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The Identification of Elastic Moduli of a Stratified Layer Through Localized
Surface Probes, with Biomedical Applications

A.R.Skovoroda1, R.V.Goldstein2

Abstract: We discuss the inverse problem of the recov-
ery of the distribution of the elastic moduli of a stratified
layer, based on measurements of the surface displace-
ment under localized surface loads. A general paramet-
ric solution and a numerical procedure for computing the
parameters are presented. Examples of numerical results
are given. The problem and its solution are related to the
monitoring of elastic properties of living tissues.

1 Introduction

Computing the mechanical properties of a medium based
on its response to external mechanical action takes new
impetus in conjunction with the problem of imaging of
the elastic properties of living tissues [Gao et al (1996)].
As is well known, the mechanical properties of a tissue
are an effective indicator of its functional state, its age-
related changes, muscle training, state of skin, amount of
subcutaneous fat, etc. Significant changes in the elastic-
ity of soft tissue are usually related to pathological pro-
cesses. Therefore, the elastic moduli of the tissue can be
used, in addition to other widely accepted clinical factors,
as an aid to physicians in the diagnosis process.

Now-a-days, in spite of many new imaging modalities,
palpation is still widely used as a self-screening proce-
dure for the detection of hard masses in a human body.
Its efficiency, however, is limited by its high subjectiv-
ity. The goal of elasticity imaging in general is to de-
velop a kind of surrogate, objective remote palpation
[Gao et al (1996)]. Ultrasound, NMR or X-rays are of-
ten used to this purpose. However, these methods are
comparatively expensive, and not always safe for the pa-
tient (namely, X-rays) [see, for instance, Liu and Fer-
rari (2003)]. Therefore, the development of in vivo tech-
niques that are simple to use, inexpensive and are not
armful to the patient is an important issue. In particu-
lar, the goal of a number of efforts aim at developing a
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pre-screening self-palpation device, able to estimate the
state of surface living tissue on the base of its mechanical
properties [see, for example, Sarvazyan and Ponomarev
(1987); Timanin et al (1997)]. The approaches and de-
vices proposed are based on a non-invasive estimate of
the elasticity and the viscosity of the tissue by touching
it with a steady action or using a vibrating piston. Such
methods and devices are safe and do not use any form
of hazardous radiation, they are easy-to-use, simple and
inexpensive. However, the hard mathematical and nu-
merical methods must be used on this way to convert
the results of experimental measurements into mechan-
ical properties of the tissue. An accurate quantitative in-
dentification of these properties in vivo using experimen-
tal data measured by any proposed method could permit
to detect a tissue abnormalities and to control state of
tissue during training, in sport medicine, in traumatol-
ogy, when using cosmetic creams, processing of restora-
tion, etc. Unfortunately, greatly simplified approaches
only were proposed in static [Sarvazyan and Ponomarev
(1987)] and dynamic [Timanin (1989); Timanin et al
(1997)] cases to estimate unknown mechanical moduli
of the object under investigation.

Some aspects of the problem have been considered
by the authors in previous publications [Goldstein
and Skovoroda (1989); Skovoroda (1989); Skovoroda
(1996); Skovoroda and Aglimov (1997); Skovoroda and
Aglimov (1998)]. This paper summarizes their mathe-
matical approach and the numerical method they pro-
pose for reconstructing the elastic moduli applicable to
skin and subcutaneous tissues in static case. A layered
medium and continuously inhomogeneous medium un-
der a local surface loading are considered. A general
theory and some computational algorithms are presented.
Numerical experiments are performed to test a possibil-
ity of recovering the elastic properties through the inho-
mogeneous layer on the base of displacement measure-
ments.
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It may also be possible to solve inverse problems for lay-
ered media such as the present one, using displacement
and fraction boundary-integral-equation methods [Kubo
(1993); Han and Atluri (2003)].

2 Piecewise-uniform Stratified Elastic Layer

Let us first consider a stratified compressible elastic layer
under a symmetric surface loading. Put the origin of a
cylindrical coordinate system (r,θ, z) at the center of the
loaded region of the surface z = 0, with the z axis directed
inward the layered medium.

The stress tensor σi j at the surface z = 0 has to satisfy the
boundary conditions, which we assume to be

σrz(r,0) = 0, σzz(r,0) = −P(r). (1)

Due to the symmetry of the loading, we get the displace-
ment vector in the form U = (U,0,W), with U = U(r, z)
and W = W(r, z). This leads to the following form of the
strain tensor:

εrr =
∂U
∂r

, εθθ =
U
r

, εzz =
∂W
∂z

,εrz =
1
2

(
∂U
∂z

+
∂W
∂r

)
,

σrθ = σzθ = εrθ = εzθ = 0.

If the thickness H of the layer system is finite, we assume
that the displacement vanishes at the remote boundary
z = H, i.e.

U(r,H) = 0, W (r,H) = 0. (2)

If the layer is a half-space (H = ∞), we assume that the
displacement and the stress vanish for z → ∞.

We also assume that displacement and stress are contin-
uous across boundaries between layers z = hi:

Ui = Ui+1, W i = W i+1,

σi
rz = σi+1

rz , σi
zz = σi+1

zz , i = 1, . . .,N −1, (3)

where N is the number of layers.

The bulk balance equation in this case takes the form
[Ilyushin (1978); Novatski (1975); Rabotnov (1979)]

∂σrr

∂r
+

∂σrz

∂z
+

(σrr −σθθ)
r

= 0,

∂σrz

∂r
+

∂σzz

∂z
+

σrz

r
= 0. (4)

To close the problem, we assume the medium to be lin-
early elastic and isotropic

σi j = 2µεi j +λeδi j , (5)

where λ and µ are the Lame coefficients, δi j is the Kro-
necker delta symbol and e = εrr +εθθ +εzz.

When the Lame coefficients are constant within each
layer, the general solution of the problem within the i-
th layer is given by [Nikishin and Shapiro (1970)] and
presented in Appendix 1.

Equations (A1.1) provide the general solution of the di-
rect elastic problem for a symmetrically loaded layered
medium with known mechanical properties. The solu-
tion for each particular case can be obtained combining
(A1.1) for i=1,...,N, with the continuity conditions (3)
and the appropriate boundary conditions.

In this paper we focus on the inverse problem: the me-
chanical properties of the layers are unknown and need to
be found on the base of a small quantity of experimental
data on displacements.

In general such a computation implies an iterative pro-
cedure during which the model parameters are adjusted
in search of the best fit between experimental measure-
ments and theoretical predictions. It is important to note
that this procedure converges to the unique solution only
if the measured date depend monotonically on the model
parameters. It should be mentioned that in practice the
convergence speed is still crucial.

To illustrate the numerical aspects of the inverse prob-
lem, i.e. the problem of the quantitative reconstruction
of elastic properties of a layered medium using limited
experimental information, we consider two cases: a de-
compressive probe, and an indenter-like probe.

2.1 Decompressive probe

The decompressive probe proposed in [Sarvazyan and
Ponomarev (1987)] is a thin-walled cylindrical jar of thin
walls under which it is possible to create a negative nor-
mal pressure at the surface of a human body. The magni-
tude of the normal suction P can be precisely controlled
inside the probe. Boundary conditions (1) can be speci-
fied as follows

σrz(r,0) = 0; σzz(r,0) =




P, r < a
−Q, r ∈ [a,b]
0, r > b

(6)
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where a and b are the internal and external radii of the
probe, and Q is the normal pressure at the contact be-
tween the probe wall and the skin. If the probe is thin-
walled, i.e. if parameter d = 1− a/b is small, we can
admit that Q = const. In this case the balance of forces
acting on the probe equilibrium leads to

Q = Pa2/(b2−a2) = P(1−d)2/d(2−d). (7)

Thanks to linearity, the solution of the direct problem
with boundary conditions (6) has the form F = F1 + F2

where F1 and F2 are the solutions of the two simpler prob-
lems with boundary conditions

σrz(r,0) = 0, σzz(r,0) =
{

Q+P, r < a
0, r > a

(6a)

and

σrz(r,0) = 0, σzz(r,0) =
{ −Q, r < b

0, r > b
(6b)

respectively. Taking into account the general form of the
solution (A1.1), we use the Hankel transformation for
boundary conditions (6a) and (6b). The general form of
Hankel’s transformation for a step function is:

P(r) =
{

P0, r < r0

0, r > r0 = r0P0

∞∫
0

J1(αr0)J0(αr)dα (8)

If the problem under a general step function σzz(r,0)
given by Eq. (8) being solved, then one can easily find
the solution with boundary conditions (6a) and (6b) by
specifying the values P0 and r0.

2.1.1 Homogeneous semi-infinite body

The general solution has the simplest form in case of ho-
mogeneous semi-infinite body (N = 1, H = ∞). By in-
corporating Eqs (1), (A1.1) and (8) we obtain

A1 = B1 = 0,A2 = 2νp/α, B2 = p

where p = r0P0J1(αr0)/2µα2.

Therefore, the appropriate solution F
〈
P0, r0

〉
=

{U,W,σrr,σθθ,σzz,σrz} has the following form

U(r, z)=
r0P0

2µ

∞∫
0

α−1e−αzJ1(αr0)J1(αr)(1−2ν−αz)dα

W(r, z)=−r0P0

2µ

∞∫
0

α−1e−αzJ1(αr0)J0(αr)[2(1−ν)+αz]dα

σrr(r, z) = r0P0

∞∫
0

e−αzJ1(αr0)[J0(αr)[(1−αz)

− J1(αr)
αr

(1−2ν−αz)]dα

σθθ(r, z) = r0P0

∞∫
0

e−αzJ1(αr0)[2νJ0(αr)

+
J1(αr)

αr
(1−2ν−αz)]dα

σzz(r, z) = r0P0

∞∫
0

e−αzJ1(αr0)J0(αr)(1+αz)dα

σrz(r, z) = r0P0

∞∫
0

e−αzJ1(αr0)J0(αr)αzdα (9)

As has been said, the general solution F for the boundary
conditions given by Eqs (6) is a sum of two particular
solutions, at particular boundary conditions (6a) and (6b)
such that

F = F 〈−Q,b〉+F 〈Q+P,a〉 (10)

For instance, the vertical displacement of the layer sur-
face equals

W(r,0) = 2(1−ν2)
1
E

∞∫
0

α−1J0(αr)[bQJ1(αb)

−a(Q+P)J1(αa)]dα (11)

where E = 2µ(1 + ν) is the Young modulus of the
medium.

To simplify formulas we posite d = 1−a/b and

x = r/b, β = αb (12)
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With these notations taking into account (7) expression
(11) takes the form

W (r,0) = 2(1−ν2)
bP(1−d)
Ed(2−d)

∞∫
0

β−1J0(βx)[(1−d)J1(β)

−J1(β(1−d))]dβ,

It is known that [Korn and Korn (1968)]

J1(β(1−d)) = J1(β)+d[J1(β)−βJ0(β)]+O(d2)

for small d’s we could obtain

W (r,0) = −(1−ν2)b
P
E

∞∫
0

β−1J0(βx)[2J1(β)

−βJ0(β)]dβ+O(d) (13)

and, letting d → 0:

W (r,0) = −(1−ν2)b
P
E

Φ1(x), Φ1(x)

=
∞∫

0

β−1J0(βx)[2J1(β)−βJ0(β)]dβ. (14)

As is well known, soft tissues are nearly incompressible,
i.e. their Poisson’s ratio ν is very close to its limit value
ν0 = 0.5. This simplifies the relation between the Young
modulus E and shear modulus µ = E/2(1 + ν) ≈ E/3.
Parameters E and µ play the major role in diagnostics,
and their quantitative estimation is the ultimate goal of
tissue elasticity identification [Gao et al (1996)].

The unknown Young’s modulus can be estimated from
Eq. (14) as follows

E = −(1−ν2)bP
Φ1(x)

W(r,0)
≈ −3

4
bP

Φ1(x)
W(r,0)

Hence, the elastic moduli of an elastic half-space can be
recovered if the vertical displacement at a single point
of the surface available. Moreover, there is no need to
measure the absolute value of the vertical displacement.
If only the relative displacement W(r1,0)−W(r2,0) is
measured, the Young modulus may be estimated by the
formula

E = −(1−ν2)bP
Φ1(x1)−Φ1(x2)

W(r1,0)−W(r2,0)
.

Note that this formula is more sensitive to noise since
noisy experimental displacement are subtracted in the de-
nominator.

2.1.2 Homogeneous layer of finite thickness

If a homogeneous layer of finite thickness H is consid-
ered, equations (1), (2), (A1.1) and (8) lead to

αA1 =−p
[2(n−β)2+(1+2β)(1+n)+k2

2(1−n)(1+2n)]
∆

,

αA2 = p
[2(n+β)2+(1−2β)(1+n)+k2

1(1−n)(1+2n)]
∆

,

B1 = p
[(1+2β)+k2

2(1+2n)]
∆

,

B2 = p
[(1−2β)+k2

1(1+2n)]
∆

. (15)

where

n = 1−2ν, β = αH, k1 = exp(β), k2 = exp(−β),

∆ = (1+2n)(k2
1 +k2

2)+(1+2n)2 +(1+4β
2
). (16)

Consequently, the solution F
〈
P0, r0

〉
for z = 0 takes the

form

U(r,0) =
r0P0

2µ

∞∫
0

J1(αr0)
α∆

J1(αr)[(k2
1 +k2

2)(1+2n)n

+2n−4(n2 +β
2
)]dα

W(r,0) =
r0P0(1+n)

2µ

∞∫
0

J1(αr0)
α∆

J0(αr)[4β

− (k2
1 −k2

2)(1+2n)]dα
σrr(r,0) =

r0P0

∞∫
0

J1(αr0)
∆

{J0(αr)[(k2
1 +k2

2)(1+2n)

+2(1−2n)−4(n2 +β
2
)]

−J1(αr)[(k2
1 +k2

2)(1+2n)n−2n−4(n2 +β
2
)]/αr}dα

σθθ(r,0) =

r0P0

∞∫
0

J1(αr0)
∆

{(1−n)J0(αr)[(k2
1+k2

2)(1+2n)+2]

+J1(αr)[(k2
1+k2

2)(1+2n)n−2n−4(n2+β
2
)]/αr}dα

(17)

and the solution of the general problem is determined by
Eqs (10) and (17) by specifying P0 and r0 according to
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Eqs (6a) and (6b). In particular, for the vertical displace-
ment at the surface we obtain

W (r,0) = 2(1−ν2)
1
E

∞∫
0

α−1Φ(β)J0(αr)

[bQJ1(αb)−a(Q+P)J1(αa)]dα (18)

where Φ(β) = [m(k2
1−k2

2)−4β]/[m2 +m(k2
1 +k2

2)+(1+
4β

2
)], m = 3−4ν. (Note that Eq. (18) reduces to Eq. (11)

at H → ∞).

Taking into account (7) and using notations already given
in Eqs (12), (16) and B = b/H

Eq. (18) may be rewritten in the form

W (r,0) = 2(1−ν2)
bP(1−d)
Ed(2−d)

∞∫
0

β−1Φ(β/B)J0(βx)

[(1−d)J1(β)−J1(β(1−d))]dβ

Then, for small values of d, one obtains

W (r,0) = −(1−ν2)b
P
E

∞∫
0

β−1Φ(β/B)J0(βx)

[2J1(β)−βJ0(β)]dβ+O(d)

which parallels Eq. (13).

However, differently from the half-space, we have now
two unknowns: the Young modulus E and the thickness
of the layer H. To solve the inverse problem we consider
the relative displacements between two points on the sur-
face:

Di = W(r0,0)−W(ri,0) =

− (1−ν2)b
P
E

[Φ1(B,x0)−Φ1(B,xi)], i = 1,2. (19)

Note that ratio Φ2 defined below does not depend on E:

Φ2 = D1/D2 =

∞∫
0

Φ(β/B) f (β,x0,x1)dβ

∞∫
0

Φ(β/B) f (β,x0,x2)dβ
,

where f (β,x0,xi) = β−1[2J1(β) − βJ0(β)][J0(βx0) −
βJ0(βxi)], i = 1,2. By incorporating this property
and solving the nonlinear equation Φ2(B) = Dexp

1 /Dexp
2 ,

where the upper index “exp” denotes a datum, we can

find the value B = B∗ and, therefore, the unknown thick-
ness of the layer H = b/B∗. The unknown Young’s mod-
ulus Eof a homogeneous layer can be calculated from
anyone of the two equations (19) using the previously
computed value B∗, as follows:

E = −(1−ν2)bP
Φ1R(B∗,x0,xi)

Dexp
i

≈−3
4

bP
Φ1R(B∗,x0,xi)

Dexp
i

,

where Φ1R(B∗,x0,xi) = Φ1(B∗,x0)−Φ1(B∗,xi)

2.1.3 Stratified layer

As has been said, in the case of a stratified layer 4N un-
knowns Ai

j and Bi
j, i=1,...,N , j = 1,2 need be determined

as functions of α, in order to solve the direct elastic prob-
lem. These unknowns can be evaluated using the set of
solutions (A1.1), continuity conditions (3) and boundary
conditions (2) and (6). More precisely, to obtain the solu-
tion F

〈
P0, r0

〉
you need satisfy the boundary conditions

αA1
1 +αA1

2 +(1−n1)B1
1− (1−n1)B1

2 = 0,

−αA1
1 +αA1

2 +n1B1
1 +n1B1

2 = p, (20)

αkN
1 AN

1 −αkN
2 AN

2 +(1+βN)kN
1 BN

1 +(1−βN)kN
2 BN

2 = 0,

αkN
1 AN

1 +αkN
2 AN

2 − (2nN −βN)kN
1 BN

1

+(2nN +βN)kN
2 BN

2 = 0, (21)

and the continuity conditions (3) for i = 2, . . .,N

−αki
1Ai−1

1 −αki
2Ai−1

2 +(2ni−1 −βi)ki
1Bi−1

1

− (2ni−1 +βi)ki
2Bi−1

2 +αki
1Ai

1 +αki
2Ai

2

− (2ni −βi)ki
1Bi

1 +(2ni +βi)ki
2Bi

2 = 0,

(22)

αki
1Ai−1

1 −αki
2Ai−1

2 +(1+βi)ki
1Bi−1

1 +(1−βi)ki
2Bi−1

2

−αki
1Ai

1 +αki
2Ai

2 − (1+βi)ki
1Bi

1− (1−βi)ki
2Bi

2 = 0,

(23)

−αki
1Ai−1

1 +αki
2Ai−1

2 +(ni−1 −βi)ki
1Bi−1

1

+(ni−1 +βi)ki
2Bi−1

2 ]+mi[αki
1Ai

1

−αki
2Ai

2 − (ni −βi)ki
1Bi

1 − (ni +βi)ki
2Bi

2] = 0,

(24)

[αki
1Ai−1

1 +αki
2Ai−1

2 +(1−ni−1 +βi)ki
1Bi−1

1

− (1−ni−1 −βi)ki
2Bi−1

2 ]−mi[αki
1Ai

1 +αki
2Ai

2

+(1−ni +βi)ki
1Bi

1− (1−ni −βi)ki
2Bi

2] = 0. (25)
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Here

ni = 1−2νi, βi = αhi, ki
1 = exp(βi), ki

2 = exp(−βi),
p = r0P0J1(αr0)/2µ1α2, mi = µi/µi−1.

The algorithm to solve the system of 4N linear equations
(20)-(25) is presented in Appendix 2.

Using the linearity property (Eq. (10)), the expression

W (r,0) =
r0P0

2µ1

∞∫
0

α−1J1(αr0)J0(αr)[2n1(B1
1−B1

2)

−α(A1
1 +A1

2)]dα,

and specifications of P0 and r0 according to Eqs (6a) and
(6b) we find the vertical displacement of the layer sur-
face, z = 0, as follows

W (r,0) =
1

2µ1

∞∫
0

α−1J0(αr)[2n1(B1
1−B1

2)−α(A1
1 +A1

2)]

[a(Q+P)J1(αa)−bQJ1(αb)]dα.

Again, using the notations

x = r/b, β = αb, d = 1−a/b,

ψ(α) = 2n1(B1
1 −B1

2)−α(A1
1 +A1

2),

and taking into account (7) we obtain

W (r,0) =
bP(1−d)
2µ1(2−d)

∞∫
0

β−1ψ(β/b)J0(βx){J1[β(1−d)]

− (1−d)J1(b)}dβ.

For d → 0

W (r,0) =
bP(1+ν1)

2E1
Φ∗

1(x),

Φ∗
1(x) =

∞∫
0

β−1ψ(β/b)J0(βx)[2J1(β)−βJ0(β)]dβ (26)

Note that the limit property ψ(α)→−2(1−ν 1) at a→∞
, drastically simplifies the computation of the integrals in
Eq. (26).

All formulas presented above are easily adapted to the
case of a stratified half-space by letting hN = H → ∞, as
well as for an incompressible medium, letting ν i → 0.5.

The inverse problem in the case of a layered medium is
more complicated. In principle, the elastic moduli Ei and
the thicknesses hi of all layers are to be recovered. In
order to find these K ≤ 2N unknowns for each given N
we need at least K equations

W(rk,0) = W exp(rk), k = 1, . . .,K∗, K∗ ≥ K. (27)

where the left-hand parts are computed numerically as
presented above, and the right-hand parts are measured
experimentally.

If K∗ = K we can try to solve Eqs (27) as a system of
nonlinear equations for K unknown parameters of the
model using any appropriate numerical procedure. When
K∗ > K the system (27) is overdetermined, and a least
square approach, for example, could be used instead.

Some examples for K∗ = K are given later on. In
these examples a three-layered medium is considered,
for which the experimental information on displacement
is replaced by exact solutions of the appropriate direct
elastic problem. Newton’s iterative procedure is used to
solve the system of nonlinear equations (27). A descrip-
tion of these numerical experiments is given in Table 1.
The relative boundary positions are denoted as H i = hi/b
and values νi = 0.45 are used. The results of using the
Newton iterative procedure as a functions of the iteration
index are given in Figs 1-5.

   

Figure 1 : Young moduli of the second and third layers
E2, and E3 as a function of the iteration index
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Figure 2 : Young modulus and boundary locations of the
internal layer as a function of the iteration index

The first example (Fig.1) assumes that the thickness of
the strata are known, while their mechanical properties
are to be recovered. The following two examples (Figs
2, 3) are devoted to the problem of strata detection. The
elastic properties and the thickness of the strata are re-
covered from different starting points. The fourth exam-
ple (Fig.4) addresses the problem of the detection of a
stratum whose thickness is known, but exact location and
elastic modulus are to be found. Also the modulus of the
deeper stratum is unknown in this case. The last exam-
ple (Fig.5) is remarkable. It presents the results obtained
by assuming that there are four strata when identifying
the mechanical properties of a three-layered tissue. As
can be seen from Fig. 5, the initially incorrect number
of strata is corrected by the iterative procedure that at-
tributes the same modulus to the second and third strata
(E2=E3=2.5).

Note, that the described procedure demonstrates a high
speed of convergence: no more that 4 Newton’s iterations
are needed to approach the exact solution of the inverse
problem to within a relative error ≈ 10−3 in all examples
considered.

2.2 Indenter-like probe

This section considers an indenter-like probe as an alter-
native to the previously considered decompressive probe.
This problem is akin to the problem considered above:

  

Figure 3 : Young modulus and boundary locations of the
internal layer as a function of the iteration index

 

Figure 4 : Young moduli of the second and third layers
E2 and E3 and the location of the center of the second
layer as functions of the iteration index

 

Figure 5 : Young moduli of four-layer model of the the
three-layered medium as a function of iteration index
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Table 1 :
Fig Given parameters Unknown Starting values Exact Solution

parameters of the unknown
parameters

1 E1=1, H1=0.5, H2=1, H3=H=2 E2, E3 E2=E3=1 E2=2.5, E3=1
Wexp(0.7), Wexp(0.9)

2 E1=E3=2, H3=H=2, H1, H2, E2 H1=0.4, H2=1.1 H1=0.5, H2=1
Wexp(0.2), Wexp(0.5), Wexp(0.7) E2=5.5 E2=5

3 E1=E3=2, H3=H=2, H1, H2, E2 H1=0.4, H2=0.9 H1=0.5, H2=1
Wexp(0.2), Wexp(0.5), Wexp(0.7) E2=5.5 E2=5

4 E1=E3=1, H3=H=2, H2-H1=0.5 H0=(H1+H2)/2 H0=0.85 H0=0.75
Wexp(0.2), Wexp(0.5), Wexp(0.7) E2, E3 E2=E3=1.5 E2=E3=1

5 E1=1, H1=0.5, H2=0.75, E2, E3, E4 E2=E3=E4=1 E2=E3=2.5
H3=1, H4=H=2 E4=1

Wexp(0.2), Wexp(0.5), Wexp(0.7)

boundary conditions (6) have to be replaced by

σrz(r,0) = 0, 2π
b∫

0

rσzz(r,0)dr = −P,

W (r,0) = W0, r < b; σzz(r,0) = 0, r > b, (28)

where b is the external radius of the cylindrical inden-
ter and P is the force it exerts. If indenter is not glued
to the skin these conditions need to be coupled with the
unilateral constraint σzz(r,0) < 0.

It is well known [Novatski (1975); Rabotnov (1979)] that
the stress distribution under an indenter with a sharp edge
is highly nonuniform and increases in magnitude near the
edge. Taking into account this phenomenon, to design an
effective numerical procedure to solve the direct elastic
problem we use a nonuniform grid [ai,bi], i = 1, ..,M ,
where a1 = 0, ai = bi−1, bM = b, bi−1 −ai−1 > bi − ai.
Thus, the loaded circle of radius b is subdivided into a
finite set of rings of the internal and external radii a i and
bi, respectively. Assuming that the normal pressure pi is
constant on each ring [ai,bi] we find these M unknowns
pi using the condition W(r,0) = W0 = const, r < b. In
all the examples we present, a Chebishev grid with M =8
was used.

We construct the solution F i of the direct problem for
each ring [ai,bi] with the boundary conditions

σrz = 0, σi
zz = {−pi, r ∈ [ai,bi]; 0, r /∈ [ai,bi]} (29)

as the sum of two solutions, corresponding respectively
to the simplified boundary conditions

σrz = 0, σi
zz = {−pi, r < bi; 0, r > bi} (30)

and

σrz = 0, σi
zz = {pi, r < ai; 0, r > ai} (31)

which we determine using Hankel’s transformation (Eq.
(8)) for step functions.

2.3 Homogeneous half-space

If a homogeneous half-space is considered (H→ ∞) the
solution (9) holds for each boundary condition (30) or
(31), and the solution for boundary conditions (29) takes
the form

Fi = F 〈−pi,bi〉+F 〈pi,ai〉 .

The vertical displacement at the surface is (cfr. Eq. (11))

Wi(r,0) = (32)

2(1−ν2)
pi

E

∞∫
0

α−1J0(αr)[biJ1(αbi)−aiJ1(αai)]dα

Using the notations

x = r/b, β = αb, c0i = bi/b,

c1i = ai/b, λi = 2bpi(1−ν2)/EW0
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we rewrite Eq. (32) as follows

Wi(x,0) =

W0λi

∞∫
0

β−1J0(βx)[c0iJ1(βc0i)−c1iJ1(βc1i)]dβ,

Therefore, the general solution of the direct elastic prob-
lem in this case takes the form

W (x,0) = (33)

W0

N

∑
i=1

λi

∞∫
0

β−1J0(βx)[c0iJ1(βc0i)−c1iJ1(βc1i)]dβ

The unknowns λ i, i = 1, . . .,M can be determined solving
the system of linear equations

W(x j,0) = W0, j = 1, . . .,M∗, x j < 1, M∗ ≥ M. (34)

The second condition (28) couples the total indenting
force P and the vertical displacement of the indenter W0:

P =
πbW0E

2(1−ν2)

N

∑
i=1

λi(c2
0i −c2

1i) (35)

In all the examples we present, we take M∗ = M and r j =
(a j +b j)/2. If one takes

M∗ > M, the system (34) is overdetermined and a least-
square method should be used to estimate the M un-
knowns λ i, i = 1, . . .,M.

The unknown Young’s modulus of a half-space can be
determined in two different ways. If the total force P
and the vertical displacement of the indenter W0 are both
known, formula (35) can be used. If not, the experimen-
tally measured displacement of any particular point x > 1
and formula (33) should be used instead.

2.3.1 Homogeneous layer of finite thickness

If a homogeneous layer of finite thickness H is consid-
ered, the basic solution F

〈
P0, r0

〉
in the form (17) holds

and the general solution of the forward elastic problem
takes the form

W (x,0) = W0

N

∑
i=1

λi

∞∫
0

β−1Φ(β/B)J0(βx)

[c0iJ1(βc0i)−c1iJ1(βc1i)]dβ. (36)

Note, that Eq. (36) reduces to Eq. (33) for H → ∞.

Again, the unknowns λ i, i = 1, . . .,M can be determined
solving the system of linear equations (34), and the two
unknowns E and Hcan be determined from Eqs (35) and
(27), where the left-hand terms are the theoretically pre-
dicted and the right-hand terms the experimentally mea-
sured values of the vertical displacement of the surface
outside the indenter rk > b.

2.3.2 Stratified medium

In the case of a stratified medium these conditions serve
also to estimate the unknown parameters. The basic so-
lution F

〈
P0, r0

〉
and computational technique (20)-(25)

and (A2.1)-(A2.6) remain valid in this case. The general
solution of the direct elastic problem takes the form

W(x,0) = W0

N

∑
i=1

λi

∞∫
0

β−1Ψ(β/b)J0(βx)

[c0iJ1(βc0i)−c1iJ1(βc1i)]dβ (37)

where

Ψ(α) = [2n1(B1
1−B1

2)−α(A1
1 +A1

2)]/2(1−ν1).

Note that in principle one could use in Eq. (27) also
values of the measured under the surface displacement.
The vertical displacements of an internal point, includ-
ing the vertical displacements at internal boundaries can
be used as well. Internal vertical displacements have the
same form given by Eq. (37) where term Ψ is a func-
tion of α and z. Note also that all derived formulas can
be easily adopted to the case of a half-space by letting
hN = H → ∞, or for a incompressible medium, letting
νi → 0.5.

Table 2 describes five numerical experiments for a three-
layered medium. The values of E2 and E3 are recovered
relatively to the elastic modulus of the first (top) layer
(we assume E1 = 1). The case when the identification of
the elastic properties is based on vertical displacements
measured on the surface W0(r) and Eq. (27) is considered
in Fig. 6.a. At variance with this, the vertical displace-
ments at the first internal boundaryW1(r) are used in Figs
6.b and 6.c. The last example (Fig. 6.c) and two pre-
ceding ones (Figs. 6.a and 6.b) correspond to the same
three-layered medium flipped upside down. The value
νi = 0.49 is assumed in all strata.
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Table 2 :
Fig Given parameters Unknown Starting values An exact

parameters of the unknown of the unknown
parameters

6.a H1=1, H2=2, H3=H=3.5 E2, E3 E2=E3=0.4 E2=0.296
solid line Wexp

0 (1.5), Wexp
0 (2) E3=0.587

6.a H1=1, H2=2, H3=H=3.5 E2, E3 E2=0.9, E3=0.8 E2=0.296
dashed line Wexp

0 (1.5), Wexp
0 (2) E3=0.587

6.b H1=1, H2=2, H3=H=3.5 E2, E3 E2=E3=0.4 E2=0.296
solid line Wexp

1 (0.1), Wexp
1 (1.6) E3=0.587

6.b H1=1, H2=2, H3=H=3.5 E2, E3 E2=0.9, E3=0.8 E2=0.296
dashed line Wexp

1 (0.1), Wexp
1 (1.6) E3=0.587

6.c H1=1.5, H2=2.5, H3=H=3.5 E2, E3 E2=0.9, E3=0.8 E2=0.504
Wexp

1 (0.1), Wexp
1 (1.6) E3=1.704

 

 

(a)

 

(b)
Figure 6 : Relative Young moduli of the second and third
layers E2 and E3 as functions of the iteration index

  

(c)
Figure 6 : (continued) Relative Young moduli of the sec-
ond and third layers E2 and E3 as functions of the itera-
tion index

Figs 6.a - 6.c present the results given by our iterative
procedure as a function of the number of iterations. As
in the case of the decompressive probe, no more than 4-
5 Newton’s iterations are needed to approach the exact
solution of the inverse problem to within a relative error
≈ 10−3 in each case considered.

3 Smoothly Stratified Elastic Strate

The same model of a stratified medium can be applied
in two different ways. On one hand, this model could
be applied with a small number of internal strata to
characterize some piecewise averaged elasticity distribu-
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tion. Namely, a three-layered model seems advantageous
when average elastic properties of the tissue, subcuta-
neous fat and muscle are of interest. On the other hand,
if a more detailed analysis is needed, the layered model
could be applied with a large number N of strata. In gen-
eral, the layered model with large N can be used as a dis-
crete approximation to a smoothly stratified elastic layer.
In this case, the distribution of elastic moduli is approx-
imated by a stepwise constant distribution. The formu-
las we presented constitute a specific finite discretization
of the equilibrium equations, which satisfy exactly the
original problem within each thin approximately homo-
geneous layer. Being coupled with an effective numeri-
cal procedure presented in Appendix 2 the layered model
constitutes a robust approach to the detailed quantitative
estimation of elastic properties of the stratified medium
even for a large number of unknowns (i.e., for a large
number of internal layers).

The simplified approach based on a reduced set of pa-
rameters can be used to characterize the elasticity distri-
bution even if for a smoothly stratified layer. In fact, any
appropriate class of continuous functions can be used to
represent the elasticity distribution within the layer, in-
stead of the stepwise constant distribution considered so
far. We give a demonstration of this approach for the case
of an incompressible medium.

In this section, the Young (or the shear) modulus of the
medium is assumed to depend smoothly on z, and the
general Hankel transformation of displacement compo-
nents is used:

U(r, z) =
∞∫

0

αÛ(α, z)J1(αr)dα,

W (r, z) =
∞∫

0

αŴ(α, z)J0(αr)dα. (38)

Substituting (38) into the incompressibility condition

e =
∂U
∂r

+
U
r

+
∂W
∂z

= 0

leads to

Û = −Ŵ ′/α (39)

while the stress-strain relation for an incompressible
medium takes the form [3]

σi j = 2µεi j +qδi j , (40)

where the constituitively undetermined internal pressure
q = (σrr +σϕϕ +σzz)/3 is the limit value of the product
λe in (5) when ν → 0.5. The notation f ′ = ∂ f/∂z is used
in Eq. (39) and later on.

Using the Hankel transformation of q in the form

q(r, z) =
∞∫

0

αq̂(α, z)J1(αr)dα,

Eqs (38), (39), (40), (4) and eliminating q̂ we obtain the
equation coupling Ŵ and E

W ′′′′+2κ1W ′′′+(κ2−2β)W ′′−2βκ1W ′+β(κ2 +β)W = 0,

(41)

where β = α2, κ1 = E ′/E,κ2 = E ′′/E.

In this case, the stress-strain relation (40) leads to

σzz(r, z) =
E
3

∞∫
0

J0(αr){4αW ′ − [κ1(Ŵ ′′ +βŴ )

+(Ŵ ′′′ +βŴ ′)]/α}dα,

σrz(r, z) = −E
3

∞∫
0

J1(αr)(Ŵ ′′+βŴ )dα.

Using the Hankel transformation of the vertical displace-
ment and of the normal pressure at the surface

W0r) =
∞∫

0

αŴ0(α)J0(αr)dα

P(r) =
∞∫

0

αP̂(α)J0(αr)dα

and bearing in mind conditions (1) and (2), we obtain the
boundary conditions for Eq. (41)

Ŵ ′(α,H) = Ŵ(α,H) = 0, (42)

Ŵ ′′(α,0)+βŴ(α,0) = 0, (43)

Ŵ ′′′(α,0)−3βŴ ′(α,0) = 3βP̂(α)/E(0). (44)

If W0(r) is known, then we also have

Ŵ(α,0) = Ŵ0(α). (45)
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Note that the boundary-value problem (41)-(45) with
known Ŵ0(α) and P̂(α) (i.e., with known W0(r) and
P(r)) is overdetermined if E(z) is given. Conditions
(42)-(44) are sufficient to obtain the solution Ŵ0(α, z).
The vertical displacement at any point including the
layer’s surface can be reconstructed by (38). Using the
solution W (r,0) of the direct elastic problem the inverse
problem (i.e. the problem of recovering E(z)) can be
formulated on the base of Eqs (27). The unknown func-
tion E(z) can be approximated in any appropriate class of
smooth functions determined by a reduced set of param-
eters. It should be pointed out that a precise specification
of the local surface loading is needed to compute in this
way the left-hand parts of Eqs (27). Note also that the
number K∗ of Eqs (27) should be no less than the num-
ber of these unknown parameters.

If both functions W0(r) and P(r) are known for all r ≥ 0,
there is no need to consider any particular specification
of the local surface loading. Let us rewrite Eqs (41)-(45)
using the notation

V(α, z) = Ŵ(α, z)/Ŵ0(α).
V ′′′′ +2κ1V ′′′+(κ2 −2β)V ′′−2βκ1V ′+β(κ2 +β)V = 0,

(46)

V ′(α,H) = V(α,H) = 0, (47)

V ′′(α,0) = −β, (48)

V(α,0) = 1, (49)

V ′′′(α,0)−3βV ′(α,0) = 3βG(α)/E(0),
G(α) = P̂(α)/Ŵ0(α). (50)

Formulas (46)-(50) show that in this case the inverse
problem can be formulated in a different way, indepen-
dently of the surface loading. Indeed, if the function E(z)
was known, the solution V (α, z) of the problem given
by Eqs (46)-(49) could be obtained and, therefore, the
function G(α) computed through the first equation in (3).
Hence, the ratio G(α) = P̂(α)/Ŵ0(α) depends only on
the function E(z); therefore, it is the same for all sur-
face loadings. On the other hand, the function G(α) can
be obtained according to the last equation in (3) using
the known functions Ŵ0(α) and P̂(α) (i.e., with known
W0(r) and P(r)).

Bearing this in mind, we can formulate the inverse prob-
lem as a minimization problem for the error function

g(α) = |G(α)−G∗(α)|,

where G(α) is the theoretical prediction corresponding to
the trial distribution E(z), and G ∗(α) is computed from
the experimentally measured W0(r) and P(r), which re-
flect the real distribution E ∗(z).

Some numerical experiments were performed to demon-
strate the robustness of this approach to detect tissue ab-
normality [Skovoroda (1996)]. It has been shown that
the recovering of elastic properties within the layer is
possible even when the abnormality is superimposed to a
physiological inhomogeneity of the layer occurs and the
function G(α) = P̂(α)/Ŵ0(α) is noisy. Here we present
some basic aspects of this approach.

In the examples we give here, the function G∗(α) is re-
placed by the exact solution of the direct elastic problem
based on the given distribution E ∗(z), similarly to what
has been done in Sects 2.1 and 2.2.

Let us assume the function E ∗(z) as follows

E∗(z) = E(0){1+e0(z)+
N

∑
i=1

A∗
i e∗i (z)}, (51)

where the term [1 + e0(z),] represents the physiological
inhomogeneity of the layer and the terms

A∗
i e∗i (z) = exp

[−t∗i |z− z0
i ∗ |ni

]
, i = 1, . . . ,N,

represent the abnormal inclusions. In all the examples
considered, we use the direct and back sweep procedure
[Samarski and Nikolaev (1978)] to obtain the numerical
solution of the boundary value problem (46)-(49), with
ni = 3.

Figs 7-9 illustrate the relation between the function g(α)
and the parameters of inclusion. The functions g(α)
given in Fig. 7 correspond to the case when e0(z) = 0,
the single hard inclusion with the parameters A ∗

1 = 1,
t∗1 = 1200 is located at z0

1∗ = 0.2, 0.3, 0.4, 0.5, 0.6, re-
spectively and G(α) for a homogeneous layer is com-
puted. The same case with z0

1∗= 0.4 is illustrated in Fig.
8. Different inclusions characterised by A∗

1 = -0.75, -0.5,
-0.25, 0.5, 1, 1.5 are considered. Finally, the functions
g(α) for A∗

1 = 1, z0
1∗ = 0.4, t∗1 = 250, 500, 1000 and 1500

are given in Fig. 9. These figures clearly show that the
function g(α) depends monotonically on the parameters
of the inclusion (position, size and shape).

Figures 10 and 11 illustrate the recovery of a distribution
of elastic modulus when the space

E(z) = E(0){1+
M

∑
j=1

A∗
j e∗j(z)}
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Figure 7 : Error function g(α), computed for the differ-
ent position of inclusion

 

Figure 8 : Error function g(α), computed for the differ-
ent magnitudes of inclusion

with

e j(z) = exp[−t j(z− z0
j)

2], j = 1, . . .,M,

is used to approximate the unknown distribution E ∗(z).
Namely, M = 9, z0

j = jh, t j = 4ln2/h2, h = 0.1 are
used. The set of unknown parameters in this case is
{A j}, j = 1, . . .,M, and these parameters are estimated
by minimizing the total error

D =
∞∫

0

|G(α)−G∗(α)|dα. (52)

Note, that G(α)→ const when α → ∞. Hence, the error

 

Figure 9 : Error function g(α), computed for the differ-
ent shape of inclusion

minimization procedure can be drastically simplified by
evaluating the integral in Eq. (52) on a bounded interval.
Note that a deep inclusion correspond to a function g(α)
much smaller than that corresponding to an inclusion lo-
cated close to the surface. This phenomenon is clearly
shown by Fig. 7. It suggests that weighted error func-
tions could be more advantageous as compared with Eq.
(52).

   

Figure 10 : The actual and reconstructed distribution
E(z)

The iterative procedure of minimization is based on
a gradient method, and starts with a trial solution
{A j∗, t j∗, z0

j∗}, j = 1, ..,M, j=1,...,M. The step sizes of
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Figure 11 : Distribution E(z) reconstructed using differ-
ent number of iterations

the gradient method for each particular unknown are cho-
sen on the base on three estimates of D, then the mini-
mum of D is locally predicted using a second order poly-
nomial approximation (under the restriction of a decreas-
ing error). Then, a global linear predictor is used to up-
grade all unknowns simultaneously. This damps out os-
cillations in convergence. If the total error remains nearly
constant, then the step size is reselected separately using
the local quadratic predictor as described above.

The term 1+e0(z), in (51) in these examples is simulated
by weighted first ten terms of Fourier expension with ran-
dom coefficients.

The actual distribution E ∗(z) and the recovered distribu-
tion E(z) are compared in Fig. 10. A few stages of the
iterative procedure are represented in Fig. 11, to illustrate
how the iterative process converges.

4 Conclusion

When you press on the surface of a human body with
a mechanical probe, a specific mechanical reaction is
determined by the elastic properties of the underlying
tissues. The problem is to recover these properties us-
ing limited information on surface displacement. As we
show in this paper, a number of mathematical approaches
can be followed to formalize this problem, which lead to
successful numerical techniques.

This paper presents the mathematical and numerical as-
pects of the problem when all discussed approaches are
tested on the results of numerical experiments instead of

real experimental data. This is done in order to high-
light the basic features of our approach. The approaches
discussed in sections 2 and 3 have been successfully
used by Skovoroda and Aglimov (1997); Skovoroda and
Aglimov (1998) to reconstruct the mechanical proper-
ties of a layered visco-elastic medium on the base of ex-
perimental measures of surface impedance effected with
an harmonically vibrating cylindrical indenter [Timonim
(1989)]. The quality of the results was encouraging. In
particular, it was found that the differences between mea-
sured and predicted surface impedance components were
not greater than the experimental noise.

The results from soft tissues coupled with the results of
a comparison of experimentally measured and theoret-
ically predicted displacement and strain fields from in-
homogeneous tissue – like platforms [Skovoroda (1994)]
lead to conclusion, that small displacement and strain of
the object are sufficient for mechanical properties recon-
struction and restricted by signal – to – noise ratio of ex-
perimental data only.

As is demonstrated here, a sound mathematical modeling
gives a robust procedure for a quantitative estimation of
elastic tissue parameters even with limited experimental
information available.

The analytical-numerical method we developed seems
promising for solving the identification problem of me-
chanical properties of stratified structural elements.
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Appendix 1. The solution of forward elastic problem
for homogeneous layer

When the Lame coefficients are constant within the layer,
i.e. when the layer is homogeneous, the solution of the
direct elastic problem is [5]

Ui(r, z) =
∞∫

0

αJ1(αr)(Bi +αSi +αzRi)dα,

W i(r, z) =
∞∫

0

αJ0(αr)[2(1−2νi)Ri −αAi −αzBi]dα,

σi
rr(r, z) = 2µi

∞∫
0

α2{J0(αr)[(1+2νi)Bi +αSi +αzRi]

− J1(αr)
αr

(Bi +αSi +αzRi)}dα,

σi
θθ(r, z) = 2µi

∞∫
0

α2{2νiJ0(αr)Bi

+
J1(αr)

αr
(Bi +αSi +αzRi)}dα,

σi
zz(r, z) = 2µi

∞∫
0

α2J0(αr)[(1−2νi)Bi −αSi −αzRi]dα,

σi
rz(r, z) = 2µi

∞∫
0

α2J1(αr)(2νiR
i +αAi +αzBi)dα,

(A1.1)

where ν = γ/2(λ +µ) is Poisson’s ratio, J0,1 are Bessel’s
functions of the first kind of order 0,1 [4], and

B = B1eαz +B2e−αz, R = B1eαz −B2e−αz,

A = A1eαz +A2e−αz, S = A1eαz −A2e−αz.

Note that the 4N parameters Ai
j and Bi

j, j = 1,2 , i=1,...,N
depend on α.



472 Copyright c© 2003 Tech Science Press CMES, vol.4, no.3&4, pp.457-472, 2003

Appendix 2. The algorithm to solve the system of
4N linear equations, arising in the case of layered
medium

To solve the system of 4N linear equations (20)-(25) a
procedure based on direct and back sweeps [8] was ad-
vocated to be advantageous. Taking into account [8] we
formalize the procedure as follows

Ai
j = Φi

j1AN
2 +Φi

j2BN
2 ,

Bi
j = Ψi

j1AN
2 +Ψi

j2BN
2 , i = 1, . . .,N, j = 1,2 (A2.1)

This procedure is simple, extremely fast and does not re-
quire any general 4Nx4N matrix inversion. According to
Eqs (A2.1), all unknowns are linear combinations of two
of them. The coefficients Φi

jk and Ψi
jkof Eqs (A2.1) are

specified below and, therefore, the general 4Nx4N matrix
inversion problem is reduced to 2x2 case.

To arrange this procedure several steps are needed. First,
we immediately obtain for i = N and j = 2

ΦN
21 = 1,ΦN

22 = 0,ΨN
21 = 0,ΨN

22 = 1. (A2.2)

Second, we could obtain from Eqs (21)

ΦN
11 = −K(1+2βN −2nN)/(1+2nN),

ΦN
12 = −K(β2

N +4nN)/α(1+2nN),
ΨN

11 = 2αK/(1+2nN),
ΨN

12 = −K(1−2βN −2nN)/(1+2nN), (A2.3)

where K = (kN
2 )2. Third, Eqs (22)-(25) yield

Ai−1
1 =

{
[mi(1+2ni)+1]Ai

1 +

(mi −1)[ni(1+2βi −2ni)Bi
1/α−

((1+2βi −2ni)Ai
2 +(2β2

i −2n2
i +3ni)Bi

2/α)(ki
2)

2]
}

÷4(1−νi−1),

Bi−1
1 =

{
(mi +2ni +1)Bi

1 +

(mi −1)[2αAi
2− (1−2βi −2ni)Bi

2)(ki
2)

2]
}
/4(1−νi−1),

Ai−1
2 = {[mi(1+2ni)+1]Ai

2−
(mi −1)[ni(1−2βi −2ni)Bi

2/α +
((1−2βi −2ni)Ai

1 − (2β2
i −2n2

i +3ni)Bi
1/α)(ki

1)
2]}

÷4(1−νi−1),
Bi−1

2 = {(mi +2ni +1)Bi
2−

(mi −1) [2αAi
1 +(1+2βi −2ni)Bi

1)(ki
1)

2]}/4(1−νi−1)
(A2.4)

Therefore, using (A2.1) and (A2.4) we conclude that

Φi−1
1 j =

{
[mi(1+2ni)+1]Φi

1 j +

(mi −1)[ni(1+2βi −2ni)Ψi
1 j/α−

((1+2βi −2ni)Φi
2 j +(2β2

i −2n2
i +3ni)Ψi

2 j/α)(ki
2)

2]
}

÷4(1−νi−1),

Ψi−1
1 j =

{
(mi +2ni +1)Ψi

1 j +

(mi−1)[2αΦi
2 j−(1−2βi−2ni)Ψi

2 j)(ki
2)

2]
}
/4(1−νi−1),

Φi−1
2 j =

{
[mi(1+2ni)+1]Φi

2 j −
(mi −1)[ni(1−2βi −2ni)Ψi

2 j/α +

((1−2βi −2ni)Φi
1 j − (2β2

i −2n2
i +3ni)Ψi

1 j/α)(ki
1)

2]
}

÷4(1−νi−1),

Ψi−1
2 j =

{
(mi +2ni +1)Ψi

2 j −

(mi−1)[2αΦi
1 j+(1+2βi−2ni)Ψi

1 j)(ki
1)

2]
}
/4(1−νi−1).

j = 1,2 (A2.5)

Finally, we obtain from Eqs (20) using Eqs (A2.1) for
i = 1

AN
2 = −ps12/∆, BN

2 = ps11/∆, (A2.6)

where

∆ = s11s22 − s21s12,

s1 j = α(Φ1
1 j +Φ1

2 j)+(1−n1)(Ψ1
1 j −Ψ1

2 j),

s2 j = α(Φ1
2 j −Φ1

1 j)+n1(Ψ1
1 j +Ψ1

2 j),
j = 1,2.

Hence, the matrix inversion procedure is completed.


