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An Anisotropic Damage Model for the Evaluation of Load Carrying Capacity of
Composite Artificial Ligaments

P. Vena1, R. Contro

Abstract: The adoption of artificial ligaments in cur-
rent surgery is still characterised by a low success rate
due to the fact that mechanical properties of the biomed-
ical devices are such that a biomechanical compatibility
is not fully satisfied. A durable artificial ligament should
exhibit stiffness as well as strength properties which are
such that a full articulation functionality is guaranteed.
To this purpose, reliable numerical methods able to pre-
dict the mechanical behaviour of such devices both in
the elastic and in inelastic range until complete rupture,
could be used for designing of devices with tailored me-
chanical properties.
The present paper deals with the mechanical character-
isation of artificial ligaments made of composite mate-
rials, with specific reference to the tensile load carrying
capacity. The artificial ligaments taken into considera-
tion are composite cylinders which are manufactured by
reinforcing a compliant matrix by means of helicoidally
oriented fibres. A finite strain model has been developed
and characterised by a stiffness degradation of the rein-
forcing fibres playing the prominent mechanical role. A
suitable choice of the constitutive parameters allowed to
reproduce the elastic behaviour and to catch the limit load
experimentally measured.

1 Introduction

Substitution of damaged or broken ligaments due to
pathologies or injuries is a rather common surgery pro-
cedure which can be performed by making recourse to
autograft tissues or artificial prostheses. In the first case
a tissue sample is harvested from other sites of the patient
and implanted in the damaged articulation. In the case of
surgery on knee ligaments, the most commonly adopted
autograft tissue is part of the patellar tendon which can
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be easily implanted as a new cruciate ligament. This
surgical procedure implies a long post surgery rehabil-
itation period during which the newly implanted tissue
must grow until it gets sufficiently thick and stiff while it
is gradually subjected to the physiological loads.

The drawback of the length of the rehabilitation period
can be avoided if artificial ligaments are implanted. Ar-
tificial ligaments can be subjected to the physiological
loads early in the post operative period and the patient
can, in principle, restart soon with the normal daily life.
Artificial ligaments do not have self-adaptive properties
as living tissues do; therefore they have to be previously
designed in such a way that all the physiological loads
have to be withstood without any unrecoverable damage.
Moreover the mechanical response of the biomedical de-
vice must be such that the articulation functionality is
preserved.

A full functionality can, in principle, be recovered if the
mechanical response of artificial ligaments exhibits fea-
tures similar to those exhibited by natural tissues. The
most important mechanical properties of ligaments, that
can be assessed by means of laboratory tests, are: the
force-displacement curve of a tensile test, the time de-
pendent properties measured by means of creep tests or
relaxation tests and the maximum load (load carrying ca-
pacity) which can be measured by means of a tensile fail-
ure test.

This paper focuses on this latter aspect and aims to
present a mathematical model for the determination of
the load carrying capacity of artificial ligaments.

The biomedical devices considered in this paper are com-
posite ligaments obtained by means of a double heli-
coidal Poly-L-Lactide (PLLA) fibre arrangement bonded
together by means of a polyethylene matrix. This fibre
arrangement is obtained by means of winding machines
which allow to control the fibre content and the wind-
ing angle. Mechanical laboratory tests have shown that
the mechanical behaviour exhibited by such devices, in
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terms of force-displacement curve, is qualitatively simi-
lar to that of natural ligaments [Iannace, Sabatini, Am-
brosio and Nicolais (1995)]. The main mechanical role
is played by the reinforcing fibres which, during longitu-
dinal stretching, exhibit the typical J shaped curve (stiff-
ening effect). This mechanical feature is typical for lig-
aments and it is a property which is common to most of
the living tissues subjected to large strains [Fung (1981)].

The amount of the reinforcing fibres, the winding angle,
and their mechanical characteristics should be tuned in
order to achieve the full biomechanical compatibility re-
quired by articulation functionality.

In this paper the artificial ligament carrying capacity is
studied. To this purpose, a continuum damage model
suited for anisotropic composite materials is introduced.
The model is conceived in the framework of the standard
formulation of constitutive equations for dissipative ma-
terials consistent with the thermodynamical restriction
imposed by Clausius-Duhem inequality. The model is
based on the assumption that each constituent (fibre and
matrix) can undergo a damage process according to the
current state of strain. In particular the numerical exam-
ples are carried out under the simplifying assumption that
the damage process involves the fibres only. The damage
process develops on the basis of the fibre stretch.

The model is formulated within the framework of the fi-
nite elasticity theory fulfilling the objectivity principle
(material frame indifference [Malvern (1969)]). The for-
mulation allows for the anisotropy of the material, con-
sidered as a whole, and for the damage evolution which
is related to the anisotropic directions.

Elastic anisotropic material models in finite deformations
are widely published in literature with specific refer-
ence to biological tissues. More recently, Holzapfel and
Gasser (2001) presented a comprehensive paper where
both theoretical and computational aspects of viscoelas-
tic anisotropic material models are explored.

Model based on the elastic degradation and progres-
sive damage evolution are present in the literature since
the 80’s [Krajcinovic (1980, 1996), Murakami (1988)].
These models were formulated for quasi-brittle material
such as rocks, ceramics, concrete, etc. More recently
anisotropic elastic degradation models have been pre-
sented which account for anisotropy induced by a direc-
tion dependent damage diffusion, according to the load
conditions [Carol, Rizzi and Willam (2001)]. All these

models were suited for the small strain kinematic de-
scription. However only few works consider the finite
strain range. Recently, in [Steinmann and Carol (1998)]
one possible extension to the finite strain range has been
presented.

More recently other damage models suited for brittle ma-
terials based on the evolution of microcracks within the
solid have been presented by Chen Z., Hu W. and Chen
E.P. (2000).

In the specific field of biological soft tissues few dam-
age models have been published. A finite strain formula-
tion for anisotropic damage diffusion in arterial wall has
been presented by Hokanson and Yazdani (1997). This
work describes the damage diffusion within an initially
isotropic hyperelastic material.

The work presented in this paper deals with initially
anisotropic fibrous material, subjected to finite strains
under the hypothesis that fibres can undergo stiffness
degradation. This assumption is consistent with the ex-
perimental and numerical evidence which have shown
that the mechanical contribution of the fibres to the load
carrying capacity is predominant with respect to that
given by the surrounding matrix. When fibres reach a
limit threshold, which is a scalar function of the fibre
stretch, a degradation of fibre stiffness starts. Damage
evolution is governed by a consistency condition similar
to that usually defined in the elasto-plastic constitutive
modelling. When the fibre has lost its stiffness, the ma-
terial, which is constituted by the matrix only (exhibiting
poor mechanical properties) becomes isotropic.

The model is used for a comparison between the theoret-
ical value of the maximum load and the value estimated
during mechanical laboratory tests.

Once the model have proven its effectiveness it can in
principle be adopted for tailoring implants with adequate
mechanical properties in terms of maximum allowable
load. In the last section a brief sensitivity analysis of the
load carrying capacity with respect to the main mechani-
cal or geometrical parameters will be presented.

2 Theoretical Model

The constitutive formulation for the composite mate-
rial adopted in artificial ligament manufacturing is pre-
sented in this section. The constitutive theory is cast
into the framework of hyperelastic material formulations.
The two constituents are characterised by a strain energy
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function defined in the strain space. These functions are
dependent on invariant kinematic quantities. For the spe-
cific case of the damage model, the energy associated
with the fibres is affected by a damage parameter “D ”
as follows:

W (I1, I2, I3, I4,D) = Wm (I1, I2, I3)+Wf (I4,D) (1)

where the classical strain invariants are here reported:

I1 = tr (C) (2a)

I2 =
1
2

[
(trC)2 − trC2

]
(2b)

I3 = detC (2c)

I4 = NT CN = λ2 (2d)

In the previous formulas C is the right Cauchy-Green de-
formation tensor and I1, I2, I3 are the first three strain
invariants of the C tensor. The fourth invariant I 4 is de-
pendent on the fibre orientation in its undeformed config-
uration N and it is equal to the square of the fibre stretch
λ.

In this specific application, the matrix has been assumed
to be an isotropic hyperelastic material characterised by
the elastic energy Wm and the fibre is characterised by its
elastic energy W f . In particular, the following function
has been adopted for the fibre elastic energy :

Wf = Kf (1−D) (I4 −1)4 (3)

whereas the strain energy function adopted for the matrix
is a slight modification of a formulation introduced by
Ogden (1984):

Wm = α (I1 −3− log I3)+β(I3 −1)2 . (4)

In the formulae (3) and (4) α, β are constitutive parame-
ters related to the matrix and K f is a constitutive param-
eter related to the fibres.

The expression for the second Piola-Kirchhoff stress ten-
sor is derived by differentiating the strain energy func-
tions as follows:

S = 2
∂W (C,D)

∂C
= Sm+S f = 2

∂Wm (C)
∂C

+2
∂Wf (C,D)

∂C
.

(5)

In particular, the stress contribution given by the fibres

can be expressed as follows:

S f = 2
∂Wf

∂I4
N⊗N;

S fi j = 2
∂Wf

∂I4
NiNj = T NiNj (6)

where T is a measure of the fibre tension which, accord-
ing to equation (3), is:

T = 8Kf (1−D)(I4 −1)3 (7)

The damage parameter D has here the meaning of the
classic elastic degradation of stiffness. In fact the fibre
stiffness parameter K f can be considered as affected by
a coefficient (1-D) which is responsible of the fibre stiff-
ness decay. Fibre stiffness is K f at the beginning of the
strain history when the damage parameter is D=0 and
tends to zero as D tends to its maximum allowable value
D=1.

The energy put into the unit volume of material in the
infinitesimal time interval is given by the tensor product
SĖ, whereas the internal energy variation occurring dur-
ing the same time interval is Ẇ , which can be expressed
as:

Ẇ =
∂W
∂E

Ė +
∂W
∂D

Ḋ =
∂W
∂E

Ė−∆Ḋ; ∆ = −∂W
∂D

(8)

where the symbol ∆ can be denoted as damage stress
[Manzel and Steinmann (1999)].

The dissipated energy (d) is given by the difference be-
tween the energy put in the material and the energy stored
within the material as elastic energy. This dissipation
“d ” must be greater or equal to zero (second principle
of thermodynamic) and therefore it must be:

SĖ−Ẇ = d ≥ 0. (9)

If the stresses are defined as in formula (5) the condi-
tion on the dissipation reduces to the following simple
expression:

∆Ḋ ≥ 0 (10)

and in the case of the specific form of the elastic energy
assumed for the fibre it reads:

Kf (I4 −1)4 Ḋ ≥ 0 (11)

For Kf > 0 the second principle of thermodynamic re-
duces to the condition that the damage variable D must
be a monotonically increasing parameter, i.e. Ḋ ≥ 0.
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2.1 Damage criterion

Following the standard scheme of dissipative materials, a
limit surface is defined. It delimits the range of elastic be-
haviour of the material. In the case of damage involving
the fibres only, this surface can be reduced to a function
depending on a single scalar. In this model a function of
the fourth kinematic invariant has been chosen, therefore
the general expression of the limit function is as follows:

Ψ = Ψ(I4,D) . (12)

The elastic behaviour is characterised by the condition
Ψ≤ 0.

If this condition is met the damage variable does not
grow; otherwise the damage increases until the strain
state is again within the elastic limit. The damage evolu-
tion law is therefore as follows:{

Ψ≤ 0
Ψ̇ = 0

⇒ Ḋ = 0;{
Ψ = 0
Ψ̇ < 0

⇒ Ḋ = 0 ;{
Ψ = 0
Ψ̇ > 0

⇒ Ḋ > 0 .

(13)

The evaluation of Ḋ is given by the consistency condition
Ψ̇ = 0 which assures that the final representative point,
in the space of the kinematic variables, will still lie on
the limit surface. This condition is quite similar to the
consistency condition commonly assumed when elasto-
plastic constitutive laws are formulated.

In this work the function Ψ has been chosen as follows:

Ψ = ∆(I4)−Y0 −Y (D) (14)

where Y (D) is a monotonic increasing function of the
damage variable defined in the domain 0 <D< 1. In
figure 1, two possible shapes of the hardening function
Y(D) are reported.

The consistency condition gives the damage rate as fol-
lows:

∆̇+ΨY YDḊ = 0

Ḋ = − ∆̇
ΨYYD

(15)

where the index Y or D denotes partial derivative with
respect to Y or D respectively.

D

1

Y

Figure 1 : Two different functions Y(D). The one re-
ported with solid line is that used in the numerical simu-
lations.

In the numerical examples reported in the next section
the function Y(D) is assumed as a linear function of the
form: Y=Y1D and the damage rate is therefore:

Ḋ =
∆̇
Y1

. (16)

The damage rate is given by relation (16) until D reaches
its maximum value D=1; thereafter, the damage rate is
zero.

In this specific case, simple expressions of the functions
∆(I4) and Y(D) have been assumed:

∆(I4) = (I4 −1)2 (17a)

Y (D) = Y1D if D ≤ 1 (17b)

with this choice the consistency condition can be satis-
fied exactly by fulfilling the condition Ψ(I4,D) = 0 and
consequently:

Dn =
∆−Y0

Y01
if Ḋ �= 0 (18a)

Dn = Dn−1 if Ḋ = 0 (18b)

where the subscript n on the damage variable denotes
the value of the variable at the nth computational load-
ing step.

An alternative interpretation of the damaging behaviour
can be introduced if the damage phenomenon is de-
scribed as process responsible for the onset of degrading
strains.



An Anisotropic Damage Model for the Evaluation of the Load Carrying Capacity of Composite Artificial Ligaments 501

The constitutive equation of a damaging fibre can be
rewritten in a rate form by differentiating equation (7)
as follows:

Ṡ f = 8Kf (I4 −1)2 [
3(1−D) İ4 − Ḋ(I4 −1)

]
N⊗N (19)

where the increment of strain is given by two different
contributions: the former is due to the increment of the
total deformation and the latter is given by the increment
of the damage variable.

Let us now assume a multiplicative decomposition of the
I4 kinematic variable which is the square value of the
total fibre stretch by introducing elastic and degrading
components in a finite form and in the rate form as in the
following:

I4 = Ie
4ID

4

İ4 = İe
4ID

4 + İD
4 Ie

4 . (20)

When, as in equation (20), an elastic strain increment is
defined, then the stress increment can be conceived as an
elastic constitutive operator applied to the elastic part of
the strain increment. Therefore in the case in which for
the fibre elastic behaviour a stiffness parameter K (which
will be in general dependent on the strain itself and dam-
age parameter) is defined, the fibre stress increment can
be written as follows:

Ṡ f = Kİe
4N⊗N =

K

ID
4

(
İ4 − Ie

4 İD
4

)
N⊗N (21)

in which the elastic strain increment has been obtained
by making use of equation (20).

By comparing the two expressions obtained for the stress
rates (19,21) the following relations can be obtained:

ID
4 =

1
1−D

K

24Kf (I4 −1)2 (22a)

İD
4 =

(
ID
4

)2 Ḋ
3Ie

4
. (22b)

These two relations express the equivalence between the
degrading strain and the damage variable both in finite
and rate forms. From formulae (22) it can be deduced
that as damage gets its maximum value (D=1), the de-
grading strain gets infinite. As a consequence of multi-
plicative decomposition introduced in equation (20), an

infinite value of inelastic strain entails that the elastic
component of I4 goes to zero and consequently the fibre
stress vanishes.

A relationship between fibre stress rate Ṫ and total strain
rate (expressed in terms of İ4 ) can be determined if equa-
tions (16,17) are accounted for:

Ṫ = KT (I4,D) İ4

= 8Kf (I4 −1)2

[
3(1−D)−2

(I4 −1)2

Y1

]
İ4 (23)

where KT is the tangent stiffness which is function of the
current strain state and of the damage variable.

The tangent stiffness matrix of the material, which mutu-
ally relates the stress and strain conjugate measures, can
be expressed in the following general form:

Ṡ =
∂S
∂E

Ė = K(E,D)Ė (24a)

Ṡ = Ṡm + Ṡ f = [Km (E)+K f (E,D)]Ė (24b)

where the damage variable affects the fibre tangent stiff-
ness. The compatibility between fibre and matrix defor-
mations implies that:

NT ĖN =
1
2

İ4 (25)

and finally the expression of the tangent stiffness can be
derived:

Km
i jklĖkl =

∂Sm
i j

∂Ekl
Ėkl =

∂2Wm

∂Ei j∂Ekl
Ėkl (26a)

K f
i jklĖkl = KT (I4,D)NiNjNkNl Ėkl (26b)

where Ni is the ith component of the unit vector parallel
to the initial fibre orientation.

The above expounded constitutive law has been im-
plemented into the commercial finite element code
ABAQUS (user-defined element fortran routine). The
computer code was implemented for a three dimensional
brick element with eight node within the standard dis-
placement formulation. Suited compatibility matrixes,
which were dependent on the displacement field, were
implemented in the framework of a total Lagrangean ap-
proach. The nodal residual force vector equivalent to the
internal stress components and to the externally applied
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Figure 2 : (a) Three tensile tests for different values of
the constitutive parameters Y0. Anisotropy orientation
is 45oin the x-z plane, with z being the stretching direc-
tion. (b) Cyclic force-displacement curve with increasing
maximum stretch.

load, together with the tangent stiffness matrix, were im-
plemented according to Bathe (1982). The contribution
given by the anisotropy induced by the fibres was imple-
mented as a simple extension of the standard formulation
for isotropic material behaviour.

As an example, uniaxial tensile tests on a unit volume
of material are numerically simulated. Let us consider
the application of a prescribed stretch along one of the
coordinate directions and assume that the anisotropy axes
are 45◦ inclined with respect to the stretching direction.
In this case, fibre direction is characterised by the unit
vector NT =

[
1/

√
2 1/

√
2 0

]
.

As an illustrative example three tensile tests are reported
in figure 2a. The three curves are obtained by using the
above described model with three different values of the

parameter Y0(0.22, 0.6, 1.3), which accounts for the on-
set of the degradation of elastic stiffness. The parameter
Y1, which accounts for the growing rate of damage, is
kept constant to the value 0.01.

In a further example, a cyclic prescribed displace-
ment with a progressively increasing value of maximum
stretch is applied. The stress-stretch behaviour obtained
is shown in figure 2b. The material constants where
Y0 = 1.3, Y1 = 0.1 Dissipation cycles develop and the
stress-stretch curve is such that each reloading path fol-
lows the unloading path of previous cycle until new de-
grading strains develop (or alternatively until new dam-
age develops). The damage rate is zero until the current
threshold of the damage limit function is reached. Once
the damage reaches its maximum value no stress can be
sustained by the fibre at that specific point and the me-
chanical behaviour of the material is only related to the
matrix properties which are not affected by the damage
phenomenon.

In these illustrative examples the material parameters
characterizing the matrix material were as follows: α =
0.01 MPa, β = 1.0 MPa, whereas the constitutive param-
eter related to the elastic behaviour of the fibres was as-
sumed to be Kf = 1.0 MPa

3 Load carrying capacity of artificial ligaments

One single sample of ligament prosthesis has been sub-
jected to mechanical laboratory tensile tests.

The sample was subjected to a progressively increasing
stretch at a constant stretch rate (1/76mm/min) so that
a quasi static test is simulated. The tests were stopped
when a complete failure was reached.

The artificial ligament subjected to the laboratory tests
was a cylinder made of composite material with an av-
erage diameter of 4 mm and two helicoidally distributed
PLLA reinforcing fibres having a winding angle of 20 ◦.
A geometric model of the ligament is reported in figure
3.

The tensile tests carried out within the elastic range al-
lowed to characterise the elastic behaviour and to deter-
mine the constitutive parameters presented in the previ-
ous section. The values of such parameters are α = 3
MPa, β = 5 ·10−3 MPa, Kf = 27 MPa [Figure 4].



An Anisotropic Damage Model for the Evaluation of the Load Carrying Capacity of Composite Artificial Ligaments 503

Figure 3 : Geometric model of the artificial ligament:
it is a composite tube with reinforcing fibres having a
winding angle θ f .

Figure 4 : Comparison between experimental results
(line with symbols) and finite element results (solid line)
for a tensile test of the artificial ligament within the elas-
tic range.

The initial fibre orientation was such that

N1 = −y; N2 = −x; N3 =

√
x2 +y2

tg(θ f )

Ni =
Ni∣∣N∣∣ (27)

where θ f is the winding angle and (x,y) are the coordi-
nates of the material point in the transversal plane orthog-
onal to the longitudinal axis.

The elastic behaviour observed from tensile tests is char-
acterised by a typical J shaped force-displacement curve.
Such stiffening can be partly ascribed to the non lin-
ear behaviour of the constituents and partly ascribed to
a kinematic effect, which can be relevant in anisotropic
materials. This kinematic effect is given by a progressive
variation of the fibre orientation during the strain history

and a progressive alignment of fibres along the load di-
rection.

The tensile test carried out up to failure is reported in
figure 5. The test showed a maximum load of about 115
N.

Figure 5 : Comparison between experimental results
(line with symbols) and finite element results (solid line)
for a tensile test of the artificial ligament until final fail-
ure. The purely elastic prediction is also reported as ref-
erence (dashed line).

The tensile tests were numerically simulated by using a
finite element discretization of the cylinder.

A uniform strain distribution has been assumed along the
longitudinal direction and a free transversal deformation
was allowed. The finite element model was consisting of
500 hexahedral 8 noded elements with trilinear interpo-
lation of the displacement field.

The longitudinal stretch was simulated by means of
uniformly prescribed displacement distribution over the
cylinder base.

At increasing load levels, the fibre stretch is not uniform
along the radial direction and therefore a non uniform
damage distribution is obtained as shown in figure 6a.
Higher values of damage are reached at the outer part
of the model. The top damage curve provides the dam-
age distribution at the last time step of the load history,
when the maximum carrying capacity has already been
attained.

The fibre tension T increases until the damage starts to
lower the stiffness parameter K f and, for a given stretch
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Figure 6 : (a) Values of damage variable D within the
solid. The distribution of the variable along the radial
direction starting from the centre of the model towards
the external boundary is reported. Different curves cor-
respond to different load steps. (b) Values of variable
T (fibre tension) within the solid. The distribution of the
variable along the radial direction starting from the centre
of the model towards the external boundary is reported.
Four analysis steps in the proximity of the maximum load
are labelled. The curve (3) corresponds to the fibre ten-
sion distribution at the maximum load.

level, T gets its maximum value. In figure 6b , the distri-
bution of fibre tension T along the radial direction within
the model is provided at four different time steps.

The curves labelled (1) and (2) refer to two different
distributions corresponding to time instants before the
load carrying capacity has been reached. When the load
reaches its maximum value the fibre tension distribution
starts to change its pattern, see curve labelled (3). Af-
ter the load peak, fibre tension starts to decrease until
complete failure is reached, see for example the curve
labelled (4).

Figure 7 : Force displacement curve predicted by the
finite element method for three different winding angles.

A simple trial and error procedure allowed to deter-
mine the parameter values of the damage model Y0

and Y1. Their values were such that a good agreement
between calculated and experimentally evaluated force-
displacement curve is obtained. These values resulted
Y0=0.08 and Y1=0.18.

According to the equations (14) two strain parameters ε 0

and ε01, which denote the strain levels at which the dam-
age phenomenon starts and complete loss of stiffness is
reached, can be defined as follows:

ε0 = λ0 −1 =
√√

Y0 +1−1 (28a)

ε01 = λ01 −1 =
√√

Y0 +Y01 +1−1 (28b)

For the parameters of this simulation one gets ε0 =
0.13mm/mm and ε01 = 0.23mm/mm which are consis-
tent with the failure strain of the single fibre provided by
the manufacturer, which was 0.23 mm/mm.

The model prediction of the tensile behaviour of liga-
ments with three different winding angles (45 o, 30o and
10o) is reported in figure 7.

From the model it comes that the peak load exhibits low
sensitivity to the fibre orientation. On the contrary, the
rupture strain and the elastic behaviour are much more
influenced by this parameter.

4 Conclusions

In this paper an anisotropic damage model that describes
the mechanical behaviour of composite artificial liga-
ments has been presented, with particular emphasis on
the evaluation of the load carrying capacity. This is one
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of the most crucial aspects of the mechanical perfor-
mance of biomedical devices which have to be taken into
account when effective and durable prostheses have to be
designed.

The constitutive law is formulated within the framework
of the finite hyperelasticity. The loss of load bearing ca-
pacity is simulated by means of progressive degradation
of elastic parameters. This degradation is provided by a
standard damage based model which has been extended
to the case of anisotropic and finite strain elasticity. This
model does not take into account any fibre-fibre or fibre-
matrix interaction. To this purpose a new form of the
potential energy with interaction between matrix strain
and fibre stretch should be conceived.

The model exhibited good quantitative agreement be-
tween experimental and numerical response of the non
linear elastic properties and in the evaluation of the max-
imum load.

Once the model parameters have been identified by com-
parison between numerical and experimental data of
monotonic tension tests, a proper validation would be re-
quired. Experimental data of tensile tests conducted on
samples manufactured with different fibre winding an-
gles could be useful to this purpose.

The predictive model of the tensile behaviour of liga-
ments with winding angle of 45◦, 30◦ and 10◦ provided
useful information that can be used for design purposes.

The peak load seems to have low sensitivity to the fi-
bre orientation, whereas, the failure strain and the elas-
tic behaviour is much more influenced by this geometric
parameter. These results derived from the fact that the
ultimate load is mainly dependent on the fibre strength
itself. The contribution of kinematic non linearity is,
in this case, not sufficiently effective to suggest the im-
provement of the ligament strength just by changing fibre
arrangements.

The parametric analysis would underline that if the
strength of ligaments is of concern, the geometric ar-
rangements of the fibres are of little interest and new
fibres with better mechanical properties should be con-
sidered. On the contrary, if the elastic behaviour is of
more concern, the fibre orientation should be carefully
designed in order to tailor a biomedical device which ful-
fils the clinical requirements. If a rather compliant device
and, at the same time, a high failure load is the goal, then
a compromise should be found between a proper fibre

orientation and the mechanical properties of the single
fibres.
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