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Shape Optimization of Elastic Structural Systems Undergoing Large Rotations:
Simultaneous Solution Procedure

Adnan Ibrahimbegovic1 and Catherine Knopf-Lenoir2

Abstract: In this work we present an unconventional
procedure for combining the optimal shape design and
nonlinear analysis in mechanics. The main goal of the
presented procedure is to enhance computational effi-
ciency for nonlinear problems with respect to the conven-
tional, sequential approach by solving the analysis and
design phases simultaneously. A detailed development
is presented for the chosen model problem, the 3d rod
undergoing large rotations.

1 Introduction

Ever increasing demands to achieve a more economical
design of a structural system result with the need to ex-
ploit and analyze the nonlinear behavior of such a sys-
tem. Optimization methods can be called upon to guide
the design procedure and achieve desired reduction in re-
quired mechanical and/or geometric properties, which is
formally defined as minimization of the cost or objective
function depending upon chosen design variables. Tradi-
tionally (e.g. see Kleiber et al. [1997] for a very recent
review), the two fields directly concerned by this task,
nonlinear mechanics and shape optimization, are stud-
ied separately and when brought to bear on the same
problem their application is done in a sequential man-
ner, typically using two different computer codes, one for
mechanics and another for optimization. In this manner
the communication requirements are reduced since each
computer code gets only the minimum information from
the other one: so-called design sensitivity (e.g. Tortorelli
and Michaleris [1994], Rousselet [1992]) for optimiza-
tion code, or design variables for the finite element code
for mechanics. It is clear that such a standard approach to
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analysis and design will sacrifice the computational effi-
ciency for the case of practical interest where both cost
function and mechanical problem are nonlinear and re-
quire each an iterative procedure to be solved.

The main idea elaborated upon in this work relates to an
alternative method of analysis and design where those
two phases are formulated and solved simultaneously. In
that respect, the interdependence of analysis and design
variables is no longer assumed so that one can iterate si-
multaneously on both of them. In particular, design sen-
sitivity analysis need no longer be performed separately,
but it is naturally integrated as a part of the global solu-
tion procedure.

In mathematical terms the combined analysis and design
of this kind can be represented as a constrained mini-
mization problem (e.g. see Luenberger [1984] or Strang
[1986]), where the constraints are nonlinear, i.e. gov-
erning equations of non linear mechanics problem. At
each design iteration, the analysis variable should be con-
straint consistent.

The simultaneous procedure would seek the solution of
such a problem by making use of the Lagrange multi-
plier procedure to remove the presence of constraints and
makes it possible to enlarge the admissible space and,
more importantly, to iterate simultaneously on both anal-
ysis and design variables. Iterative intermediate values
of analysis variables are no longer consistent with the
constraint, except at the convergence, where basically the
same solution is obtained as for the standard sequential
solution but with a (significantly) reduced number of it-
erations. The simultaneous solution procedure gives the
same solution providing the latter is unique. One such
problem of shape optimization for geometrically nonlin-
ear rods is presented to illustrate these ideas in detail.

The outline of the paper is as follows. In Section 2
we briefly recall the governing equations of the cho-
sen model, geometrically exact 3d curved rod (e.g. see
Ibrahimbegovic [1995]). Simultaneous solution proce-
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dure for analysis and design leading to optimal shape is
presented in Section 3 and compared against the stan-
dard sequential solution. Some comments on numerical
implementation are given in Section 4. In Section 5, we
state the closing remarks.

2 Model Problem: 3d Curved Rod

In this section, we briefly review the governing equations
of the chosen model problem of a structure undergoing
large rotations, a 3d curved rod. For a more thorough
discussion of the chosen model we refer to Simo and
Vu-Quoc [1986], Iura and Atluri [1989], Simo [1992] or
Ibrahimbegovic, Frey and Kozar [1995], among others.

We assume that the initial configuration of the rod is in-
ternal force free and that can be described by a 3d vector
ϕ0(s) identifying the position of each point of the neu-
tral fiber (an inextensible fiber in the pure bending) and
the corresponding placement of the cross-section of the
rod which is carried out by choosing a local orthonor-
mal triad of vectors. The vector triad of this kind can
be obtained by simply rotating the global triad by an or-
thogonal tensor, ΛΛΛ0. For a usual choice of normal coor-
dinates with the first vector of the triad being orthogonal
to the cross-section and the remaining two placed in the
plane of the cross section, this orthogonal tensor becomes
a known function of the initial configuration, ΛΛΛ0(s). For
the case of a curved rod studied here, ’s’ is chosen as the
arc length.

By applying the normal loading f t , parameterized by
pseudo-time ’t’ (’pseudo’ in the sense that the inertia ef-
fects are neglected) we obtain the rod deformed config-
uration defined by the position vector ϕ t(s) and the or-
thogonal tensor ΛΛΛt(s). The latter is an accordance with
the usual kinematic hypothesis that the cross-section of
the rod would not deform, which, along with the hypoth-
esis that the first vector in the triad remains orthogonal to
it (with other two within the plane of the cross-section)
fully determines ΛΛΛt(s). See Figure 1 where the initial and
deformed configuration of the rod are presented.

In short, one can state that the configuration space of the
described model of 3d rod consists of

C := {φt = (ϕt ,ΛΛΛt) |ϕt ∈R3,ΛΛΛt ∈ SO(3)} (1)

where R3 and SO(3) are spaces of 3d vectors and special
orthogonal tensors, respectively.
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φ0 = (ϕ0,ΛΛΛ0)
φt = (ϕt ,ΛΛΛt)

Figure 1: Initial and deformed configuration of the rod.

The main difficulty in numerical solution of the prob-
lems featuring the rods of this kind stems from the pres-
ence of SO(3) group in its configuration space (e.g. see
Argyris [1982], Atluri and Cazzani [1995], Ibrahimbe-
govic, Frey and Kozar [1995], Ibrahimbegovic [1997] for
a more thorough discussion of these issues). In short, in
performing a standard task of computing the virtual work
principle or the consistent linearization, where a small ro-
tation described by skew-symmetric tensor δΘΘΘ ∈ so(3),
ought to superposed on a large rotation described by an
orthogonal tensor ΛΛΛ ∈ SO(3) one must first make use of
exponential mapping

ΛΛΛε = ΛΛΛexp[εδΘΘΘ]

exp[δΘΘΘ] = cosδθI+
sinδθ

δθ
δΘΘΘ+

1−cos δθ
δθ2 δθ⊗δθ (2)

where δθ is the axial vector of the skew-symmetric tensor
δΘΘΘ i.e. δΘΘΘ v = δθ×v, ∀v ∈R3.

We compare the last expression, rather involved, with re-
spect to a simple additive update of virtual displacement
field δϕ ∈ R3 superposed on the deformed configuration
ϕ ∈ R3

ϕε = ϕ +εδϕ (3)

The results in (2) and (3) can be presented in an equiva-
lent form by stating that the tangent space of the chosen
rod model is

T C := {δφ:= (δϕ,δθ) |δϕ ∈R3,δθ∈ R3} (4)

The strain measures employed in this rod theory (e.g.
Ibrahimbegovic [1995]) can be written in direct form as



Shape Optimization of Elastic Structural Systems Undergoing Large Rotations 339

εt = ΛΛΛtϕ′t (5)

for the axial and shear strains, and

ΩΩΩt = ΛΛΛT
t ΛΛΛ′t

ΩΩΩtv = ωt ×v;∀v ∈ R3 (6)

for bending and torsional strains. In (5), (6) and sub-
sequent equations we denote with superposed prime the
derivative with respect to arc-length coordinate in the ini-
tial configuration,

∂
∂s

(·) = (·)′ (7)

We consider the simplest case of linear elastic material
model for the rod which allows us to express the consti-
tutive equations in terms of stress resultants as

nt = C(εt −ε0) ; C = diag(EA,GA,GA) (8)

mt = D(ωt −ω0) ; D = diag(GJ,EI,EI) (9)

We also consider the simplest case of a circular cross sec-
tion, with section diameter ’d’, and

A =
d2π

4
; I =

d4π
64

; J =
d4π
32

(10)

as the section area, moment of inertia and polar moment.

In order to complete the description of the chosen rod
model we state the equilibrium equations in the weak
form as

G(φt ;δφ) :=
∫

(δε ·nt +δω·mt)ds−Gext(δφ) = 0 (11)

where Gext(δφ) is the external virtual work and δε and
δω are the virtual strains. The latter can be obtained as
the Gâteaux derivative of the real strains in (5) and (6),
by taking the results in (2) and (3) into consideration. In
particular, this leads to

δ̂ε(φt ;δφ) = Dφ[̂ε(φt)]

=
d
dε

[ΛT
t,εϕ
′
t,ε] |ε=0 (12)

= ΛΛΛT δϕ′+εt ×δθ

and

δΩ̂(φt ;δφ) = Dφ[Ω̂(φt,ε)]

=
d
dε

[ΛT
t,εΛ

′
t,ε] |ε=0 (13)

= δΘΘΘ′+δΘΘΘT Ω+ΩδΘΘΘ

which can also be written in an equivalent form in terms
of axial vectors

δω= δθ′+ω×δθ (14)

For the chosen model of geometrically non linear elastic
rod the weak form of the equilibrium equation in (11) can
be obtained as the minimum of the total potential energy

Π(φt) :=
∫

l

1
2
{(εt −ε0) ·nt +(ωt −ω0) ·mt}ds

− Πext(φ)→min (15)

with

Π(φt) = min
∀φ∗t

Π(φ∗t ) =⇒
{

Dφ[Π(φt)]≡ G(φt ;δφ) = 0
Dφ[DφΠ(φt)] > 0

(16)

3 Simultaneous Solution Procedure for Shape Opti-
mization

The shape optimization procedure is interpreted herein
as minimization of so-called cost or objective functional
J(·), a functional which depends not only on mechanical
variables φt but also on design variables dt which can be
written as
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J(φt,d) = min
G(φ∗, d∗;δφ)=0

J(φ∗,d∗) (17)

Contrary to the minimization of the total potential energy
functional in (15), not all mechanical and design vari-
ables are admissible candidates, but only those for which
(the weak form of) the equilibrium equations are satis-
fied. In other words, we need to deal with a constrained
minimization problem.

The classical shape optimization procedure of solving
this constrained minimization problem is carried out in
a sequential manner, where for each iterative value of de-
sign variables, a new iterative procedure need to be com-
pleted leading to φt(d) verifying the equilibrium equa-
tions. A considerable computational cost of such a pro-
cedure, most of it waited on iterating to convergence on
equilibrium equations even for non-converged values of
design variables, can be drastically reduced by formu-
lated the minimization problem in (17) using the method
of Lagrange multipliers with

max
∀λ

min
∀(φ∗t ,d∗)

L(φ∗t ,d∗; λ)

L(φ∗t ,d∗;λ) = J(φ∗t ,d∗)+G(φ∗t ,d∗;λ) (18)

In (18) above λ = (ν,µ) are the Lagrange multipliers fea-
turing in the weak form of equilibrium equations instead
of virtual displacements and rotations which in accor-
dance to the results presented in the previous section can
be written as

G(φt,d;λ) =
∫
l

 ν′
µ
µ′

 ·[ ΛΛΛT
t Et 0

0 ΩΩΩt I

]T (
nt

mt

)
ds

−Gext(λ) (19)

The main difference of (18) with respect to constrained
minimization problem in (17) pertains to the fact that
state variables φt and design variables d are now con-
sidered independent and they can be iterated upon simul-
taneously.

The Kuhn-Tucker optimality condition (e.g. Luenberger
[1984]) associated with the minimization problem in (18)
can be written as

0 = Dφ[L(φt ,d;λ)] = Dφ[J(φt ,d)]+Dφ[G(φt ,d;λ)] (20)

where

Dφ[G(φt ,d;λ)] ·δφ

=
∫
l

 ν′
µ
µ′

 ·[ ΛΛΛT
t Et 0

0 ΩΩΩt I

]T [
C 0
0 D

]
[

ΛΛΛT
t Et 0

0 ΩΩΩt I

] δϕ′
δθ
δθ′

 ds

+
∫
l

 ν′
µ
µ′

 ·
 0 ΛΛΛtNT

t 0
NtΛΛΛT

t ΞΞΞ(εt×nt)+ΞΞΞ(ωt×mt) Mt

0 0 0


 δϕ′

δθ
δθ′

 ds (21)

where we denoted ΞΞΞ(a×b) = (a⊗b)− (a ·b)I, as well
as Mtv = mt ×v and Ntv = nt ×v, ∀v ∈ R3; Moreover,
we have

0 = Dd [L(·)] = DdJ(·)+DdG(·) (22)

where

Dd [G(·)] ·δd

=
∫
l

 λ′

µ
µ′

 ·[ ΛΛΛT
t Et 0

0 ΩΩΩt I

]T
(

∂nt
∂d
∂mt
∂d

)
·δd ds (23)

and finally

0 = Dλ[L(·)] ·δλ

=
∫
l

 δλ′

δµ
δµ′

 ·[ ΛΛΛT
t Et 0

0 ΩΩΩt I

]T (
nt

mt

)
ds (24)

We note for illustration that if the rod diameter is chosen
as the design variable we can express the result in (23)
explicitly as
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∂nt

∂d
=

∂C
∂d

(εt−ε0);
∂C
∂d

= diag(E
∂A
∂d

,G
∂A
∂d

,G
∂A
∂d

)

(25)

∂mt

∂d
=

∂D
∂d

(ωt −ω0);
∂D
∂d

= diag(G
∂J
∂d

,E
∂I
∂d

,E
∂I
∂d

)

(26)

In order to provide a similar explicit result for direc-
tional derivative of the cost function, we consider a sim-
ple choice given as the rod volume (or its weight for a
constant density),

J(φt,d) =
∫
l

Ads (27)

In such a case the contribution of the cost function to the
Kuhn-Tucker optimality conditions can be written as

DφJ(φt ,d) ·δφ= 0

DdJ(φt ,d) ·δd =
∫
l

∂A
∂d

δd ds (28)

DλJ(φt ,d) ·δλ = 0

The shape optimization can also be carried out with re-
spect to the rod axis form in the initial configuration. A
reference configuration is selected in such a case (see
Figure 1) and the design variable is given in terms of the
position vector describing the rod initial configuration
with respect to this reference configuration d ≡ ϕ 0 (ξ).
The cost function in (25) can now be described as

J(φ,d) :=
∫
l

Ads

=
ξ2∫
ξ1

A j(ξ)dξ ; j(ξ) =
∥∥∥∥∂d(ξ)

∂ξ

∥∥∥∥ (29)

In this case all the integrals in (20) to (25) must be re-
computed with the same change of variables like the one
presented in (30), and the derivatives with respect to arc-
length coordinate ought to be computed by making use
of the chain rule

d
ds

(·) =
1

j(ξ)
∂
∂ξ

(·) (30)

The contribution of the cost function to the Kuhn-Tucker
optimality conditions for such a choice of design vari-
ables can be written as

Dd [J(φt ,d)] ·δd =

ξ2∫
ξ1

A
1

j(ξ)
d(ξ) · ∂d(ξ)

∂ξ
dξ (31)

4 Numerical Implementation

In this section we discuss several important aspects of nu-
merical implementation of the presented theory for anal-
ysis and design and related issues which arise in numeri-
cal simulations.

The analysis part of the problem,i.e. the state variables
are represented by using the standard isoparametric finite
element approximations (e.g. see Zienkiewicz and Tay-
lor [2000]). In particular, this implies that the element
initial configuration is represented with respect to its par-
ent element placed in the natural coordinate space, corre-
sponding to a fixed interval,−1 = ξ 1 ≤ ξ ≤ ξ2 = +1, by
using

ϕ0 (s)≡ x(ξ) =
nen

∑
a=1

Na (ξ)xa (32)

where x(ξ) is the position vector field with respect to the
reference configuration, xa are nodal values of an ele-
ment with nen nodes and Na (ξ) are the shape functions.
The latter can easily be constructed for rods by using
the Lagrange polynomials, which for an element with n en

nodes can be written as

Na (ξ) =
nen−1

∏
b=1,b�=a

ξ−ξb

ξa−ξb
(33)

where ξa , a ∈ [1,nen] are the nodal values of natural co-
ordinates.

With isoparametric interpolations one chooses the same
shape function in order to approximate the element dis-
placement field, which allows us to construct the finite
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element representation of the element deformed configu-
ration as

ϕ (ξ) =
nen

∑
a=1

Na (ξ)ϕa (34)

where ϕa are the nodal values of the position vector in
the deformed configuration. Finally, the incremental and
virtual displacement field are also presented by isopara-
metric finite element interpolations

δϕ(ξ) =
nen

∑
a=1

Na (ξ)δϕa

∆ϕ (ξ) =
nen

∑
a=1

Na (ξ)∆ϕa (35)

which enables that a new (iterative) guess for the de-
formed configuration be easily obtained with the cor-
responding additive updates of the nodal values

ϕa←− ϕa +∆ϕa

The finite element approximation of the incremental dis-
placement field in (36) above, where at each point ξ ∈
[ξ1,ξ2] the corresponding value is a linear combination of
the nodal values are referred to as the continuum consis-
tent (e.g. see Ibrahimbegovic [1994, 1995] for they allow
to commute the finite element interpolation and the con-
sistent linearization of nonlinear problem (e.g. Marsden
and Hughes [1983]).

For the same reason we also choose the isoparametric
interpolations for virtual and incremental rotation field
with

δθ(ξ) =
nen

∑
a=1

Na (ξ)δθa

∆θ(ξ) =
nen

∑
a=1

Na (ξ)∆θa (36)

The commutativity of the finite element discretization
and consistent linearization thus also applies to the ro-
tational state variables. The only difference from the dis-
placement field concerns the multiplicative updates of the

rotation parameters, which, when done at nodal points
(e.g. see Ibrahimbegovic and Al Mikdad [1998]) can be
written as

ΛΛΛa←ΛΛΛa exp [∆θa] (37)

In the combined analysis and design procedure proposed
herein one also needs to interpolate the Lagrange mul-
tipliers, which is also done by using the isoparametric
interpolations with

λ (ξ) =
nen

∑
a=1

Na (ξ)λa⇐⇒


ν (ξ) =

nen

∑
a=1

Na (ξ)νa

µ(ξ) =
nen

∑
a=1

Na (ξ)µa

(38)

The corresponding integrals appearing in governing La-
grangian functional in (18) or Kuhn-Tucker optimality
conditions in (20), (22) and (24) are computed by numer-
ical integration (e.g. Gauss quadrature, see Zienkiewicz
and Taylor [2000]). To illustrate these ideas we further
restate a single element contribution to the analysis part
of the governing Lagrangian functional in (19) given in
the discrete approximation by setting

G(φa,d,λa) :=(
λa

µa

) nip

∑
l=1

[
dNa(ξl )

ds I 0 0
0 Na(ξl)I dNa(ξl)

ds I

]T

[
ΛΛΛt(ξl) Et(ξl) 0

0 ΩΩΩt(ξl) I

]T (
nt(ξl)
mt(ξl)

)
j(ξ)wl−Gext(λ(ξl)) (39)

where ξl and wl are the abscissas and weights of the cho-
sen numerical integration rule (e.g. see Zienkiewicz nd
Taylor [2000] and nip is the total number of points for a
single element.

In order to complete the discretization procedure one
must also specify the interpolations of the design vari-
ables. If the latter is the thickness or the diameter for
the present case of a circular cross-section, or the ele-
ment nodal coordinates, it is possible to use again the
isoparametric finite element approximations. However,
the best results are obtained by reducing the number of
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design variables as opposed to those chosen at the ele-
ment level, by using the concept of design element and
employing, for example, Bézier and B-spline curves for
representation of rod shape (e.g. see Kegl [2000] for a
detailed discussion of these ideas). What is important
to note from the standpoint of the simultaneous solution
procedure presented herein is that the design variable at
any point is given as a linear combination of the design
element interpolation parameters

d(ξl) =
ndn

∑
a=1

Ba (ξl)da (40)

Consequently, the finite (or rather design) element dis-
cretization and consistent linearization will commute
again. This result was already noticed earlier for linear
analysis problem by Chenais and Knopf-Lenoir[1989].
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5 Conclusions

In this work we proposed an unconventional solution pro-
cedure for shape optimization problems, which solves si-
multaneously the analysis and design phase. Although
the total system to be solved includes both the minimiza-
tion of the cost function and the equilibrium equation,
i.e. solving simultaneously for mechanical and design
variables. In this manner we hope to achieve a more
efficient resolution with respect to the classical sequen-
tial approach in the case of nonlinear problems where
the analysis phase requires several iterations to converge.
Moreover, the standard optimization tasks, such as sen-
sitivity computation, is automatically integrated in the
proposed procedure. The final admissible values of de-
sign and mechanics variables are obtained only at conver-
gence. Therefore, we are implicitly targeting the applica-
tions in geometrically nonlinear elasticity, where the fi-
nal result would not be dependent on deformation trajec-
tory. In that sense, it is also possible if needed to modify
the presented procedure to account for eventual instabil-
ity phenomena of structures undergoing large rotations
(e.g. Ibrahimbegovic and Al Mikdad [2000]).
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