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Non-Rigid Modeling of Body Segments for Improved Skeletal Motion Estimation

Eugene J. Alexander,1 Christoph Bregler2 and Thomas P. Andriacchi3

Abstract: A necessary requirement for many muscu-
loskeletal modeling tasks is an estimation of skeletal mo-
tion from observations of the surface of a body segment.
The skeletal motion may be used directly for inverse
kinematic calculations or as an observation sequence for
forward dynamic simulations. This paper describes a
fundamentally new approach to human motion capture
for biomechanical analysis. Techniques for generating
three-dimensional models of human skeletal elements
from magnetic resonance imaging data are described,
along with a methodology for corresponding these high-
resolution internal models to externally observable fea-
tures. A system for generating dynamic visualizations of
these skeletal models from retro-reflective, skin-mounted
marker motion capture data is also developed. Next, a
set of techniques for estimating body segment shape and
pose without the need for retro-reflective markers, from
single and multiple, calibrated and un-calibrated cameras
is developed. Example results from both synthetic and
actual data sequences are presented.

1 Introduction

The purpose of this paper is to describe two techniques
for human motion capture. The goal of these techniques
is to estimate underlying skeletal motion from observa-
tions of the surface of the body segment. Both of these
techniques model the segments as deformable bodies,
improving the accuracy of skeletal motion estimates over
existing rigid body modeling approaches. Motion of the
body segments does not provide the information needed
for biomechanical analysis; what is truly desired is skele-
tal motion. Estimating skeletal motion from observations
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of the segment surface requires sophisticated techniques
for modeling the motion of the skin relative to the under-
lying bone.

Currently one of the primary technical factors limiting
the advancement of the study of human movement is the
measurement of skeletal movement from markers placed
on the skin. The most frequently used method for mea-
suring human movement involves placing retro-reflective
markers or fixtures on the skin surface of the segment
being analyzed. The movement of the markers is typi-
cally used to infer the underlying relative movement be-
tween two adjacent segments (e.g. knee joint) with the
goal of precisely defining the movement of the joint.
Skin movement relative to the underlying skeleton is a
primary factor limiting the resolution of detailed joint
movement using skin-based systems (Reinschmidt 1997,
Holden 1997).

The majority of studies describing three dimensional in
vivo segment motion do not account for errors associ-
ated with non-rigid body movement (Kadaba 1990). Sev-
eral investigators (Spoor 1980; Cappello 1997) have de-
scribed methods that were designed to reduce errors as-
sociated with non-rigid segment movement. These meth-
ods employ skin based marker sets placed on a limb seg-
ment to optimally estimate the location and orientation
of underlying unobservable skeleton. These techniques
in general model the limb segment as a rigid body, then
apply various estimation algorithms to obtain an optimal
estimate of underlying skeletal motion, subject to a rigid
body constraint.

One such rigid body model formulation is given by Spoor
and Veldpaus (Spoor 1980); they have described a tech-
nique using a minimum mean square error approach that
lessens the effect of deformation between any two time
steps. This method assumes that deviations from rigidity
can be modeled solely by an additive noise. This assump-
tion limits the scope of application for this method, since
markers placed directly on skin will actually experience
systematic as well as random movement.
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Lu expands on the rigid body model approach; rather that
seeking optimal rigid body transformations on each seg-
ment individually, multiple, constrained rigid body trans-
forms are sought, modeling the hip, knee, and ankle as
ball and socket joints (Lu 1999). The assumption of a ball
and socket joint is a limitation of this approach for stud-
ies of knee motion. Lucchetti takes a different approach,
using artifact assessment movements to determine the
correlation between flexion–extension angles and skin
marker artifact trajectories (Lucchetti 1998). Application
of this technique produced decreases in joint center posi-
tion errors from 14 mm to 4 mm, while orientation errors
were reduced from 6 degrees to 3 degrees. A limitation
of this approach is the assumption that the skin motion
during the dynamic artifact assessment movements is the
same as during the dynamic activities. Energy and mo-
mentum conserving algorithms for multi-rigid body dy-
namics have also been developed (Rochinha 2000).

With skin-based marker systems in most cases only large
motions such as flexion-extension have acceptable error
limits. Cappozzo examined five subjects with external
fixator devices and compared the estimates of bone lo-
cation and orientation between coordinate systems em-
bedded in the bone and coordinate systems determined
from skin based marker systems for walking, cycling and
flexion-extension activities (Cappozzo 1994). Compar-
isons of bone orientation from true bone embedded mark-
ers versus clusters of three skin-based markers indicate a
worst-case root mean square artifact of 7 degrees. They
also examined the motion of a number of markers rela-
tive to the bone embedded system for markers near bony
landmarks and for markers away from such landmarks.
A maximum displacement of 40 mm is reported for a
marker over the greater trochanter, with markers away
from bony landmarks moving appreciably less, with a
peak error of approximately 25 mm. Comparisons of
bone orientation from true bone embedded markers ver-
sus clusters of three skin-based markers indicate a worst-
case root mean square artifact of 7 degrees.

Andriacchi described a point cluster technique (PCT)
that employs an overabundance of markers (a cluster)
placed on each segment to minimize the effects of skin
motion artifact (Andriacchi 1994; Andriacchi 1998). The
basic PCT can be extended to minimize skin motion arti-
fact by optimal weighting of the markers according to
their degree of deformation. Alexander extended the
PCT by imposing a functional form on marker motion

relative to the underlying bone (Alexander 2001). By ac-
counting for the changing shape of the limb segment, a
decrease in the bone pose estimate error can be achieved.
The base PCT transformation equations do not explicitly
account for segment deformation; however, the equations
can be extended to the general deformation case. Tech-
niques for modeling and subsequently estimating these
deformations are summarized in Section 2.3.

Skeletal movement can be measured using alternative
approaches to a skin-based marker system. These ap-
proaches include stereo radiography (Jonsson 1994),
bone pins (LaFortune 1992) external fixation devices
(Holden 1997) or single plane fluoroscopic techniques
(Banks 1996, Stiehl 1995). While these methods pro-
vide direct measurement of skeletal movement, they are
invasive or expose the test subject to radiation. These
methods also impede natural patterns of movement and
care must be taken when attempting to extrapolate these
types of measurements to natural patterns of locomotion.

After obtaining an estimate of skeletal movement, it can
be beneficial to generate subject-specific geometric rep-
resentations of anatomy. The development of 3D skeletal
models requires reconstruction of the bones and of the
articular cartilage. Bone reconstruction is a relatively
easy problem, with segmentation possible using stan-
dard threshold based, seed growing techniques (Bezdek
93; Warfield 1998; Stammerberger 1999) or more so-
phisticated model based techniques (Kapur 98, Warfield
2000). Soft tissue structures and particularly articular
cartilage models are more difficult to generate accurately.
Recent work by Peterfy (Peterfy 1994) exemplifies the
new MRI scan sequences and cartilage model generation
techniques.

Further developments are needed involving the integra-
tion of morphological and material property data with
kinematic and kinetic data obtained in a motion labora-
tory. New developments in medical imaging have made
it possible to obtain three-dimensional segmented im-
ages of bone, cartilage and connective tissue surround-
ing joints. The next major developments in this field will
likely incorporate information from medical imaging into
a construct suitable for functional testing, along with the
development of technologies that capture human motion
in a completely unrestricted environment.

One such technology is the adaptation of computer vision
techniques to biomechanical human motion capture. The
vast majority of these modeling techniques are focused
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on tracking rigid objects or scenes; however, recent de-
velopments in the field hold great promise for tracking
deformable objects such as human limbs, faces, torsos, or
shod feet. Most techniques treat low-level tracking and
3D structural constraints independently. This paper de-
scribes techniques to track and reconstruct non-rigid mo-
tions from single or multiple views without prior models.

Many non-rigid tracking schemas have been proposed
previously. Most techniques use a priori models (Lanitis
1995, Blake 1995, DeCarl 1998, Black 1997). Most of
these techniques model 2D non-rigid motion, but some
of these techniques also recover 3D pose and defor-
mations based on a 3D model. The 3D model is ei-
ther obtained from 3D scanning devices (Blanz 1999) or
stereo cameras (Burak 2001), or multi-view reconstruc-
tion (Pighin1998, Guenter1998 ). Extensions have been
proposed, such as the method for factoring facial expres-
sions and pose during tracking (Bascle 1998). Although
it exploits the bi-linearity of 3D pose and non-rigid object
configuration, it requires a set of basis images selected
before factorization is performed. The discovery of these
basis images is not part of the algorithm.

This paper presents a new approach to motion capture
that provides a complete solution to the dynamic skele-
tal modeling problem. Section 2, Development, covers
the development of the skeletal models from MRI data,
correspondence of the internal model to externally ob-
servable features, and the acquisition of motion capture
data without the use of retro-reflective markers. Section
3, Results, provide example results for each of these tech-
niques, for both synthetic and actual data. Finally, Sec-
tion 4, Conclusion, puts these developments in context,
describes some limitations of the approach, and proposes
some future development directions.

2 Development

2.1 Skeletal model Generation from MRI Data

Development of three-dimensional subject-specific
skeletal models is performed through the use of a
model based technique. This technique starts with the
construction of a template of the joint from healthy
normal data sets. The templates of the knee bones and
cartilages were generated by manual segmentation of the
MR scan of a normal subject. To facilitate segmentation
of cartilage structures from MRI for further image
processing, a segmentation technique that is based on

the live wire algorithm (Falcao 1998) was applied.

The inner cartilage surface (ICS) is determined by seg-
mentation and 3D reconstruction of the femur, tibia, and
patella. A standard seed growing threshold based seg-
mentation technique is applied to determine the bone
voxels. The 3D bone model is then constructed using
the marching cubes algorithm (Lorenson 1987).

Initial rigid registration of the bone templates and the
reconstructed bone elements of the subject data are ac-
complished through a 3D surface-based registration tech-
nique that does not require the use of an external frame or
fiducial markers (Hemler 1995). This detector produces
accurate surface points and their corresponding surface
normals. This routine is applied to the template and the
subject data set. For the model, both the surface points
and surface normals are used to form locally supporting
planes (for each voxel). These planes form an approxi-
mated surface for the baseline skeletal site. For the sub-
ject data set, the surface points are matched in the regis-
tration procedure onto the surface of the baseline data set.
Once these surfaces are detected, we use the Levenberg-
Marquardt procedure to find the rigid-body transforma-
tion that best matches these two surfaces (Figure 1). The
algorithm also produces an outward pointing surface nor-
mal at each of the surface points.

The second stage of the fitting of the bone elements re-
quires an elastic registration approach. We adapted the
elastic registration technique described by Dengler (Den-
gler 1987). This algorithm seeks to find a deformation
field d(u) that minimizes

M(u−d(u))−S(u) (1)

where M(u) is the model data and S(u) is the subject data.
Details are available in (Dengler 1987).

Once the optimal deformation fields have been calculated
for the bony elements, they can then be applied to the
outward pointing surface normals of the bones and the
cartilage templates. The outer cartilage surface (OCS)
of the models is then taken as the highest probability lo-
cation of the subject OCS. A gaussian probability distri-
bution function (GPDF) is centered on this location, di-
rected along the deformed surface normal of the ICS. The
variance of the GPDF is selected such that the thickness
of the model cartilage is equal to 3 times the standard
deviation.

All of the elements required for the final step in the seg-
mentation are now available; the gray scale values of the
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Figure 1 : Correspondence of a three dimensional
femoral model to subject MRI data to facilitate cartilage
segmentation.

subject data set and a GPDF centered on the initial es-
timate of the OCS. The Canny edge detection algorithm
was modified to incorporate the additional information
provided by the GPDF. The gradient of the image data
is weighted by the GPDF to provide the final estimate
of the OCS. The segmented subject cartilage can now be
reconstructed, again using the marching cubes algorithm.

2.2 Internal to External Correspondence

The next step is the correspondence of the high-
resolution 3D internal images derived from MR scans to
externally observable features. The motion of the sub-
ject specific 3D anatomic elements can then be driven
by data acquired from the motion lab. Fidelity of these
animations requires calculation and application of a se-
quence of rigid body transformations, some of which are
directly calculable and some of which are the result of
optimizations (the correction for skin marker deforma-
tion from rigidity does not use the rigid body assumption,
but generates a correction that is applied as a rigid body
transform).

In summary, the process is:

a) Acquire data from MRI and motion capture proto-
cols.

b) Directly calculate a set of transformations from this
data.

c) Calculate a set of transformations from optimiza-
tions.

d) Generate a 3D representation of the anatomic ele-
ments from the MRI data.

e) Apply the transformation sequence to the geometric
representation.

Multiple video cameras acquire data with the subject
standing still and during activities of interest. In order to
correspond activities in the gait lab with the MR scans, a
reference data set (subject standing still, prescribed pos-
ture) is acquired with 8 markers clustered about the knee.
These markers are filled with a gadalinium solution and
covered with a retro-reflective material, rendering them
opaque to both imaging modes. The locations of these
markers are recorded on the subject with a marker and
the circular mounting tapes prior to the subject’s transi-
tion from the gait lab to the MR lab. The markers are
then remounted prior to the MR scan(s).

Each marker is assigned a unit mass and the center of
mass and principal axes of inertia are calculated. By
treating the center of mass and principal axes as a trans-
formation, local coordinates can be calculated. Another
set of coordinate systems is also required for this tech-
nique; limb segment specific anatomic landmarks are
identified through palpation and a clinically relevant co-
ordinate system defined. The transformations calculated
from optimizations bring the anatomic model from the
MRI coordinate system to the optimal estimate of the
bone location in the global video coordinate system. For
the first optimization, for each limb segment, calculate
the linear least square error rigid body transformation
from the MR limb segment anatomic coordinate system
to the video limb segment anatomic coordinate system,
using the subset of common markers appropriate for each
segment.

The second optimization calculates a correction for the
deviation of the limb segment from rigidity during each
time step of the activity, using the PCT with either the
mass redistribution (Andriacchi 1998) or interval defor-
mation algorithms (Alexander 2001). The interval defor-
mation correction technique used for the experiments in
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this paper is summarized section 2.3. The transformation
sequence is provided in Table 1. This transformation se-
quence is applied to each of the anatomic elements over
each time step of the activity.

2.3 Deformation Correction

A cluster of M markers is placed on a subject limb seg-
ment. The position vector of each marker in the labora-
tory coordinate system is denoted as G(i,n) for marker
i, (i = 1,2, . . .,M) at time n, (n = 1,2, . . .,N), where N is
the number of time samples. A unit weight factor is as-
signed to each marker for the purpose of calculating the
center of mass and principal axes of inertia of the cluster
of markers. The global coordinates of each of the mark-
ers are given by:

G(i,n) = C(n)+E(n)L(i,n) i = 1 . . .M (2)

where G(i,n) is the position vector of marker i, C(n) is
the center of mass of the cluster of markers, E(n) is a
rotation matrix constructed from the principal axes of in-
ertia of the cluster, and L(i,n) is the local position vectors
of marker i in the cluster system.

The measured marker locations G(i,n) are also defined
with respect to the unobservable origin P(n) and orienta-
tion O(n) of a coordinate system embedded in the bone
by

G(i,n) = P(n)+O(n)R(i,n) i = 1 . . .M (3)

where R(i,n) is the position vector of marker i relative to
the bone embedded coordinate system at time n. This
bone embedded coordinate system is defined as being
coincident with the cluster coordinate system when the
subject is at rest in the reference posture. The bone and
cluster systems are each orthogonal systems, related by
a rigid body transformation which is defined by the rota-
tion Ecb(n) and translation Ccb(n)

R(i,n) = Ccb(n)+Ecb(n)L(i,n) i = 1 . . .M (4)

Equating 1 and 2, substituting for R(i,n), collecting on
L(i,n) and equating like terms yields

O(n) = E(n)E−1
cb (n) (5a)

P(n) = C(n)−O(n)Ccb(n) (5b)

Since G(i,n) are known by measurement, once R(i,n) are
specified, Ecb(n) and Ccb(n) can be calculated, and sub-
sequently O(n) and P(n) are calculable. In other words,
once the positions of the markers relative to the bone are
successfully estimated, the bone location in the global
coordinate system is specified. The remaining task is to
determine the motion of the markers relative to the un-
derlying bone. For this problem, the observations are the
local position vectors in the cluster system L(i,n) for all
markers i, all time samples N. It is assumed that each co-
ordinate j of each marker i has some parameterized tra-
jectory d(ai, j) relative to the underlying bone, with addi-
tive noise v(i, j,n). These noise distributionsare assumed
to be independent of each other and are all Gaussian dis-
tributions about the parameterized trajectory. Then

R̂(i, j,n)= d(ai, j)+v(i, j,n) j = 1 . . .3 i = 1 . . .M

(6)

where ai, j is a vector of parameters for marker i, coordi-
nate j. Then the estimate of the data is given by

L̂(i,n) = E−1
cb (n)[R̂(i,n)−Ccb(n)] i = 1 . . .M (7)

Without further restrictions the problem is indetermi-
nate, as the locations of the markers in the bone system
R(i,n) are never observable with the opto-electronic sys-
tem. The problem is converted to a chi-squared estimate
problem by imposing a functional form on the marker tra-
jectories relative to the bone system and inferring that the
observation of the cluster system in the reference position
is also an observation of the bone system. The functional
form can be selected on the basis of a priori knowledge
of the activity being studied; for example, in level walk-
ing, a periodic activity, the marker motion relative to the
underlying bone can be modeled as a sinusoid. The max-
imum likelihood estimate is then obtained by seeking a
minimum to the chi-square error metric:

χ2 =
M

∑
i=1

3

∑
j=1

N

∑
n=1

(
(L(i, j,n)− L̂(i, j,n))

σ(i, j,n)

)2

(8)

2.4 Markerless Motion Capture – Single Uncalibrated
Camera

Given a sequence of N video frames, the optical flow of
P pixels or the tracked location of P sparse features in
this sequence can be coded as two N×P matrices: U and
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From System To System Type Purpose
MR Global MR Anatomic Direct Anatomic element in local system
MR Anatomic MoCap Anatomic Optimization Correspond - internal to external
MoCap Anatomic MoCap Deformed(t) Direct Correspond - Cluster to Bone
MoCap Deformed(t) MoCap Bone(t) Optimization Skin motion correction
MoCap Bone(t) MoCap Global(t) Direct Bone motion

Table 1 : Transformation sequence. The sequence of transformations required to generate dynamic visualizations of
the MRI generated anatomic elements from motion capture data acquired with external retro-reflective markers.

V . Each row of U holds all x-displacements of all P loca-
tions for a specific time frame, while each row of V holds
all y-displacements for a specific time frame. It has been
shown that if U and V describe a rigid 3D motion, the
rank r of the composite matrix W , which is composed of
U stacked on V , has an upper bound depending on the as-
sumed camera model. For example, for an orthographic
camera model the rank r ≤ 4, for a perspective camera
model the rank r ≤ 8 (Tomasi 1992; Irani 1999). This
rank constraint is due to the fact that W can be factored
into two matrices: Q×S ·Q, which is 2N × r, describes
the relative pose between camera and object for each time
frame, and S, which is r×P, describes the 3D structure
of the scene that is invariant to camera or object motion.

Bregler has shown that non-rigid object motion can also
be factored into two matrices but of rank r that is higher
than the rigid bounds (Bregler 2000). Assuming the 3D
non-rigid motion can be approximated by a set of K
modes of variation, the 3D shape of a specific object con-
figuration can be expressed as a linear combination of K
key-shapes (S1, S2, . . .Sk). Each key-shape Si is a 3×P
matrix describing P points. The shape of a specific con-
figuration is a linear combination of this basis set:

S =
K

∑
i=1

li ·SiS,Si ∈ ℜ 3×P, li ∈ ℜ (9)

Assuming weak-perspective projection, at a specific time
frame t the P points of a configuration S project onto 2D
image points (ut,i, vt,i):

[
ut,1 . . . ut,p

vt,1 . . . vt,p

]
=Rt ·

(
K

∑
i=1

lt,i ·Si

)
+TiRt =

[
r1 r2 r3

r4 r5 r6

]
(10)

Rt contains the first 2 rows of the full 3D camera rota-
tion matrix, and Tt is the camera translation. The weak

perspective scaling f/Zavg of the projection is implicitly
coded in lt,1, . . . lt,K . As in Tomasi-Kanade, Tt is elim-
inated by subtracting the mean of all 2D points, and
henceforth assume that S is centered at the origin. Weak
perspective projection is in practice a good approxima-
tion if the perspective effects between the closest and
furthest point on the object surface are small. Extending
this framework to full-perspective projection is straight-
forward using an iterative extension, but all experiments
reported here assume weak perspective projection.

We can rewrite this equation as a matrix-matrix multipli-
cation:

[
ut,1 . . . ut,p

vt,1 . . . vt,p

]
=
[

lt,1 ·Rt · · · lt,k . . .Rt
] ·



S1

S2
...

Sk


 (11)

By stacking all point tracks from time frame 1 through N
into one large 2F×P measurement matrix W , then using
equation 11 yields:

W =




l1,1R1 · · · l1,KR1

l2,1R2 · · · l2,KR2
...

...
...

lN,1RN · · · lN,KRN


 ·



S1

S2
...

SK


= Q ·B (12)

Since Q is a 2F ×3K matrix and B is a 3K ×P matrix,
W has, in the noise free case, a rank r = 3K. The fol-
lowing sections describe how this rank bound on W can
be exploited for the 3D reconstruction of pose, non-rigid
deformations, and key-shapes from monocular image se-
quences. Torresani has previously shown how this con-
straint can also be used for constrained low-level track-
ing and recovery of occluded feature locations (Torresani
2001).

The factorization of W into Q and B is not unique. Any
invertible r×r matrix G applied as (QG−1)(GB) leads to
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an alternative factorization with the same sum-of-squared
error as QB. Using singular value decomposition, we
compute a Q with orthonormal columns and a B. In gen-
eral this Q will not comply to the structure described in
equation 12. For the general case, transforming Q into
a Q that complies to these constraints can not be done
with a linear least-squares solution. For the non-rigid
case, a second factorization step is required on each sub-
block that transforms Q into a Q that complies to the con-
straints. The details of this second factorization step are
described in section 2.6, on multiple calibrated camera
homogeneous factorization.

2.5 Multiple Un-calibrated Cameras

For biomechanical analysis this factorization technique
can be extended to incorporate multi-view inputs from M
cameras. This enlarges the input matrix W to size 2FM×
P. As in the single view case, W has N sub-blocks

Wt,c =
[

uc,1 · · · uc,P

vc,1 · · · vc,P

]
, Wt =




Wt,1

Wt,2
...

Wt,N


 , W =




W1

W2
...

WN




(13)

As before, we assume that Wt,c can be described by a
2 × 3 pose matrix Rt,c, by K deformation coefficients
lt,1, lt,2, . . . lt,k, and a 3K × P key-shape matrix B. As-
suming the cameras are synchronized, an additional con-
straint for the multi-view case is that all M views share
the same deformation coefficients for a particular time
frame t:

Rt =




Rt,1

Rt,2
...

Rt,M


 , Wt =

[
lt,1 ·Rt lt,2 ·Rt · · · lt,K ·Rt

] ·B
(14)

Similar to our previous 2-step factorization, we can factor
W into Q and B complying to this new structure. Further-
more we can enforce another constraint if all M cameras
remain fixed relative to each other: The relative rotation
between all Rt,c in the Rt sub-block of Q is constant over
time. This is enforced with a nonlinear iterative opti-
mization after the 2-step factorization.

2.6 Homogeneous factorization from multiple cali-
brated cameras

With the addition of a calibration procedure it is also pos-
sible to extend these techniques to determine the absolute
orientation and location relative to some global coordi-
nate system, perhaps one embedded in a force measure-
ment platform. In this case the markers on each limb
segment are represented by a set of homogeneous basis
shapes S1,S2, . . . ,Sk. Each basis shape Si is a 4×P matrix
describing P homogeneous points. The overall shape is
then given by a linear combination of these basis shapes:

S,Si ∈ ℜ 4×P, li ∈ ℜ S =
K

∑
i=1

li ·Si (15)

The P points of the overall shape S are projected onto 3D
data (x,y,z):


 x1 x2 · · · xp

y1 y2 · · · yp

z1 z2 · · · zp


= T ·S, T =


 r1 r2 r3 tx

r4 r5 r6 ty
r7 r8 r9 tz




(16)

Equation (16) can be rewritten as a matrix-matrix multi-
plication


 x1 x2 · · · xp

y1 y2 · · · yp

z1 z2 · · · zp


=

[
l1 ·T · · · lk ·T

] ·



S1

S2
...

Sk


 (17)

Add a time index to each 3D point and denote point i in
frame t as (x(t)

i , y(t)
i , z(t)

i ). Code the N frames of data
into a matrix and use Eq. 17:




x(1)
1 · · · x(1)

p

y(1)
1 · · · y(1)

p

z(1)
1 · · · z(1)

p
... · · · ...

x(N)
1 · · · x(N)

p

y(N)
1 · · · y(N)

p

z(N)
1 · · · z(N)

p




=




l(1)
1 ·T (1) · · · l(1)

k ·T (1)

... · · · ...

l(N)
1 ·T (N) · · · l(N)

k ·T (N)




︸ ︷︷ ︸
Q

·




S1

S2
...

Sk




︸ ︷︷ ︸
B

(18)
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Eq. 18 shows that the tracking matrix can be factored
into 2 matrices: Q contains the pose T and configuration
weights li for each time step, while S contains the basis
shapes. This factorization can be performed by singu-
lar value decomposition, only using the first 4K singular
vectors: W (3N×P) = U ∗D∗V T = Q(3N×4K) ∗S(4K×P).
The second step in the process is to extract the pose T
and configuration weights l i from the matrix Q. This can
be done by considering a sub-matrix of Q corresponding
to a single time interval, q(t), re-ordering that sub-matrix,
q(t), then again applying the SVD as follows:

q(t) =
[

l(t)1 ·T (t) · · · l(t)K ·T (t)
]

= (19)
 lt

1 · rt
1 lt

1 · rt
2 lt

1 · rt
3 lt

1 · tt
x · · · lt

K · rt
1 lt

K · rt
2 lt

K · rt
3 lt

K · tt
x

lt
1 · rt

4 lt
1 · rt

5 lt
1 · rt

6 lt
1 · tt

y · · · lt
K · rt

4 lt
K · rt
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This procedure is repeated for all time blocks, yield-
ing the pose T (t) and configuration weights l (t)

1 . . .l(t)1 .
This decomposition is not unique, but by enforcing the
known constraints of a homogeneous transformation ma-
trix, a transformation G that maps T into a homogeneous
T (t) = T (t) ∗G can be determined. This transformation
must also be applied to the basis shape, S = G−1 ∗S.

The choice of the number of basis shapes K allow for a
selection of deformation correction capability appropri-
ate to the data. As K increases the ability of the algorithm
to model deformation increases, up to a limit dependant
on the number of markers on the limb segment.

3 Results

3.1 Retro-reflective marker correspondence to MRI
data

Integration of the high resolution MR imaging of the
bones and articular cartilage of the knee with retro-
reflective marker kinematic measurements was tested.

External markers filled with Gd-DTPA (Magnevist(r),
Berlex Inc., Wayne, N.J.) doped water were applied to
the skin around the knee joint at the same positions used
for gait analysis in the Biomotion Laboratory (Figure
2). Three volunteers underwent MRI of the knee joint
in this fashion (GE Signa, 1.5T, 3D SPGR, TR=60msec,
TE=5msec, flip angle 40◦, 1 excitation, matrix 256x160
elements, rectangular FOV 16x12 cm, slice thickness 1.3
mm, 128 slices, with fat saturation and repeated without
fat saturation). After image acquisition, the MR images
were transferred to an independent imaging workstation
(Advantage Windows, General Electric, Madison, WI)
and the femoral and tibial bones and cartilage were seg-
mented. 3D reconstructions of the femoral and tibial car-
tilage and of the femoral and tibial bone were generated
in this fashion.

Figure 2 : Gadalinium filled retro-reflective marker set
affixed the knee of a test subject during a static reference
pose. The markers are re-mounted prior to acquisition
of MRI data but removed from the subject prior to any
dynamic activities.

Each subject was tested standing still, during level walk-
ing, seated leg extension, standing leg flexion, ascend-
ing and descending stairs. The level walking measure-
ments included six stride cycles over a range of walk-
ing speeds. The instrumentation included a four-camera,
video-based, optoelectronic system for 3-D motion anal-
ysis, a multicomponent force plate for measurement of
foot-ground reaction force and a computer system for
acquisition, processing and analysis. The experimental
model used for the functional evaluation study idealizes
the lower extremity as 3 segments with six degree-of-
freedom joints at the knee and ankle. The data for each
of the activities was reduced to six degree of freedom
motion of the thigh and shank segment, including appli-
cation of the interval deformation correction technique to
minimize the effects of segment deformation. An exam-
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ple of the resultant kinematic functional joint images is
demonstrated in Figure 3.

Figure 3 : Two frames from a visualization of a healthy
knee performing a leg extension in a fixed tibial reference
frame. The top two figures are from an anterior view; the
bottom two, a lateral view. The full movie is available at:
http://biomotion.stanford.edu/CMES 2001.htm

3.2 Rank-Constrained Tracking and 3D reconstruc-
tion from single uncalibrated camera

The rank-constraint technique for optical flow estima-
tion was tested on a 500 frame long video sequence of
a deforming shoe. The recordings are challenging due
to changes in the object appearance that are caused by
the large rotations and deformations as well as by vari-
ations in illumination. In this example a set of 30 reli-
able features were initially tracked using the technique of
Lucas-Kanade and employing affine transformations for
the patches centered at these points. The reference patch
of each point was updated every 10 frames in order to
accommodate the changes in feature appearance of our
long sequence. The multi-frame approach was capable
of recovering the possible drifting introduced on some of
the tracks by the frequent update of the template for the
points. 80 additional features were then selected along
1D edges in the reference frame.

A first approximate initialization of their displacements
was produced by linear extrapolation from the motion of

the reliable points. The resulting W matrix was used as
an initialization for the tracking technique based on rank
constraints. Experimentation with different values for
the rank achieved the best solution by setting it to rank
r = 9. The classic pyramidal approach was employed in
smoothing the images and several iterations of the multi-
frame method were run. The algorithm robustly and very
accurately tracked most of the 110 points throughout the
whole sequence. Figure 4 shows the features tracked for
several frames.

Given the estimated Q and B of those 500 tracked monoc-
ular image frames, the single-camera 3D reconstruction
technique was then applied. Figure 5 shows some exam-
ple frames with the reconstructed non-rigid 3D shapes
overlayed. The new reconstruction technique was then
applied to a video recording of a deforming human torso,
one of the most challenging body segments to model us-
ing retro-reflective marker based systems due to the high
degree of non-rigidity. The subject is wearing a tight
fitting spandex bicycling jersey, with the features to be
tracked selected from elements of the text on the jersey.
Figure 6 shows some example frames with the recon-
structed non-rigid 3D shapes overlayed.

Figure 5 : Along with tracking, the rank constrained
algorithm also produces an estimate of the deforming
shape of the object. This sequence of four images shows
the shoe rotating and deforming. The full movie is avail-
able at: http://biomotion.stanford.edu/CMES 2001.htm
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Figure 4 : Six frames from the tracking of the deforming, rotating shoe sequence. The hollow, blue circles are
features with good 2D texture; the filled, red circles are features with 1D texture that the rank constrained algorithm
was able to track. The full movie is available at: http://biomotion.stanford.edu/CMES 2001.htm

Figure 6 : The rank constrained algorithm ap-
plied to an image sequence of a rotating, deforming
torso. The features are selected from points on the
text on the jersey. The full movie is available at:
http://biomotion.stanford.edu/CMES 2001.htm

Approach or Spoor &
# Basis Shapes Veldpas 1 2 3 4 5
Error
(% of face size) 3.18 3.28 2.95 2.65 2.46 2.26

Table 2 : Error chart, rigid body model vs. multiple un-
calibrated camera 3D reconstruction, real data. The root
mean square 3D reconstruction error per marker per time
step for the Spoor & Veldpas rigid body technique com-
pared to the homogeneous factorization technique for the
actual data sequence of the face. As the number of basis
shapes is increased the error decreases.

3.3 3D Reconstruction from Multiple uncalibrated
cameras

Table 2 shows the multiple uncalibrated camera recon-
struction errors for a video sequence of a face rotating
and deforming. This reconstruction is the most challeng-
ing task, since it tests the entire system from video input
to 3D output. Overall the small reconstruction errors tell
us that this technique is indeed able to accurately recover
non-rigid deformations from multiple uncalibrated cam-
era image sequences. As shown in Figure 7, both the
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overall orientation of the head and the detailed motion of
the lips and eyebrows are accurately reconstructed with
this technique.

Figure 7 : The multiple uncalibrated camera al-
gorithm applied to a two camera view of facial
rotation and deformation. The red indicates the
ground truth data, the blue the reconstructed data
with 5 key-shapes. The full movie is available at:
http://biomotion.stanford.edu/CMES 2001.htm

3.4 3D Shape, Absolute Orientation and Location
from Multiple Calibrated Cameras

20 simulated data sets were generated and examined with
the Spoor rigid body approach (Spoor 1980) and the ho-
mogeneous factorization approach presented here. The
homogeneous factorization approach was tested for five
different numbers of basis shapes, from one to five. The
data sets were contaminated with systematic and random
error to mimic the muscle deformation, skin sliding, skin
jiggling error commonly seen in actual motion capture
data streams.

The two software correction techniques were compared
to the known, generated data. The root mean error in
reconstructing the locations of each of the markers for
each time step of each of the data sets was calculated for
both of the estimation techniques. Table 3 summarizes
the results for all of the data sets.

Approach or Spoor &
# Basis Shapes Veldpas 1 2 3 4 5
Error (mm) 6.8 7.2 6.7 6.4 6.3 6.2

Table 3 : Error chart, rigid body model vs. multiple
calibrated camera homogeneous factorization, synthetic
data. The root mean square 3D reconstruction error per
marker per time step for the Spoor & Veldpas rigid body
technique compared to the homogeneous factorization
technique for the synthetic data sequence. As the number
of basis shapes is increased the error decreases.

The homogeneous factorization technique with multiple
calibrated cameras was also applied to the shoe data se-
quence. Table 4 summarizes the results, showing the ac-
curacy increase as the number of key shapes is increases.
Figure 8 shows a sample video frame, with the ground
truth data in red and the reconstruction in blue. For this
sequence the best results were obtained with the rank set
to r = 5.

Approach or Spoor &
# Basis Shapes Veldpas 1 2 3 4 5
Error (mm) 2.3 2.6 2.3 2.0 1.8 1.7

Table 4 : Error chart, rigid body model vs. multiple cal-
ibrated camera homogeneous factorization, actual data.
The root mean square 3D reconstruction error per marker
per time step for the Spoor & Veldpas rigid body tech-
nique compared to the homogeneous factorization tech-
nique for the shoe data sequence. As the number of basis
shapes is increased the error decreases.

4 Discussion

Since inception, the field of human motion capture for
biomechanical analysis has been dominated by video
capture of retro-reflective markers and generic models of
bones. For the first time, this paper has demonstrated
techniques for generating subject-specific skeletal mod-
els from MRI data, corresponding these models to ex-
ternally observable features on non-rigid body segments,
and tracking these deforming segments from single and
multiple, calibrated and uncalibrated cameras. The re-
covery of 3D shape, orientation, and location of these
body parts without the use of retro-reflective markers
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Figure 8 : Application of the homogeneous factorization
algorithm to the deforming shoe sequence. The red in-
dicates the ground truth data, the blue the reconstructed
data with 5 key-shapes. The full movie is available at:
http://biomotion.stanford.edu/CMES 2001.htm

holds great promise for the future of biomechanical anal-
ysis of human motion.

There are a number of limitations to the techniques de-
scribed here. Fixation of the gadalinium markers to the
knee during the MR sequence results in a requirement to
acquire data on a larger volume than would be needed
otherwise. The result is either longer (in time) scan se-
quences or a decrease in resolution. In future work we
plan to experiment with smaller markers. We have not
yet determined a technique for automatically selecting
the optimal rank for the factorization. We also do not yet
have a technique for automatically corresponding feature
points from multiple cameras, fortunately, this manual
correspondence only need to be performed on one video
frame. Some questions are undoubtedly raised about the
appropriateness of tracking features on tight fitting cloth-
ing versus the standard technique of observing markers
on the skin. One argument in favor of the clothing ap-
proach is that the material properties of the observable
object can be known exactly, as opposed to the actual
skin of the subject. Of course this technique does not
actually require clothing; subject skin could be observed
directly, with the features to be tracked drawn on the skin
using a surgical marker.

Future work will focus on some of the limitations men-
tioned; automatic correspondence between cameras and

automatic optimal rank determination. Other areas for
future work include validation studies on skeletal motion
estimation, perhaps on subjects with external bone fix-
ators or data simultaneously acquired with bi-planar ra-
diographic techniques.

Reconstructing non-rigid models of human body seg-
ments without the need for retro-reflective markers has
many potential applications in biomechanical modeling.
The techniques described in this work should provide a
solid foundation for future clinical studies in orthopedics
and neurology, sports injury prevention, sports perfor-
mance, and many other areas.
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