2 cos α1+α2

2






α2−α1

γ2−γ1

φ2−φ1




λ2




2.2 Stiffness equation

We define the nodal force vector which does work for d

by

f ≡ �f1
T f2

T �T (10)

fi ≡ �Fxi Fyi Fzi Mxi Myi Mzi Mλi�T

(i = 1,2)

where Fxi, Fyi and Fzi are nodal forces in the directions of
x, y and z-axes respectively; Mxi, Myi and Mzi are nodal
moments in the right-hand-screw directions of x, y and z-
axes respectively; and Mλi is nodal bi-moment. Equating
the virtual work in the global fixed coordinate system (x,
y, z) with those in the local coordinate system (x 1, y1,
z1) we can write the virtual work equation as [Kamita
and Kondo (1995); Goto, Li, Kasugai and Obata (1995);
Gotou, Kobayasi, Saiki and Iwakuma (1998)]

fT δd = f�T δr � (11)

where vectors with a subscript � denote vectors whose
components are described in the local coordinate system.
Defining the following transformation matrix

To ≡
[

T1 O77

O77 T1

]
(12)

T1 ≡

 T O33 O31

O33 T O31

O13 O13 1




where Oi j denotes a i× j zero matrix, we substitute the
relation r � = To

T r into Eq.11 and rewrite it as follows

fT δd = fT
� δ{To

T r}
= fT

�

[
∂To

T

∂d
r +To

T ∂r
∂d

]
δd

= fT
� Rδd

= fT
� REδd (13)

where

R ≡
[

∂To
T

∂d
r +To

T ∂r
∂d

]

(14)

and E is a matrix derived from the inverse relation of
Eq.8 so that δd is equal to Eδd as follows

E ≡
[

e1 O77

O77 e2

]
(15)
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ei≡




I O 33 O31

O33


 −cosγ 0 sinγ
−sinγtanα 1 −cosγtanα
sinγ/cosα 0 cosγ/cosα


 O31

O13 O13 1




(i = 1,2)

where I denotes a 3×3 identity matrix. If strains are very
small during any deformation history, we can relate f �

and r � by the linear elastic stiffness matrix K as follows.

f� = Kr � (16)

From Eq.13 and Eq.16, we obtain the following relation.

f = ET RT f�
= ET RT KT o

T r (17)

In order to solve Eq.17 by Newton-Raphson Method and
Arc Length Method we deduce the incremental equation,
that is, the tangent stiffness equation as follows.

∆f =
∂

∂d

[
ET RT KT o

T r
]
∆d

=
[
∂ET

∂d
RTKT o

TrE+ET
[

∂RT

∂d
KT o

Tr+RTKR
]
E
]
∆d

≡ K1∆d (18)

While we derived the above tangent stiffness equation
only for the case in which we used Euler’s angles to de-
scribe finite rotations, we can also derive it for other ro-
tational parameters like rotational pseudo-vector compo-
nents and so on in the same manner. When we use Eu-
ler’s angles, the relation d = Eδd is necessary to make it
possible to transform rotational degrees of freedom into
the other coordinate system, if we want to analyze curved
beams and so on. When we use rotational pseudo-vector
components, which can be transformed as ‘vector’ com-
ponents, the relation is not always necessary and the tan-
gent stiffness equation can be written as follows.

∆f =
∂

∂d

[
RT KT o

T r
]
∆d

=
[

∂RT

∂d
KT o

Tr+RTKR
]
∆d

≡ K2∆d (19)

However the matrix R derived for the rotational pseudo-
vector becomes much more complicated than R for
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Euler’s angles. The tangent stiffness matrix K 1 is
symmetric only in equilibrium state, while the tangent
stiffness matrix K 2 is symmetric even in non-equilibrium
state, whether rotational degrees of freedom are Euler’s
angles or pseudo-vector components. We denote the
tangent stiffness matrix derived for Euler’s angles by
a superscript E and denote the tangent stiffness matrix
derived for rotational pseudo-vector components by P

(for example: KE
1 is K 1, whose rotational degrees of

freedom are described by Euler’s angles).

3 Numerical examples for beams

3.1 Buckling of beams under bending

Firstly we search the lateral torsional buckling problem
of a circular arch under uniform bending (see Fig. (2)-a)
by KE

1 and by K P
2 to compare their accuracies. Prop-

erties of the arch are; length of the arc � = 10.244 m;
cross-sectional area A = 9.288 × 10−2 m2; moment
of inertia about the minor axis Iy = 3.871 × 10−5m4;
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moment of inertia about the major axis Ix = 1.163 ×
10−4m4; St.Venant’s torsional constant J = 5.89 × 10−7

m4; warping section constant Iω = 5.5869× 10−7 m6;
Young’s modulus E = 200 GPa; and shear modulus
G = 77.2 GPa. In Fig. (3) we show the calculated
non-dimensionalized moments against number of the
elements for the case in which we considered warping
introducing λ into degrees of freedom and for the case
in which we neglect warping using only six degrees of
freedom for a node. For both K E

1 and KP
2 , the results

with warping converge to the modified Vlasov solution
[Vacharajittiphan, Woolcock and Trahair (1974)] in
which influences of warping and pre-buckling in-plane
displacements are considered, while the results without
warping converge to the modified Timoshenko solution
in which influence of only pre-buckling in-plane dis-
placements is considered. The results by K P

2 converge
to the analytic solutions at a little smaller number of
elements than K E

1 .

Secondly we search lateral torsional buckling of a
cantilever right-angled beam subjected to a shearing
force at the tip as shown in Fig. (2)-b. Properties of the
beam are as follows: length of each side of the angled
beam is 0.24 m; Young’s modulus E = 71.24 GPa and
shear modulus G = 27.19 GPa. In Fig. (4) we show
the results by K E

1 along with the results by Simo and
Vu-Quoc (1986) and Crisfield (1990) for the case in
which we neglected warping. The present results agree
better with the results by Crisfield (1990) than those by
Simo and Vu-Quoc (1986), which have a little higher
values.

Lastly we search the same right-angled beam for the
case, in which we consider warping for I-section shown
in Fig. (5). The results with warping have a little higher
values than those without warping.

3.2 Buckling of beams under torsion

We search post-buckling behavior of a straight beam
lying along z-axis subjected to a tip torsional moment as
shown in Fig. (6). At the fixed end all displacements are
restrained and at the other loaded end the axial transla-
tion w and the torsion θz are free. Assuming symmetry
mode deformation, we analyze half of the beam, at
whose symmetry edge (center of the original beam) u
and θx are restrained so that the edge moves along y-axis.
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Figure 7 : Post-buckling deformation of the beam

Properties of the beam are; Young’s modulus E = 71.24
GPa; shear modulus G = 27.19 GPa; the beam length
� = 240 mm; moments of inertia Ix = Iy = 0.0833 mm4;
and St. Venant’s torsional constant J = 2.16 mm4. In
the calculation 60 elements are used. Relation between
the torsional moment and the torsional angle is shown
in Fig. (6) and the post-buckling deformation is shown
in Fig. (7). The results by K P

1 and KP
2 agree better with

the results by Kamita and Kondo (1995). After the first
bifurcation the equilibrium path becomes instable and
the torsional moment is decreasing. The perfect circular
arc appears, when the torsional moment becomes 0 after
the second bifurcation.

Since moment components in ∆f in Eq.18 are defined as
moments about spacially fixed x, y, z-axes, we secondly
try to compute a beam subjected to three moments about
the x, y, z-axes at the tip end as shown in Fig. (8). At
the fixed end all displacements are restrained and at the
other loaded tip end only two translational displacements
in the directions of x, y-axes are restrained. The three
applied moments have same magnitudes at the same
time and are applied always about the same spacially
fixed axes, while the beam axis is rotating. Properties of
the beam are; Young’s modulus E = 71.24 GPa; shear
modulus G = 27.19 GPa; beam length � = 100 mm;
moments of inertia Ix = Iy = 0.0833 mm4; St. Venant’s
torsional constant J = 2.16 mm4. In the calculation 60
elements are used for K P

1 . Relation between magnitude
of the moments and the tip principal angle (norm of the
rotational pseudo-vector) is shown in Fig. (8) and the

0.5 10

0.5

1

M

M

M

θ

M�
πEI

Figure 8 : Beam subjected to 3 tip moments

post-buckling deformation is shown in Fig. (9). On the
stable path in the beginning loading, non-symmetric
deflection gradually increases. On the instable path after
the peak of 3-moment loading, a small kink appears
at the loaded end and is growing, as the moments are
unloading.

4 Extension to plate element

4.1 Formulation for plate element

In this section we try to extend the previously shown
formulation derived for a beam element also to a plate
element. We suppose a rectangular plate, whose right-
angled sides are initially lying on the spacially fixed x
and y-axes as shown in Fig. (10). We denote the vertices
by nodes 1, 2, 3 and 4 in order of the right-hand-screw
direction of z-axis so that node 1 is lying on the origin
(0, 0, 0), node 2 (a, 0, 0) and node 3 (a, b, 0). We denote
the nodal displacement vector of nodes 1-4 by

d ≡ ⌊
dT

1 dT
2 dT

3 dT
4

⌋T
(20)

di ≡ �ui vi wi αi γi φi�T

(i = 1,2,3,4)

where di is a displacement vector at node i; ui, vi and wi

are translational displacements in the directions of x, y
and z-axes respectively; α i, γi and φi are Euler’s angles
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as shown in the previous section. Using components of
di we define relative displacement vectors of the nodes to
node 1 in the same manner used to derive Eq.9 as follows.

r ≡ ⌊
rT

1 rT
2 rT

3 rT
4

⌋T
(21)

r i ≡ �ru
i rv

i rw
i rθx

i rθy
i rθz

i �T

(22)

=







ui −u1

vi − v1

wi −w1


−T




ξia
ηib
0


+




ξia
ηib
0




 −cos γ1+γi
2 0 sin γ1+γi

2 cos α1+αi
2

0 1 sin α1+αi
2

−sin γ1+γi
2 0 cos γ1+γi

2 cos α1+αi
2






αi −α1

γi −γ1

φi −φ1







(i = 1,2,3,4)
(ξ1,ξ2,ξ3,ξ4) = (0,1,1,0)

(η1,η2,η3,η4) = (0,0,1,1)

And we denote the nodal force vector of nodes 1-4 by

f ≡ �fT
1 fT

2 fT
3 fT

4 �T (23)

fi ≡ �Fxi Fyi Fzi Mxi Myi Mzi�T

(i = 1,2,3,4)

where Fxi, Fyi and Fzi are nodal forces in the directions of
x, y and z-axes respectively; Mxi, Myi and Mzi are nodal
moments in the right-hand-screw directions of x, y and
z-axes respectively. If we define the local force vector f �

and the local nodal relative displacement vector r � oper-
ating appropriate transformation matrices for f and d, we
can write the stiffness equation of the plate element in the
local coordinate system (x1, y1, z1) as follows.

f� = Kr � (24)

We decide components of K in Eq.24 in the follow-
ing manner. As matrix components relating (Fxi, Fyi)
with (ru

i , rv
i ), we utilize components of the linear elas-

tic stiffness matrix for the rectangular plane-stress ele-
ment [Yang (1986)] and as matrix components relating
(Fzi, Mxi, Myi) with (rw

i , rθx
i , rθy

i ), we utilize the linear
elastic stiffness matrix for the rectangular plate-bending
element [Gallagher (1975)]. As matrix components relat-
ing Mzi with rθz

i , we assume the following rigidity con-
stants [Zienkiewcz (1977)], so that equilibrium of mo-
ments holds as


Mz1

Mz2

Mz3

Mz4




=βEtA




1 − 1
3 − 1

3 − 1
3

− 1
3 1 − 1

3 − 1
3

− 1
3 − 1

3 1 − 1
3

− 1
3 − 1

3 − 1
3 1







θz1

θz2

θz3

θz4




(25)

where E is Young’s modulus; t is the plate thickness; A
is area of the plate plane; and β is a positive constant,
whose value is near 0 as far as calculation is possible.
Rewriting Eq.24 into the global coordinate expression,
we can derive the stiffness equation for the plate element.
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4.2 Numerical examples for plates

Firstly we search an elastica problem of a cantilever
beam modeled by plate elements as shown in Fig. (11).

One of the beam end is fixed and the other free end
is subjected to two shearing forces P/2 at the two tip
nodes as shown in Fig. (11). Properties of the beam are;
Young’s modulus E = 206 GPa; the beam length L =
100 cm; width of the plate element is 24 cm; thickness
of the plate element is 2 cm; and Poisson’s ratio is 0.
We divide axial direction of the cantilever beam by
elements, while we use only one element for the width
direction as shown in Fig. (11). Relation between the
tip deflection of the beam and the load is shown in
Fig. (12) along with the solution by elliptic integral.
The present results become close to the results by the
elliptic integral solution, as number of the elements are
increasing from 20 to 60 and in case with 100 elements
the present results well agree with the results by the
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24cm

E = 206 GPa
ν = 0

t = 2cm

w
P

Figure 13 : Column model of elastica problem
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Figure 14 : Elastica curve of the column

elliptic integral solution. In this connection the results
calculated by the beam-element formulation K E

1 even
with 20 elements well agree with the results by the
elliptic integral solution.

Secondly we search elastica problem of a column beam
modeled by plate elements as shown in Fig. (13). One of
the beam end is fixed and the other free end is subjected
to two axial forces P/2 at the two tip nodes. Properties of
the beam are same as the previous cantilever beam. We
divide axial direction of the beam by elements, while we
use only one element for the width direction as shown in
Fig. (13). Relation between the tip axial displacement of
the beam and the load is shown in Fig. (14) along with
the solution by elliptic integral. The present results well
agree with those by the elliptic integral solution even in
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case with 20 elements.

Lastly we search out-of-plane buckling of a square plate
as shown in Fig. (15). The plate is simply supported
at four sides and subjected to uniform compressional
stress σ at two parallel sides as shown in Fig. (15).
Properties of the plate are; Young’s modulus E = 206
GPa; Poisson’s ratio is 0.25; thickness of the plate is
1 cm; and width of the plate is 100 cm. We analyze
only 1/4 part of the plate considering the symmetry
condition and divide the part uniformly in x and y
directions by square elements as shown in Fig. (15). We
show in Fig. (16) relation between the relative error of
the present buckling stress to the analytic solution by
Timoshenko and Gere (1961) and number of elements
in log-log plot. Since the plots are distributed on the
straight line at area with greater number of elements, the
present results seem to converge to the analytic solution.

5 Summary

We formulated the tangent stiffness equation for a
straight beam element whose rotational degrees of free-
dom are components about three axes of the right-angled
Cartesian coordinate system, while the transformation
matrix of the formulation is described by rotational
parameters like Euler’s angles. We compared numerical
solutions by the formulation with those by the other
formulation whose rotational degrees of freedom and
transformation matrix are both described by rotational
pseudo-vector components. The solutions by the both
formulations converged to the same analytic solution.
We calculated buckling of beams considering warping
and found that the warping effect influences not only
the buckling load but also the post-buckling behavior.
We extended the formulation also to a rectangular plate
element and confirm that the formulation using rotational
degrees of freedom about the three axes can be utilized
for a plate element.
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