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Some Aspects of the Method of Fundamental Solutions for Certain Biharmonic
Problems

Yiorgos-Sokratis Smyrlis1 & Andreas Karageorghis1

Abstract: In this study, we investigate the application
of the Method of Fundamental Solutions for the solution
of biharmonic Dirichlet problems on a disk. Modifica-
tions of the method for overcoming sources of inaccuracy
are suggested. We also propose an efficient algorithm for
the solution of the resulting systems which exploits the
symmetries of the matrices involved. The techniques de-
scribed in the paper are applied to standard test problems.

1 Statement of the problem

The Method of Fundamental Solutions (MFS) is a mesh-
less method applicable to certain elliptic boundary value
problems. Recently, because of the advantages that
meshless methods possess over other boundary meth-
ods and domain discretization methods, there has been
an increase in the interest in the MFS. The MFS was
first proposed by Alexidze and Kupradze [see Kupradze
(1965); Kupradze and Aleksidze (1964)] and in its mod-
ern numerical version by Mathon and Johnston [see
Mathon and Johnston (1977)]. Recent surveys of MFS-
type methods are given in [Fairweather and Karageorghis
(1998)] and [Golberg and Chen (1999)]. Also, a wide
range of applications of the MFS can be found in
[Kolodziej (2001)], whereas the application of MFS-type
methods to acoustic and electromagnetic scattering prob-
lems is described in [Doicu, Eremin and Wriedt (2000)].

The application of the MFS to the Dirichlet problem for
Laplace’s equation in a disk as well as various theoretical
aspects of the method was the subject of a recent study
[see Smyrlis and Karageorghis (2001)]. The MFS was
applied to biharmonic problems in [Bogomolny (1985)]
and [Karageorghis and Fairweather (1987)], respectively.
Details of various MFS biharmonic formulations may be
found in [Fairweather and Karageorghis (1998)] and ref-
erences therein.
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In this paper, we consider the boundary value problem


∆2u = 0 in Ω,

u = f on ∂Ω ,

∂u
∂n

= g on ∂Ω ,

(1.1)

where ∆ denotes the Laplace operator and f and g are
given functions, and Ω is the disk of radius ρ,

Ω = {xxx ∈ IR2 : |xxx|< ρ} . (1.2)

Motivated by the simple layer potential representation of
[see Maiti and Chakrabarti (1974)], in the biharmonic
MFS with fixed singularities [see Fairweather and Kara-
georghis (1998); Kupradze (1965); Mathon and Johnston
(1977)] the solution u is approximated by

uN(P;µµµ,ννν,QQQ)

=
N

∑
j=1

[µ j k1(P,Q j)+ν j k2(P,Q j)] , P∈Ω, (1.3)

where µµµ = (µ1,µ2, . . .,µN)T , ννν = (ν1,ν2, . . . ,νN)T and QQQ
is a 2N-vector containing the coordinates of the singular-
ities Q j, j = 1, . . .,N, which lie outside Ω. The function
k1(P,Q) is a fundamental solution of Laplace’s equation
given by

k1(P,Q) = − 1
2π

log |P−Q|, (1.4)

and the function k2(P,Q) is a fundamental solution of the
biharmonic equation given by

k2(P,Q) = − 1
8π

|P−Q|2 log |P−Q|, (1.5)

with |P−Q| denoting the distance between the points P
and Q. The singularities Q j are fixed on the boundary
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∂Ω̃ of a disk Ω̃ concentric to Ω and defined by Ω̃ = {xxx ∈
IR2 : |xxx| < R}, where R > ρ . A set of equally spaced
collocation points {Pi}N

i=1 is chosen on ∂Ω, so that if Pi =
(xPi ,yPi), then

xPi = ρcos
2(i−1)π

N
,

yPi = ρsin
2(i−1)π

N
, i = 1, . . .,N . (1.6)

If Qj = (xQ j ,yQ j), then

xQ j = Rcos
2( j−1)π

N
,

yQ j = Rsin
2( j−1)π

N
, j = 1, . . .,N . (1.7)

The vectors of coefficients µµµ and ννν are determined so that
the boundary conditions are satisfied at the collocation
points {Pi}N

i=1 :

uN(Pi;µµµ,ννν,QQQ) = f (Pi), i = 1, . . . ,N, (1.8)

and

∂uN

∂n
(Pi;µµµ,ννν,QQQ) = g(Pi), i = 1, . . . ,N. (1.9)

This yields a 2N ×2N linear system of the form

G0
(

µµµ
ννν

)
=
(

fff
ggg

)
, (1.10)

where

G0 =
(

A0 B0

C0 D0

)

with the N×N matrices A0 =
(

A0
i, j

)
, B0 =

(
B0

i, j

)
, C0 =(

C0
i, j

)
and D0 =

(
D0

i, j

)
, where

A0
i, j = − 1

2π
log |Pi −Q j|, (1.11)

B0
i, j = − 1

8π
|Pi −Q j|2 log |Pi −Q j|, (1.12)

C0
i, j = − 1

2π

(
xPi −xQ j

|Pi −Q j|2 nx +
yPi −yQ j

|Pi −Q j|2 ny

)
, (1.13)

D0
i, j = − 1

8π
[1+2log |Pi −Q j|]

(
(xPi −xQ j)nx +(yPi −yQ j)ny

)
,

i, j = 1, . . .,N , (1.14)

and nx and ny denote the components of the outward nor-
mal vector nnn to ∂Ω in the x and y directions, respectively.
The matrices A0,B0,C0 and D0 are circulant2

In earlier work [see Smyrlis and Karageorghis (2001)],
as well as in the current study, we observed, that the ac-
curacy of the MFS solution is poor when the singulari-
ties are placed very close to ∂Ω. This problem, in the
present case, arises because our approach may be viewed
as attempting to approximate an integral of the form [see
Maiti and Chakrabarti (1974)]

I(P) =
∫

∂Ω
ν(Q)|P−Q|2 (log |P−Q|−1)ds(Q)

+
∫

∂Ω
µ(Q) log|P−Q|ds(Q) (1.16)

by a quadrature rule. As we approach the boundary, the
integrand becomes singular and the quadrature rule be-
comes progressively less accurate.

Also, the accuracy of the MFS is poor when the singu-
larities are placed very far from the boundary, i.e. on a
circle of radius R � ρ . This problem arises because as
we move away from the boundary the matrix G0 becomes
ill-conditioned. This can lead to large errors in the MFS
approximation [see Golberg and Chen (1996)]. The be-
haviour of the conditioning of the matrix G 0 for various
numbers of degrees of freedom N = 2n, n = 3,4, . . .,10;
as ε = R−ρ varies, can be seen from fig. 1. In this fig-
ure, we plot the logarithm of the condition number versus

2 A square matrix A is circulant [see Davis (1979)] if it has the form

A =




a1 a2 · · · aN

aN a1 · · · aN−1
...

...
...

a2 a3 · · · a1


 . (1.15)

This means that the elements of each row are the same as the ele-
ments of the previous row but moved one position to the right. The
first element of each row is the same as the the last element of the
previous row. The circulant matrix A in (1.15) is usually denoted
by A = circ(a) , where a = (a1,a2, . . . ,aN) . Properties of circulant
matrices are given in Section 3.1.



Some Aspects of the Method of Fundamental Solutions 537

the logarithm of ε . The condition number κ ∞ of G0 in
the L∞ norm, is calculated with the NAG pair F07ADF-
F07AGF [see NAG (1999)]. From the figure, we observe
that for sufficiently small ε, namely ε < 10−1 for N = 8
to ε < 10−2 for N = 1024, and intermediate values for
the other values of N presented, the condition number de-
creases algebraically with ε, while increasing with N. On
the contrary, for larger values of ε, the condition number
grows exponentially.

In this work, we address the above two problems, namely

• the loss of accuracy when the singularities are
placed very close to the boundary, i.e. ε � 1 and

• the loss of accuracy when the singularities are
placed very far to the boundary, i.e. ε � 1.

2 Rotation and normalization

2.1 Rotation of the singularities

As in [Smyrlis and Karageorghis (2001)], we study the
behaviour of the error as the positions of the singularities
are rotated. If we denote the coordinates of the singular-
ity Qα

j by xQα
j

and yQα
j
, these become

xQα
j
= Rcos

2( j−1+α)π
N

,

yQα
j
= Rsin

2( j−1+α)π
N

, j = 1, . . .,N, (2.1)

where 0 ≤ α < 1. This means that the positions of the
singularities differ by an angle 2πα/N from the positions
of the boundary points. The satisfaction of the boundary
conditions

uN(Pi;µµµ,ννν,QQQα) = f (Pi),
∂uN

∂n
(Pi;µµµ,ννν,QQQα) = g(Pi), i = 1, . . .,N ,

now yields a linear system of the form

Gα
(

µµµ
ννν

)
=
(

fff
ggg

)
, (2.2)

where

Gα =
(

Aα Bα

Cα Dα

)
(2.3)

and

Aα
i, j = − 1

2π
log |Pi −Qα

j |, (2.4)

Bα
i, j = − 1

8π
|Pi −Qα

j |2 log |Pi −Qα
j |, (2.5)

Cα
i, j = − 1

2π

(
xPi −xQα

j

|Pi −Qα
j |2

nx +
yPi −yQα

j

|Pi −Qα
j |2

ny

)
, (2.6)

Dα
i, j = − 1

8π
[
1+2log |Pi −Qα

j |
]

(
(xPi −xQα

j
)nx +(yPi −yQα

j
)ny

)
,

i, j = 1, . . .,N . (2.7)

As in the case α = 0, the matrices Aα , Bα , Cα and Dα are
circulant. In the present work, we only studied the effect
of rotating the singularities by an angular parameter α,
where α ∈ [0,1/2) , because of the symmetry of the ge-
ometry about α = 1/2 . Also, at α = 1/2 the matrix Gα

is singular:

Lemma When N = 2m, m ∈ IN, the matrix G
1
2 is singu-

lar.

Proof. In this case the matrices A
1
2 ,B

1
2 ,C

1
2 and D

1
2 are

of the form
circ(a1,a2, . . .,am,am,am−1, . . . ,a1),
circ(b1,b2, . . .,bm,bm,bm−1, . . . ,b1),
circ(c1,c2, . . .,cm,cm,cm−1, . . . ,c1), and
circ(d1,d2, . . .,dm,dm,dm−1, . . . ,d1), respectively. It
is sufficient to observe that the sum of the first m odd
rows of the matrix G

1
2 is equal to the sum of the first m

even rows of G
1
2 .

As will become apparent in the numerical results section,
the rotation of the singularities can improve the accuracy
of the MFS approximation.

2.2 Normalization

When R is large, the poor conditioning of the matrices
Gα (see Figure 1) and the loss of significance, can lead
to poor results. The loss of significance is a result of the
presence of elements of very large size which are almost
identical for large R, in each of the four circulant matrices
Aα , Bα , Cα and Dα. For example, in Aα all the elements
satisfy the inequalities

− 1
2π

log(R+ρ) ≤ Aα
i, j ≤ − 1

2π
log(R−ρ) .

As in [Smyrlis and Karageorghis (2001)], in order to im-
prove the accuracy of the MFS we consider a form of
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Figure 1 : Condition number versus ε = R−1.

scaling by using the normalized fundamental solutions

k̃1(P,Q) = − 1
2π

log
|P−Q|

R
, (2.8)

and

k̃2(P,Q) = − 1
8π

|P−Q|2
R2 log

|P−Q|
R

, (2.9)

then

G̃α =
(

Ãα B̃α

C̃α D̃α

)

where

Ãα
i, j = − 1

2π
log

|Pi −Qα
j |

R
, (2.10)

B̃α
i, j = − 1

8π
|Pi −Qα

j |2
R2

log
|Pi −Qα

j |
R

, (2.11)

C̃α
i, j = − 1

2π

(
xPi −xQα

j

|Pi −Qα
j |2

nx +
yPi −yQα

j

|Pi −Qα
j |2

ny

)
, (2.12)

D̃α
i, j = − 1

8π

[
1+2log

|Pi −Qα
j |

R

]
(
(xPi −xQα

j
)nx +(yPi −yQα

j
)ny

)
R2 ,

i, j = 1, . . .,N . (2.13)

The matrices Ãα , B̃α,C̃α and D̃α are circulant.

As will be reported in the numerical results section, the
use of normalized fundamental solutions improves the
accuracy of the MFS approximation for large values of
R.

3 Efficient solution of block circulant system

3.1 Properties of circulant matrices

We shall be using the following properties of circulant
matrices: [See Davis (1979)].

Properties Let A∈|CN×N be a circulant matrix, i.e. A =
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circ(a1, . . . ,aN) . Then A is normal, i.e. AA∗ = A∗A, and
thus diagonalizable. In particular, there exists a unitary
matrix U and a diagonal matrix D = diag(µ1, . . .,µN) ,
such that

A = U∗DU ,

with eigenvalues

µ j =
N

∑
k=1

akω(k−1)( j−1), j = 1, . . .,N, ω= e
2πi
N ,

and corresponding eigenvectors

ξξξ j =
1

N1/2

(
1,ω( j−1),ω2( j−1), . . . ,ω(n−1)( j−1)

)
,

j = 1, . . .,N .

The vectors {ξξξ1, . . . ,ξξξN} form an orthonormal basis of
|CN . The matrix U is symmetric and its conjugate is the
Fourier matrix

U∗ =
1

N1/2




1 1 1 · · · 1
1 ω ω2 · · · ωN−1

1 ω2 ω4 · · · ω2(N−1)

...
...

...
...

1 ωN−1 ω2(N−1) · · · ω(N−1)(N−1)


 .

Conversely, for any diagonal matrix D, the matrix A =
U∗DU is circulant. Consequently, the product of two cir-
culant matrices is also circulant.

Furthermore, if A is circulant, then A∗ is also circulant.
If A is circulant and nonsingular, its inverse is also circu-
lant.

Finally, any linear combination of two circulant matrices
is also circulant. In particular, if λ, µ ∈ |C and A = circ(aaa),
B = circ(bbb), then λA+µB = circ(λaaa+µbbb) .

3.2 Efficient implementation of basic circulant matrix
operations

The object of this section is to propose an efficient algo-
rithm for the solution of system (2.2). This is done by
exploiting the block circulant structure of G α . Here, the
term block circulant indicates that that matrix G α can be
decomposed into four circulant N×N matrices (see 2.3).
The algorithm relies on the properties of circulant ma-
trices, in particular the fact that basic matrix operations
such as multiplication and inversion of can be performed
at a cost of O(N logN) operations [Davis (1979); Smyrlis
and Karageorghis (2001)].

3.2.1 Solution of circulant systems

In the solution of the system Axxx = bbb, where A = circ(aaa),
and nonsingular with A = U ∗DU , clearly,

xxx = A−1bbb = U∗D−1Ubbb .

The evaluation of xxx is carried out efficiently in the fol-
lowing four steps:

• Step 1 Calculation of the vector b̌bb = Ubbb which
is simply the inverse discrete Fourier transform
(IDFT) of the vector bbb. In MATLAB, this opera-
tion can be performed using the inverse fast Fourier
transform command ifft(b) .

• Step 2 Calculation of the diagonal matrix D =
diag(ddd). The vector ddd of the diagonal elements of
D is simply the discrete Fourier transform (DFT)
of the vector aaa . In MATLAB, this operation can
be performed using the fast Fourier transform com-
mand fft(a) .

• Step 3 Evaluation of the vector eee = D−1Ubbb which
is simply the elements of the vector Ubbb divided by
the corresponding elements of the vector of the di-
agonal elements of D, that is

ek =
b̌k

dk
, k = 1, . . .,N .

In MATLAB this can be done via b̌./d .

• Step 4 Calculation of vector xxx = U∗eee which is sim-
ply the DFT of eee . In MATLAB this is carried out
by fft(e) .

Summarizing, we observe that steps 1,2,4 require
three Fourier transforms, hence O(N logN) operations.
Step 3 requires only O(N) operations. In MATLAB
the calculation of xxx can be elegantly summarized as
x=fft(ifft(b)./fft(a)).

3.2.2 Multiplicationand inversion of circulant matrices

In the case when we need to compute the circu-
lant matrix C = AB (resp. C = A−1B) where A =
circ(aaa) is nonsingular, and B = circ(bbb), steps simi-
lar to those described earlier for the solution of the
system Axxx = bbb can be applied. If C = circ(ccc), then
the MATLAB command for the calculation of the
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vector ccc is merely c=ifft(fft(a).*fft(b)) (resp.
c=ifft(fft(b)./fft(a))) . Note that to calculate the
inverse of a matrix A, we simply take B = I in the case
C = A−1B. The cost of any of these matrix operations is
O(N logN) operations.

3.3 Application to block circulant system

Consider the block circulant system

Gα
(

µµµ
ννν

)
=
(

Aα Bα

Cα Dα

)(
µµµ
ννν

)
=
(

fff
ggg

)
, (3.1)

which can be written as{
Aαµµµ+Bαννν = fff
Cαµµµ+Dαννν = ggg .

(3.2)

Provided that Aα is nonsingular, it is easy to see that(
Dα −Cα [Aα]−1Bα) ννν = ggg−Cα [Aα]−1 fff , (3.3)

where the matrix Sα = Dα −Cα [Aα]−1Bα is the Schur
complement of Aα in Gα. Further, Sα is nonsingular if
and only if Gα is nonsingular, provided Aα is nonsingu-
lar [see Stewart (1998)]. The system (3.3) can be solved
efficiently because the Schur complement matrix Sα is
circulant. This follows from the fact that the submatri-
ces Aα ,Bα,Cα and Dα are circulant. The construction of
the system (3.3) can be performed efficiently as it only
involves multiplications and inversions of circulant ma-
trices.

Once ννν has been computed, µµµ can be found from

µµµ = [Aα ]−1 ( fff −Bαννν) . (3.4)

More precisely, if

Aα = circ(aaaα), Bα = circ(bbbα),
Cα = circ(cccα), Dα = circ(dddα), (3.5)

we have the following Algorithm:

• Step 1 Compute the DFT of the vectors aaaα , bbbα , cccα

and dddα , which are denoted by sssa, sssb, sssc and sssd, re-
spectively. These are the diagonals of the diagonal
matrices UAαU∗, UBαU∗, UCαU∗ and UDαU∗, re-
spectively. Also, compute the IDFT of the vectors fff
and ggg which are denoted by sss f and sssg.

• Step 2 Compute the IDFT of the vector ppp = ggg −
Cα [Aα]−1 fff which is the right hand side of (3.3), and
which is denoted by sssp. This is obtained with O(N)
operations via

sp
k = sg

k − s f
k · sc

k/sa
k , k = 1, . . .,N .

Also compute the vector sqsqsq which is the diagonal of
the diagonal matrix

Q = U
(
Dα −Cα [Aα]−1Bα)U∗ .

This is also done with O(N) operations via

sq
k = sd

k − s f
k · sb

k/sa
k , k = 1, . . .,N .

Then we obtain the IDFT of the vector ννν, which we
denote by sνsνsν, given by

sν
k = sp

k /sq
k , k = 1, . . .,N .

Next, compute the IDFT of the vector
[Aα]−1 ( fff −Bαννν), which is the right hand side
of (3.4), and which is denoted by sssµ. It is obtained
with O(N) operations via

sµ
k =

(
s f

k − sν
k sb

k

)
/sa

k , k = 1, . . .,N .

• Step 3 Compute the vectors µµµ and ννν by taking the
DFT of the vectors sssµ and sssν respectively.

From the description of the Algorithm it is clear that the
total cost of the solution of system (3.1) is O(N logN)
operations.

The implementation of the above algorithm in MATLAB
is particularly elegant:

Step 1 fa = fft(a); fb = fft(b); fc= fft(c);
fd = fft(d); sf = ifft(f); sg = ifft(g);

Step 2 sp = sg-sf.*fc./fa;
sn = sp./(fd-fc.*fb./fa);
sm = (sf-sn.*fb)./fa;

Step 3 m = fft(sm); n = fft(sn);

Note that in order to simplify the description of the Al-
gorithm, we have not included some minor modifications
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Figure 2 : Maximum relative error versus ε = R−1 in Example 1.

which enable us to make additional savings of O(N).
For example, the quantities s f

k /sA
k need only be computed

once in Step 2. Further, instead of computing the Schur
complement of Aα in Gα after equation (3.2), we could
have computed the Schur complement of any of the three
matrices Bα , Cα or Dα in Gα . Any of these choices would
have yielded an algorithm similar to the one constructed
from equations (3.3) and (3.4). Numerical experiments
revealed that any of these choices would have had little
effect on the behaviour of the error.

4 Numerical Results

We considered the following three examples in Ω with
ρ = 1 satisfying problem (1.1). In all three cases the max-
imum relative error

E =
||u−uN ||∞

||u||∞

in the approximate solution, is calculated on an m×m
grid defined by the points

(ri cosθ j, ri sinθ j), ri =
i
m

,θ j =
2π( j−1)

m
,

i, j = 1, · · · ,m.

The parameter m is taken to be equal to 101.

4.1 Example 1

We consider the case with f (x,y) = x4 −y4 and g(x,y) =
4(x3nx − y3ny) which corresponds to the exact solution
u(x,y) = x4 − y4. In Figure 2, we present the maximum
error E as ε= R−1 is varied, for N = 2n, n = 3,4, · · · ,10.
From these results, as expected, the accuracy of the
method is poor when ε = R− 1 is either very small or
very large. In Figure 3, we present the maximum error
E for various α ∈ [0, 1

2 ) for certain values of R. These
show that, for small values of ε, the accuracy is sensitive
to the value of α. We only consider the interval [0, 1

2 ), for
the reasons given in section 2.1. In Figure 4, we present
a magnification of Figure 3 for certain values of N and
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Figure 3 : Maximum relative error versus angular parameter in Example 1.
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Figure 4 : Magnified plots of error versus angularparameter in Example 1.
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Figure 5 : Approximation with normalized versus unnormalized fundamental solutions in Example 1.

R, which reveal an improvement in the accuracy of the
method for certain angles α. In Figure 5, we present the
maximum error E as ε = R−1 is varied, for the values
of N = 2n, n = 3,4, · · · ,8; in the cases when we use the
unnormalized fundamental solution approximation (1.3)
and when using the normalized fundamental solution ap-
proximation with (2.8) and (2.9) as fundamental solu-
tions. This figure reveals that there is a noticeable im-
provement in accuracy for large values of R when using
the normalized fundamental solutions.

4.2 Example 2

In this case we consider a test example from [Kuwa-
hara and Imai (1969)], also studied in [Mills (1977)] and
[Karageorghis and Tang (1996)] where, in polar coordi-
nates, f (θ) = − 1

4 and g(θ) = − 1
2 (1 + cosθ) which cor-

responds to the exact solution u(r,θ) = 1
4 (1 − r2)(1 +

r cosθ)− 1
4 . In Figure 6, we present the maximum er-

ror E as the radius R is varied, for the values of N =
2n, n = 3,4, · · · ,10. The behaviour of E is very simi-
lar to the corresponding behaviour of E in Example 1,
which indicates that the accuracy deteriorates when ε is
either very small or very large. In Figure 7, we present

the maximum error E as α ∈ [0, 1
2) for selected values of

N and R. These reveal the sensitivity of the accuracy of
the method to the value of α. In Figure 8, we present the
maximum error E as the radius R is varied, for the values
of N = 24,25,26,27 for both the standard and the normal-
ized fundamental solutions. As in the previous example,
there is an obvious improvement when using the normal-
ized fundamental solutions.

4.3 Example 3

The final and most difficult example describes viscous
flow in a circular driven cavity, first studied in [Mills
(1977)] and subsequently in [Karageorghis and Tang
(1996)] and [Belhachmi, Bernardi and Karageorghis
(2001)], in which

f (θ) = 0

and

g(θ) =




−1, θ0 ≤ θ≤ θ1

0, θ1 ≤ θ≤ 2π+θ0 .
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Figure 6 : Maximum relative error versus ε = R−1 in Example 2.
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Figure 8 : Approximation with normalized versus unnormalized fundamental solutions in Example 2.

The exact solution is (see Mills (1977))

u(r,θ) =
(1− r2)

2π

[
γ+arctan

(
1+ r
1− r

tan
θ1−θ

2

)

− arctan

(
1+ r
1− r

tan
θ0 −θ

2

)]
,

where

γ=




0, θ1 −π< θ < θ0 +π

π, θ0 +π< θ < θ1 +π .

This problem describes the motion of a viscous fluid in-
side a cylinder, which is generated by the movement of
part of its surface at constant speed. The points where
the moving surface meets the stationary surface gener-
ates two singularities. Thus we have singularities at
the points where the boundary condition for the normal
derivative changes, that is at the boundary points where
θ = θ0 and where θ = θ1. In Figure 9, we present the
maximum error E as the radius R is varied, for the val-
ues of N = 2n, n = 3,4, · · · ,10 in the case θ0 = 0 and
θ1 = π. It can be observed that the error is smallest for

a range of values of R, i.e. R ∈ (1 + δ1,1 + δ2), where
0 < δ1 < δ2 � 1 , close to the boundary because of the
boundary singularity. This range becomes narrower and
gets closer to the boundary as N increases.

The corresponding results for the case θ0 = π
4 and θ1 =

3π
4 are very similar to those of the previous case.

In an effort to improve the accuracy of the method we
took a denser grid close to the singular points. Let the
total number of collocation points be N1 + N2 = N, of
which N1 + 1 correspond to the part of the boundary
where where the boundary condition is g(θ) = −1 and
N2 −1 correspond to the part of the boundary where the
boundary condition is g(θ) = −0. Then, we took the first
N1
2 +1 collocation points to be

xPi = cos

(
θ0 +

(θ1−θ0)
2

[
2(i−1)

N1

]s)
,

yPi = sin

(
θ0 +

(θ1−θ0)
2

[
2(i−1)

N1

]s)
,

i = 1, . . . ,
N1

2
+1,
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Figure 9 : Maximum relative error versus the radius R in Example 3 in the case θ0 = 0 and θ1 = π.

and the next N1
2 collocation points were placed symmet-

rically about the point (0,1), namely

xPN1/2+1+i
= −xPN1/2+1−i

, yPN1/2+1+i
= yPN1/2+1−i

,

i = 1, . . .,
N1

2
.

Similarly, the remaining N2 − 1 collocation points are
taken to be

xPN1+1+i = cos

(
θ1 +

2π− (θ1 −θ0)
2

[
2i
N2

]s)
,

yPN1+1+i = sin

(
θ1 +

2π− (θ1 −θ0)
2

[
2i
N2

]s)
,

i = 1, . . .,
N2

2
,

xPN1+1+N2/2+i
= −xPN1+1+N2/2−i

, yPN1+1+N2/2+i
= yPN1+1+N2/2−i

,

i = 1, . . .,
N2

2
−1.

The parameter s ∈ IR determines the density of the collo-
cation points near the singularities. In the case s = 1 we

have the uniform distribution of equation (1.6), while for
s > 1 we have a denser distribution of collocation points
near the singularities, the density increasing with s. In a
similar way, singularities were placed at

xQi = RxPi , yQi = RyPi , i = 1, . . .,N.

In Figure 10, we present the concentration of the bound-
ary points for various degrees of density, namely s =
1, s = 1.2 and s = 1.4 when N = 128, in the case θ0 = 0
and θ1 = π. In the same figure we also present the corre-
sponding graphs of the maximum error E versus the ra-
dius R. the From Figure 10 we can see the improvement
in accuracy as the density factor s increases. However,
the range of values of R for which this improvement oc-
curs decreases as s and N increase.

In Figure 11, we present the graph of E versus R, for the
values of N = 27,28,29,210 in the case θ0 = π

4 and θ1 =
3π
4 and the values of s = 1,1.3,1.6,1.9,2.2. Again, an

improvement in the accuracy is observed as s increases.
As in the previous case, however, the range of values of
R for which this improvement occurs decreases as s and
N increase.
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Figure 12 : Contour plot of the streamfunction for Example 3 in the case θ 0 = 0 and θ1 = π.

Note that the range of values of s for which there is an
improvement in the accuracy of the method is quite dif-
ferent in the two cases examined. In the case when the
singularities are closer to each other, a denser concentra-
tion of boundary points is needed to produce more accu-
rate results.

In Figures 12 and 13 we present the contour plots of
the streamfunction in the cases θ0 = 0 and θ1 = π, and
θ0 = π

4 and θ1 = 3π
4 , respectively, obtained with N = 210.

These are in excellent agreement with the correspond-
ing plots in the literature [see Belhachmi, Bernardi and
Karageorghis (2001)]. Finally, in Figure 14 we present
the contour plot of the vorticity in the case θ 0 = 0 and
θ1 = π.

The idea of using a denser boundary grid close to bound-
ary singularities has also been used with the MFS in
[Karageorghis and Fairweather (1987)]. It should be
noted that for values of s �= 1 the matrices A0,B0,C0 and
D0 are no longer circulant. In this example, experiments
with rotated singularities (α > 0) failed to produce any
improvement in the accuracy of the results.

5 Summary

We examined some of the shortcomings associated with
the numerical solution of the homogeneous biharmonic
equation in circular geometries with the MFS. In par-
ticular, we examined ways of overcoming the poor ac-
curacy of the method when the singularities are placed
either very close to or very far from the boundary. In
the case where the circle on which the singularities are
placed is located very close to the boundary, numeri-
cal experiments revealed that the angular positioning of
these is of crucial importance. In the case where this ar-
tificial boundary is located very far from the boundary, a
normalization of the fundamental solutions leads to im-
proved accuracy. Exploiting the fact that the matrices in-
volved in the above approaches can be written as a block
of circulant matrices, leads to an efficient algorithm for
the solution of the resulting systems. It should be noted
that this algorithm is only applicable in the case of the
specific problem examined.

We also examined a problem with boundary singularities
where it was observed that the accuracy of the method
was poor except when the singularities were placed on
a circle very close to the boundary. This is expected, as
the method is only applicable to problems the solution of
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which is analytically continuous across the boundary. In
this case, a denser concentration of boundary collocation
points (and singularities) close to the boundary singular-
ities produced improved results.

Preliminary numerical experiments were also carried out
in the case when Ω is not a disk. It should be noted that
when Ω is not a disk, the corresponding matrix G cannot
be decomposed into four circulant matrices and the ef-
ficient algorithm developed in section 3.3 cannot be ap-
plied. In particular, we carried out numerical tests when
Ω is a rectangle and the exact solution is that of Exam-
ple 1. These revealed that the same phenomena persist,
namely the numerical results are poor when the singu-
larities are placed either very close or very far from the
boundary. We also performed numerical experiments in
the case of the driven cavity problem in a square region.
As in the case of the circular driven cavity, a denser con-
centration of boundary collocation points (and singulari-
ties) near the boundary singularities, improves the accu-
racy of the method.
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