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A Real-Coded Hybrid Genetic Algorithm to Determine Optimal Resin Injection
Locations in the Resin Transfer Molding Process

R. Mathur1, S. G. Advani2 and B. K. Fink3

Abstract: Real number-coded hybrid genetic algo-
rithms for optimal design of resin injection locations for
the resin transfer molding process are evaluated in this
paper. Resin transfer molding (RTM) is widely used to
manufacture composite parts with material and geomet-
ric complexities, especially in automotive and aerospace
sectors. The sub-optimal location of the resin injec-
tion locations (gates) can leads to the formation of resin
starved regions and require long mold fill times, thus
affecting the part quality and increasing manufacturing
costs. There is a need for automated design algorithms
and software that can determine the best gate and vent
locations for a composite part by using the current simu-
lation capabilities. In the work presented here, the gates
are encoded into real number strings for the GA. A sensi-
tivity gradient-based fill time optimization algorithm was
developed using the process physics, which can be used
as a local optimization algorithm. The global search ca-
pabilities of the GA and the local search capabilities of
the sensitivity gradient-based fill time optimization algo-
rithm were combined in two separate hybrid optimization
algorithms: a serial hybrid optimization algorithm and an
interactive optimization algorithm. In addition, the sensi-
tivity gradient-based algorithm involves the computation
of the gradient of the fill time with respect to the gate
location coordinates. This gradient information was in-
cluded in the criteria for optimization to increase the ca-
pabilities of the hybrid GA. Several RTM molds with ge-
ometric and material complexities were selected and dis-
cretized. A number of studies were performed using the
pure genetic algorithm, the gradient-based optimization
algorithm and the two hybrid optimization algorithms us-
ing the mold fill time and it’s gradient with respect to
gate location coordinates as the cost criteria. These stud-
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ies were performed for the cases of a single gate and two
gates. The results were benchmarked against known best
solutions in terms of quality of final solutions and the
computational effort required.
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1 Introduction

Liquid injection molding processes, such as resin transfer
molding (RTM) and vacuum assisted resin transfer mold-
ing (VARTM), are an important class of manufacturing
processes which have been used for net shape manufac-
turing of composite parts, especially in the automotive,
defense and aerospace sectors. In recent years, they have
been used to manufacture composite structures with geo-
metric and material complexities such as vehicle bodies,
ship sections, bridges and turbine blades.

In RTM, the reinforcement material or ’preform’ is
placed inside a mold. The mold is closed and the resin
is injected into it at high pressure through inlet ports or
’gates’. Outlet ports or ’vents’ are used to enable the
displaced air to escape out of the mold. The resin im-
pregnates the preform and polymerizes to form the solid
part, which is then demolded. (Fig 1) [Fong and Advani
(1998)]

The manufacture of complex composite structures by
RTM presents several design and control challenges that
are critical for quality and manufacturing efficiency. The
most important of these is the correct location of the gates
and vents in the mold surface. The resin enters the closed
mold through the gates and the air is displaced through
the vents. If the resin reaches the vents before the mold
is saturated with the resin, it creates a “dry spot” which
is a manufacturing defect. The ’dry spots’, are fibrous
regions in the mold not wetted by the resin thus affecting
the quality of the manufactured parts. Thus, the location
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of the gates and vents is crucial to reduce the mold fill-
ing time and also to avoid “dry spots”. The optimization
of the filling process can decrease the process cycle time
and eliminate or reduce dry spot formation.

Preform Preparation
Placement in Mold

Finished Part
Resin Injection and Cure

Injection setup

Figure 1 : The resin transfer molding process

Mold filling simulation software based on finite element
modeling techniques, such as LIMS, [Simacek and Ad-
vani (2003)] can track the flow front location during the
impregnation of the preform, once the user has specified
the locations of inlet gates and vents. However there are
as many choices for gate and vent locations as there are
nodes in the finite element mesh for the mold geometry.
To find the globally optimal locations, one would have to
run a large number of simulations. This number could be
reduced if appropriate optimization techniques are used
in tandem with mold filling simulations. This paper out-
lines the development of design optimization algorithms
and software for optimal design of the RTM process, us-
ing the available numerical simulation and optimization
capabilities and benchmarks their performance.

Conventionally, optimization techniques are gradient-
based, involving the computation of the derivative, or
gradient, of the objective function with respect to the
design parameters and then moving the design parame-
ters along the direction indicated by this gradient. Sev-
eral gradient- based algorithms have been developed for
polymer processing and composite manufacturing appli-
cations using design sensitivity analysis of process mod-
els. [Mathur, Advani and Fink (2000), Smith, Tortorelli
and Tucker (1998, 1998)]

Gradient-descent based techniques tend to get trapped in

local minima and strongly depend on an initial guess and
on the existence of derivatives. Genetic algorithms (GAs)
are search algorithms that mimic natural selection and
genetics to evolve ‘good’ solutions from a large number
of alternative solutions. Genetic Algorithms have found
extensive use for design optimization in the field of com-
posite materials to address material design and design of
process parameters for manufacturing. [Mahesh, Kishore
and Deb (1996); Young and Yu (1997); Spoerre, Zhang,
Wang and Parnas (1998); Sadagopan and Pitchumani
(1998); Mathur, Advani and Fink (1999); Savic, Evans
and Silberhorn (1999); Kim, Kim and Hong (1999); Shi-
mojima (1999)]

In this work, genetic algorithms based on real number
coded representations of the gate locations were coupled
with sensitivity gradient-based algorithms for fill time
optimization of the RTM process to form hybrid genetic
algorithm optimizers, thus taking advantage of the com-
plementary strengths of both techniques. In addition, the
gradients computed by the sensitivity gradient-based al-
gorithm were incorporated into the objective functions
for the genetic algorithm providing extra information for
the optimization. A number of case studies were per-
formed testing the various combinations of hybrid algo-
rithms and objective functions.

In the following sections, the physics of the resin flow
in the mold is outlined and the previous research work
in modeling and simulation for the RTM process is
reviewed. The real-coded genetic algorithm and the
sensitivity-based algorithms are described. The imple-
mentation of the hybrid optimization algorithms combin-
ing both optimization techniques is delineated and is fol-
lowed by a description of the case studies conducted with
these algorithms. Finally, the performance of these opti-
mization techniques is evaluated by comparing them with
“known” best solutions.

2 Resin Flow in RTM: Modeling and Simulation

The flow of resin in porous media is governed by Darcy’s
Law, which states that the velocity of a fluid flowing
through a porous medium is directly proportional to the
driving pressure drop:

→
u = −K

µ
∇ P (1)

where
→
u is the average velocity, ∇ P is the pressure gradi-

ent in the fluid, K is the permeability tensor and µ is the
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viscosity of the resin. This can be coupled with the conti-
nuity equation for incompressible flow to give a Laplace
Equation for the pressure field inside a fibrous porous
media permeated by the fluid.

∇ .
→
u = 0 (2)

∇ .(
K

µ
∇ P) = 0 (3)

B.C.s : P(�xgate) = P0 or Q(�xgate) = Q0

P(�xvent) = 0

P(�xf low f ront) = 0

�n• (K
µ • ∇ P) = 0 at the mold wall

(4)

The flow of resin in RTM has been modeled by the dis-
cretization of the governing partial differential equation,
i.e. equation (3), using the finite element method. [Br-
uschke and Advani (1990, 1994); Antonelli and Farina
(1999); Mohan, Ngo and Tamma (1999); Lin, Hahn and
Huh (1998); Gauvin and Trochu (1998)] The solution
involves tracking a moving boundary, using either con-
trol volume techniques (FE/CV) [Bruschke and Advani
(1990, 1994); Antonelli and Farina (1999)] or the move-
ment of a saturation field. [Mohan, Ngo and Tamma
(1999); Lin, Hahn and Huh (1998)] Simulation software,
using either the FE/CV technique or the saturation tech-
nique has been written and used for filling simulations of
resin flow in thin shell mold geometries, i.e. Hele-Shaw
flows and for full three dimensional flows in thick mold
geometries. [Antonelli and Farina (1999); Mohan, Ngo
and Tamma (1999); Lin, Hahn and Huh (1998); Bruschke
and Advani (1991); Gallez and Advani (1997); Tan and
Springer (1999)] The simulation software used for this
research work is the Liquid Injection Molding Simula-
tion (LIMS) software. [Simacek and Advani (2003), Br-
uschke and Advani (1990, 1991)] This is based on the
FE/CV technique and is capable of simulating the flow
and cure of resin in thin shell molds or in fully three-
dimensional molds. [Ngo, Mohan and Tamma (1998)]

Usually, (i) the geometry, (ii) the material parameters,
(iii) the gate and vent positions and (iv) the pressure or
the flow rate or a combination of the two at the gate and
vent, are specified before the filling simulation is carried

out. The simulation code is used to track the location
of the flow fronts and estimate fill times. LIMS is capa-
ble of showing dry spot formation and tracking dry spots
as filling progresses. The user interface uses a built-in
scripting language, LBASIC, to assign gates and vents
and also change them during flow with conditional state-
ments, which allows for flexibility and enables automa-
tion. LIMS can also be used as a ‘slave’ using special-
ized Digital Link Libraries (DLLs), which provide an ad-
ditional interfacing functionality. Such flow simulations
have also been used to study the effects of different con-
figurations of gates and vents on mold filling. The sim-
ulation, interfacing and automation capability of LIMS
have been used to simulate resin flow in different mold
geometries, investigate phenomena such as racetracking
effects, to test control and sensing schemes for mold fill-
ing and for mold design optimization. [Mathur, Advani
and Fink (2000, 1998); Maier, Rohaly, Advani and Fickie
(1996); Simacek, Sozer and Advani (1998)]

3 Design Optimization Algorithms

3.1 Genetic Algorithms

Genetic Algorithms emerged from the research work on
adaptive systems by computer scientists who sought to
study the processes by which biological systems and or-
ganisms adapt to complex changes in their environment,
and to use the knowledge gained to develop algorithms
that could be useful for problem solving and for artificial
intelligence. Genetic Algorithms were first analyzed and
presented in detail by John Holland in his path breaking
work, “Adaptation in Natural and Artificial Systems”.
[Holland (1992)] Since then they have found wide appli-
cations in solving problems in fields as diverse as engi-
neering, biology, mathematics, economics and financial
markets. [Mitchell (1996); Goldberg (1997)]

The standard genetic algorithm involves partial swapping
and copying of strings, which are representations of the
optimization variables. The variables themselves can be
continuous or discrete, since they are mapped to strings.
Each string has a ’fitness’ value, f, associated with it.

This algorithm employs three operators: Reproduction,
Crossover and Mutation. The reproduction operator op-
erates on the strings of each generation to produce the
strings of the next generation. Pairs of strings are se-
lected on the basis of fitness using proportional stochastic
selection, also known as roulette wheel selection. These
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Figure 2 : Schematic of the use of the Simple Genetic
Algorithm (SGA) for RTM process optimization

two strings are operated on, by the crossover and muta-
tion operators, to produce two new strings, which belong
to the next generation. New strings are produced until
the population size, i.e. the number of strings in each
generation, which is a fixed number, is attained. This
new generation is evaluated and fitness values assigned
to each member of the generation. [Figs 2 and 3]
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Figure 3 : Operators used by the genetic algorithm : re-
production (roulette wheel), crossover and mutation.

The reproduction and crossover operators work in tan-
dem to use high performance strings having high fitness
values and generate better strings having higher fitness
values, thus emulating natural selection, which favors
’survival of the fittest’. The mutation operator works by
taking the new strings produced and randomly changing
the values of a few members of the strings. This en-
sures genetic diversity by producing strings, which con-
tain new material and are not totally derived from the pre-

vious generation.

3.2 Design Sensitivity Gradient-based Algorithm for
Fill Time Optimization

A design sensitivity based optimization algorithm was
developed for the resin transfer molding process with the
injection of resin at constant pressure. The governing
equations for the design sensitivity fields were derived
from equations (3-4), which describes the resin flow into
the mold. The derived equations are directly parallel to
equations (3-4) and can be solved in the same manner.
The gradients of the cost function, i.e. fill time were de-
rived in terms of the design sensitivity fields.

Consider a single gate location for a given mold, which
has the coordinates (ε,η,ξ). The pressure fields at each
time step and the fill time are going to be dependent on
the location of this gate and the pressure imposed at it.
The effect of the gate location on the pressure field is
encapsulated in the design sensitivity fields, ∂P

∂ε , ∂P
∂η and

∂P
∂ξ . The governing equations governing these fields can
be derived directly from the primary PDE equation and
boundary conditions (Eqs.3-4) describing the resin flow
in the mold by direct differentiation as follows:

∂
∂ε

(
∇ · (K

µ
.∇ P) = 0

)
;

∂
∂η

(
∇ · (K

µ
.∇ P) = 0

)

and
∂
∂ξ

(
∇ · (K

µ
.∇ P) = 0

)

⇒ ∇ · (K
µ

.∇
∂P
∂ε

) = 0 ; ∇ · (K
µ

.∇
∂P
∂η

) = 0

and ∇ · (K
µ

.∇
∂P
∂ξ

) = 0 (5)

Thus we obtain auxiliary PDEs for the design sensitivity
fields. The boundary conditions for these PDEs are sim-
ilarly derived from the original boundary conditions and
are stated as follows:

∂P
∂ε

(�xgate) = −∂P
∂x

∂P
∂ε

(�xf low f ront) = 0
∂P
∂ε

(�xvent) = 0
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�n• (
K
µ
• ∇

∂P
∂ε

) = 0 at the mold wall

∂P
∂η

(�xgate) = −∂P
∂y

∂P
∂η

(�xf low f ront) = 0
∂P
∂η

(�xvent) = 0

�n• (
K
µ
• ∇

∂P
∂η

) = 0 at the mold wall

∂P
∂ξ

(�xgate) = −∂P
∂z

∂P
∂ξ

(�xf low f ront) = 0
∂P
∂ξ

(�xvent) = 0

�n• (
K
µ
• ∇

∂P
∂ξ

) = 0 at the mold wall (6)

These auxiliary equations are completely parallel to the
primary governing equations (eq.3-4) for the pressure
field. In the calculation of the pressure field at any
time step, the domain is discretized, the stiffness matrix
[K] has been constituted and inverted/decomposed and
the pressure field is calculated using the matrix equation
[K]{P]={f}. The design sensitivity fields can then be
easily computed by determining the pressure gradients at
the gate and using them to change the appropriate terms
in the forcing vector {f} and then multiplying {f} with
the inverted or decomposed stiffness matrix.

In gate location optimization, one measure of the per-
formance of the gate(s) is the time it takes to fill the
mold. The design sensitivity fields, once determined at
each time step can be used to find the gradient of fill time
with respect to the gate locations. Supposing the volume
of the mold is V, then for a single gate, it can be stated
that:

V =

t f∫
0

Qgatedt (7)

Since the volume of the mold is a constant, it follows
that:

∂V
∂ε

=
∂
∂ε

t f∫
0

Qgatedt = 0

∂V
∂η

=
∂

∂η

t f∫
0

Qgatedt = 0

∂V
∂ξ

=
∂
∂ξ

t f∫
0

Qgatedt = 0 (8)

Differentiating the integrals in equation (8) and separat-
ing out the terms we get:

t f∫
0

∂Qgate

∂ε
dt +

∂t f

∂ε
Qgate(t f ) = 0

t f∫
0

∂Qgate

∂η
dt +

∂t f

∂η
Qgate(t f ) = 0

t f∫
0

∂Qgate

∂ξ
dt +

∂t f

∂ξ
Qgate(t f ) = 0 (9)

⇒ ∂t f

∂ε
= −

t f∫
0

∂Qgate

∂ε dt

Qgate(t f )
,

∂t f

∂η
= −

t f∫
0

∂Qgate

∂η dt

Qgate(t f )

∂t f

∂ξ
= −

t f∫
0

∂Qgate

∂ξ dt

Qgate(t f )
(10)

Now the flow rate at any gate is usually calculated by
drawing a small control volume around the gate and then
the outflow of resin through that control volume is eval-
uated. This is given by the following expression:

Qgate=
∫

C.V.

�V • n̂ dS= Qgate=
∫

C.V.

−K

µ
• ∇ P• n̂ dS (11)

Differentiating this equation with respect to gate coordi-
nates and noting that the control volume is arbitrary we
get:
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∂Qgate

∂ε
=

∂
∂ε

∫
C.V.

−K

µ
• ∇ P• n̂ dS

=
∫

C.V.

−K

µ
• ∇ (

∂P
∂ε

)• n̂ dS= Qε
gate

∂Qgate

∂η
=

∫
C.V.

−K

µ
• ∇ (

∂P
∂η

)• n̂ dS= Qη
gate

∂Qgate

∂ξ
=

∫
C.V.

−K

µ
• ∇ (

∂P
∂ξ

)• n̂ dS= Qξ
gate (12)

Thus the gradients of the flow rates can be determined
by computing the pseudo-flow rates in the auxiliary flow
fields, Qε

gate, Qη
gateand Qξ

gate. Upon substituting into
equation (10), we obtain:

⇒ ∂t f

∂ε
= −

t f∫
0

Qε
gatedt

Qgate(t f )

∂t f

∂η
= −

t f∫
0

Qη
gatedt

Qgate(t f )

∂t f

∂ξ
= −

t f∫
0

Qξ
gatedt

Qgate(t f )
(13)

Thus the gradient of the fill time with respect to the gate
coordinates are found by calculating the flow rates at the
gate in the solution for the pressure field and the pseudo-
flow rates at the gate in the parallel solution for the
design sensitivity-fields and then integrating these flow
rates through the history of the mold filling process.

4 Implementation of Automated Design Optimiza-
tion

4.1 Real-Coded GA

The gate locations are coded as real number strings using
the following formula:

Gate String= int

(
104 Gate Node Number

Total Number o f Nodes

)

(14)

An initial population of strings is randomly generated,
decoded into gates and then evaluated using LIMS sim-
ulations. These results are then fed into the GA as cost
functions, which encapsulate the desired results, such as
minimum fill time. The cost function values are then
used to determine the fitness values for each member of
the population. A ranking fitness scheme was used to
assign fitness to each member of the population, where
the best member has a fitness of 1 and the worst member
has a fitness of N, where N is the size of the population.
Then the three reproduction operators are used to gener-
ate the next generation of designs, which are evaluated
then in turn. This optimization loop is repeated until a
specified number of generations or there are no further
improvements in the population. The GA implementa-
tion for RTM Optimization is shown in Fig 4.

Population of gates

with fill times, no. of vents

1 : Gate 1,  Gate 2…, tf1, v1

2 : Gate 1,  Gate 2…tf2, v2

………

N Gate 1,  Gate 2…tfN, vN

Encoding,

Fitness Evaluation

Population of strings, 

fitness values

1 : “1456 5678..”, f1

2 : “1234 4381..”,f2

………

N “1681 2345..”,fN

New population of gates 

(unevaluated)

1 : Gate 1,  Gate 2…

2 : Gate 1,  Gate 2..

………

N Gate 1,  Gate 2…

Selection Operator

Crossover Operator

Mutation Operator

New population of strings

1 : “3128 5973..”

2 : “2349 1238..”

………

N “1489 2345..”

Decoding Operation

LIMS

worstNfbestfiRankf

NodesofNumberTotal

NumberNodeGate
StringGate

iii
Ý=Ý==

öö
÷

õ
ææ
ç

å=

,1),(

10int 4

Select 2 strings

Produce 2 new strings 

(crossover, mutation) 

Full Population?

No

Figure 4 : LIMS-based Implementation of Real-coded
Genetic Algorithms for RTM Optimization

5 Gradient-based Optimization Algorithm

The design sensitivity algorithm was implemented in
LIMS using the built-in scripting language, LBASIC. At
each step in the flow simulation the pressure field is de-
termined and the flow front advanced until one node is
filled, which is then included in the flow domain for the
next step. This is encapsulated in the solve function in
LIMS. Following the application of the solve function,
the pressure field became available and was used to cal-
culate the pressure gradients at every gate. These pres-
sure gradients were then used in the boundary conditions
for the design sensitivity fields. The stiffness matrix [K],
decomposed during the pressure calculation, is accessi-
ble only to the simulation kernel. In order to access this
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matrix and use it to perform the design sensitivity calcu-
lations, a special function, called updatepq was written
into LIMS. This function was used to calculate the de-
sign sensitivity fields (eq. 6) and then the pseudo-gate
flow rates. (eq. 12) These steps were repeated until the
mold filling simulation was completed. The pseudo-gate
flow rates thus calculated at each step of the filling sim-
ulation were integrated over the filling history using the
trapezoidal integration. After the completion of the fill-
ing simulation, equation 13 was used to calculate the gra-
dients of the mold fill time with respect to mold coordi-
nates.

These gradients were then fed into a standard binary line
search algorithm that searches in the direction indicated
by the gradient. [Vanderplaats (1984)] When the line
search algorithm yielded a set of gate locations, the gra-
dient calculation and search was repeated. This iterative
calculation was performed until convergence, i.e. mold
fill time could not be decreased further. A schematic of
the design sensitivity gradient-based algorithm is shown
in Fig 5.
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Get new  gate location 
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∂
∂ fff ttt
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∂
∂
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Figure 5 : Schematic of Gradient-based Optimization
Algorithm for Minimum Mold Fill Time in the RTM Pro-
cess

6 Hybrid Genetic Algorithm

These were motivated by the fact that GAs do not di-
rectly use the process physics but do not get trapped in a
local minima and gradient based methods can get trapped
in a local minima but do employ the process physics di-
rectly. Hence we introduce two methods that combine the
strength of both these methods. We constructed two hy-

brid optimization algorithms that use the real coded GA
and the sensitivity-based gradient algorithm. The differ-
ence is the manner they are coupled. In the first algo-
rithm, the GA is used as a global optimizer to search out
the “survival of the fittest” parts of the search space. Then
the final generation of designs is taken and the gradient
algorithm is used for further improvement as a local opti-
mizer. This optimization algorithm can be called a serial
hybrid optimization algorithm, since the GA and the gra-
dient are used in series.

Alternatively, the gradient-based algorithm can be used
in an interactive fashion to improve each generation of
designs generated by the GA thus enriching the pool of
good designs for the GA to consider at the next step.
This kind of interactive optimization algorithm is called
a Memetic Algorithm and its analog in the natural world
has been known to arrive at optimal solutions due to the
Baldwin Effect. [Dawkins (1995)] The Baldwin Effect
occurs due to the result of learning in a population of
organisms within each generation, which are simultane-
ously evolving to adapt to their environment. In such a
population, the organisms that are better at learning are
fitter and leave more offspring in the next generation.
This influences the next generation and speeds up the
evolution of well-adapted (and highly intelligent) organ-
isms. Similarly, if the gradient optimizer acts to improve
each generation of designs, then the GA should be able to
consistently arrive at good designs. (Fig 6) In this paper,
both types of hybrid optimization algorithms have been
evaluated and their results compared for the selected case
studies.

7 Implementation and Selection of Parameters

The optimization algorithms are the pure-GA,
sensitivity-based gradient algorithm, the serial hy-
brid GA and the memetic GA. The cost functions are
(i) the mold fill time, (ii) the magnitude of the gradients
of the fill time, (iii) a linear combination of the gradient
magnitude and the fill time and (iv)the number of vents.
Optimization software was written which is capable of
taking any mold configuration and using it to run the
different configurations of optimization algorithms and
cost functions. This software consists of a portion writ-
ten in C++ with a set of complementary LBASIC scripts;
LIMS DLLs that allow it to seamlessly interface with
LIMS; and the LIMS executable itself in slave form. The
implementation of the optimization algorithms using
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Figure 6 : Search capability of the pure genetic algo-
rithm, the serial hybrid algorithm and the memetic hybrid
algorithm

LIMS DLL is shown in Fig 7.
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Figure 7 : Implementation of the RTM optimization us-
ing LIMS and Digital Linked Libraries

The C++ part of the program consists of an information
database, an optimization master, functions implement-
ing the real-GA, the gradient algorithm and connection
functions for the LIMS slave. The set of LBASIC scripts
contains a list of global variables and functions for ini-
tializing these variables, evaluating populations and con-
ducting gradient searches.

When the program is invoked, the optimization master
reads the parameters and the other information for the
optimization from a file and starts the LIMS slave and
establishes contact using the LIMS DLLs and connec-
tion functions. This information includes the optimiza-
tion algorithm, cost function, number of gates, gate pres-
sure, parameters for the GA, the type and name of the file

containing the mold, connectivity information as well as
the output file names. The database and the global vari-
ables needed for LIMS are initialized using this infor-
mation. Then the optimization is performed using com-
mands from the optimization master which are transmit-
ted to LIMS slave to run the LBASIC scripts through
the data pipeline between them. Data files are used to
transmit the results back to the master, which reads them,
calculates statistical information and writes to the output
files. Three output files are written: the first contains
the raw data; the second contains statistical information
for the optimization while the third is a graphical output
file for TECPLOT, a scientific graphing package for FEM
analysis.

This software was used in six case studies to evaluate the
hybrid optimization algorithms for three mold geome-
tries to either find one optimal gate location or two op-
timal gates. In each case study, an exhaustive search was
conducted for the one gate case and the global optimum
was determined. The performance of the different algo-
rithms for the one gate case was benchmarked against
the global optimum from the exhaustive search. The case
studies are described in the next section.

8 Case Studies

Three composite parts were chosen for optimization case
studies with the gradient-based optimization algorithm.
The three parts are – a two-dimensional rectangular ge-
ometry with thick sections, a flat plate with H-shaped
ribs and the five-sided box with a central partition (RISC
reduction box). (Fig 8). These geometries had suffi-
cient complexities and have been experimentally inves-
tigated at the Center for Composite Materials, University
of Delaware..

The hybrid genetic algorithms were investigated in all the
case studies and their performance benchmarked against
the best solution or the globally optimal solution. The
studies were conducted for the case of single gate resin
injection and double gate resin injection at a constant
pressure of 105 Pa each. The genetic algorithm, the serial
genetic algorithm and the Memetic algorithm were used
to determine optimal gate location(s) with the objective
of minimizing the mold fill time. An exhaustive study
was conducted for the single gate case using LIMS simu-
lations and LBASIC scripts. The mold fill time and num-
ber of last points to fill (potential vent locations) were
recorded for constant pressure single injection at every
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possible node location in the mesh. The results from this
global search space were used to benchmark the perfor-
mance of the hybrid genetic algorithms for the single gate
case.

Bus Chassis H Mold Geometry

RISC Reduction Box

65 cm

30 cm

25 cm

91 cm

45 cm
38 cm

51 cm

4 cm

30 cm

Figure 8 : Three composite parts chosen for the case
study with the gradient-based optimization algorithm.
The bulk permeability is of the order of 10−9 m2 in all
cases, and the permeability of the thick section in the bus
chassis is 10−12 m2.

The parameters for the genetic algorithm, such as pop-
ulation size and the crossover and mutation rates, were
fixed for each geometry investigated. An initial popu-
lation was generated at random and used as a common
starting point for each of the algorithms tested here: the
pure GA, the serial hybrid GA and the Memetic algo-
rithm. In addition, three cost functions were used for the
simplest GA optimization: (i) the fill time, (ii) the gra-
dient of the fill time and (iii) a linear combination of the
fill time and the gradient of the fill time. The gradient
of the fill time was chosen because when a function is
at its extremis (maximum or minimum), the gradient of
that function is zero at that point. Hence, searching for
the minimum fill time is equivalent to searching for the
zero gradients. The gradient and the combination of fill
time and gradient were thus used as tests of the capabil-
ity of the GA to arrive at good designs using different
cost functions. Two statistical parameters used for the
benchmarking, which measured the differences of the fi-
nal population of designs from the global optimum, are

given below:

N
∑
1

ttt f −ttt f ,global

N
= ttt f ,average−ttt f ,global√√√√√

N
∑
1
(ttt f −ttt f ,global)2

N
=

√
σσσ2 +(ttt f ,average−ttt f ,global)2

= σσσ∗ (15)

These statistical measures were used to determine the ef-
fectiveness of the hybrid genetic algorithms and the prac-
ticality of incorporating different cost functions into ge-
netic algorithms, for the single gate case.

An exhaustive study could not be performed for the two
gates case, as the permutation of gates required were pro-
hibitively large. For example, if one would have a mesh
of 5000 nodes with 5000 possible gate locations, 5000 x
4999 simulations will be required to find the best possi-
ble two-gate combination in an exhaustive search. In this
case, the best solution from the optimization runs them-
selves was chosen, instead of the global solution, and in-
corporated into the statistical measures. Thus the effec-
tiveness of the hybrid genetic algorithms is measured in
terms of the quality of the final generation from the best
(known) solution for each case. The exhaustive search
and the benchmarking studies for both the one gate and
the 2 gates were carried out for each of the three geome-
tries and are described in the next section.

9 Results

9.1 Exhaustive search for the one gate case

The mold fill time and the locations of the last points to
fill for constant pressure injection at every node in the
finite element meshes for the three selected geometries
were recorded after executing a LIMS simulation. The
mold fill time could now be plotted as contours of a field
on the surface of the mesh using TECPLOT thus giving
a graphical representation of the global search space for
one gate injection. The locations of the last points to fill,
which are potential vent locations can be plotted in TEC-
PLOT. In addition, a Pareto chart can be plotted, which
has mold fill time for all nodes on the Y axis and the as-
sociated number of last points to fill on the X axis. This
can yield insight into the potential trade-offs between the
mold fill time and the number of last points to fill. The
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contours of mold fill time, the last points to fill and the
Pareto chart are plotted for each of the three selected ge-
ometries in Figs 9-11.
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Figure 9 : Map of the global search space for the bus
mold geometry and one gate case from exhaustive sim-
ulations: Contour plot of the mold fill time and the last
points to fill, and Pareto chart

9.1.1 Discussion of exhaustive search

It can be observed from Fig 9 ( rectangular flat plate with
thick sections) that for the search space of mold fill times,
the global minimum lies at the center of the mold where
the planes of symmetry of the part intersect. This is be-
cause the center of the mold is the shortest distance from
the resin flow fronts during mold injection at all times
during the mold filling process, thus minimizing the re-
sistance to flow. This resistance is generated when the
resin being injected at the gate has to push through the
saturated preform and then advance the flow front. Since
the injection is performed under a constant finite pres-
sure, the resistance to flow will increase with the pro-
gression of the mold filling process, the flow rate of resin
through the gate will decrease over time, taking more and
more time to fill the extra volume of the mold. When the
gate is located far away from the flow fronts for most of
the filling history, the fill time increases nonlinearly. But
when the gate is closer to the flow fronts, such as in this
case, then the mold fill time will be at a minimum. In

this case, the worst gate locations lie at the center of the
dense thick sections, where the permeability is low and
the inherent resistance to flow is high.
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Figure 10 : Map of the global search space for the H
mold geometry and one gate case from exhaustive simu-
lations: Contour plot of the mold fill time, the last points
to fill, and Pareto chart

The Pareto chart shows that the corresponding number
of last fill areas (potential vent locations) goes from a
minimum of four to a maximum of seven, with the global
optimum requiring six vent locations, which are shown.
This is because this part has four sharp corners at the four
edges of the rectangular boundary as well as two thick
sections in which air could get entrapped. By injecting
resin from one of the edges, it is possible to eliminate the
last regions to fill on that edge, but the other two corners
and the thick sections will contain region that will fill last
and create “dry spots”. When the gate lies in the central
regions, all six areas will be potential vent locations.

In the case of the H mold geometry, the gate location
with lower fill time is not at the center of the mold but
lies at one end. (Fig 10) This is because there is an area
of higher thickness and same density/permeability as the
rest of the part with a “step” in the part. Since the flow
through the thickness is proportional to the cube of the
thickness (Hele-Shaw approximation), the flow rates at
the gates located in this area will be higher. In this case,
air will be trapped not only at the edges of the base of the
part, but also in the “H” shaped ribs. Hence the number
of last areas to fill is quite high, ranging from 4 to 11.
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In the case of the RISC box mold geometry, the only
edges where air can be trapped are the top (open end of
the box) five edges of the part. (Fig 11) Since sections of
the box are interconnected, air will not get entrapped on
all edges for injection at given gate location. Hence the
number of last regions to fill is a maximum of three only
for single gate injection. The best gate location lies at
the center of the part, where the flow resistance for mold
filling is the lowest. (Fig 11)
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Figure 11 : Map of the global search space for the RISC
box mold geometry and one gate case from exhaustive
simulations: Contour plot of the mold fill time and the
last points to fill, and Pareto chart from the simulations

9.2 Benchmarking study with optimization algo-
rithms

The benchmarking study for each mold geometry, for
both one and two gate cases, was conducted in two parts.
In the first part of the study, the real coded GA was used
for optimal gate location for mold fill time minimization
for three cost functions. The pure genetic algorithm was
run with cost functions – fill time, fill time gradient and
combination of fill time and fill time gradient. In the sec-
ond part, the serial hybrid GA and the Memetic algorithm
were used for determining the optimal gate location. The
cost function for the Memetic and the serial hybrid GA
is the mold fill time. An initial starting population was

generated randomly and then used as the first set of gates
for each optimization algorithm. The population size for
the one gate case was 20 gate locations and that for the
two-gate case was 40 sets of gate locations. Each op-
timization algorithm was run until no further improve-
ments could be obtained on the average fill time per gen-
eration.

The statistical measures introduced earlier were used to
measure distance of the final generation from the global
optima. The number of simulations required by each al-
gorithm to come to the final generation was measured.
Bar graphs were used to compare the performance of
each algorithm. Mold filling simulations were performed
for the best gate locations generated by the algorithms
and the resin flow contours and last regions to fill were
plotted.
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Figure 12 : Computational cost of optimization in terms
of the number of simulations (one gate case)

For the one gate case, Fig 12 shows the computational
cost in terms of numbers of LIMS mold-filling simula-
tions required to reach optimal solutions. Bar graphs of
statistical performance measures of the three hybrid op-
timization algorithms, with reference to the global opti-
mum from exhaustive search are shown in Fig 13. The re-
sults from mold filling simulations for the best perform-
ing gate locations located by the optimization algorithms
for the three complex mold geometries are shown in Fig
14, and the best algorithm for each geometry indicated.

For the two gate case, the global optima for the three
mold geometries could not be located due to the pro-
hibitive cost of executing the exhaustive search. Hence
the best possible gate locations located from the opti-
mization search were used in lieu of global optima. In
this case, the computational cost is given in Fig 15, statis-
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Figure 13 : Benchmarking results for the one gate case
for three complex mold geometries: Charts of the statis-
tical measures of performance of the hybrid genetic al-
gorithms against the best-known solution

(a) Bus Mold Geometry: Fill time 1455 s, six last fill areas, (memetic GA, gradient) 

(b) H Mold Geometry: Fill time 602.4 s, five last fill areas (memetic GA, gradient)

(c) RISC box mold: Fill time 10,010 s, three last fill areas (memetic GA, gradient)

Figure 14 : Flow contours and last areas to fill for opti-
mal gate locations for the single gate case.
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Figure 15 : Computational cost of optimization in terms
of the number of simulations (two gate case)
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Figure 16 : Benchmarking results for the two gate case
: Charts of the statistical measures of performance of the
hybrid genetic algorithms against the best-known solu-
tion

tical measures are plotted in Fig 16 and the flow contours
for best gate locations are plotted in Fig 17. Again, the
best performing optimization algorithms for each one of
the mold geometries are indicated.

10 Discussion and Conclusions

It can be observed that the Memetic genetic algorithm
was able to outperform the pure GA and the serial hy-
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(a) Bus Mold : 1414 seconds, 5 last fill areas (memetic GA, gradient)

(b) H Mold Geometry : 300 seconds,7 last fill areas (memetic GA)

(c ) RISC box : 6287 s, 2 last fill areas (memetic GA)

Figure 17 : Flow contours and last areas to fill for op-
timal gate locations for the two gate case for the three
complex mold geometries

brid GA for all cases. The serial hybrid GA is able to
improve on the performance of the pure GA but cannot
match the Memetic GA, which was closely matched only
by the gradient-based algorithm, in terms of the statisti-
cal metrics and gate locations. However, the computa-
tional cost of the gradient-based optimization algorithm
is much higher than that of the GA-based optimization
algorithm. This is due to the fact that the GA utilizes in-
formation from an entire population, while the gradient-
based optimizer is a single point optimizer that cannot
exploit the diverse information inherent in the popula-
tion.

The gradient of the fill time could serve as a cost func-
tion for the bus mold geometry but it performed poorly
as an optimization cost function for the other two-mold
geometries. The gate locations obtained at the end of the
optimization were farther from the global optimum for
most cases, and the algorithms performed consistently
for only the bus mold geometry. This may be due to the
non-symmetric nature of the H mold and RISC box mold
geometries. This is in contrast to the bus mold geome-
try, has a smooth and symmetric search space with a sin-
gle global optimum at the center of the part. The search

space of gradients is much more complex than that of the
primary cost function, i.e., the fill time, whereas in the
case of the bus mold geometry, both the space of the fill
time and the gradients can be visualized geometrically
as a bowl with a steep slope and single minimum. This
space would be much more complicated for the other two
geometries. In addition to geometric asymmetry, other
factors that may affect the utilization of cost functions
such as gradient of fill time and mold fill time are mate-
rial complexity, i.e. variations in thickness and material
properties, and the presence of multiple corners, ribs and
double curvatures.

For the one gate case, the Memetic GA was able to find
the globally optimal solutions in fewer simulations than
the gradient-based optimizer. It can be seen that the
Memetic GA and the gradient algorithm were able to
find the globally optimal solutions, perhaps due to a sim-
plicity of the search space. For the two gate case stud-
ies, it was able to find better solutions than the gradient-
based optimization algorithm for all three geometries. In
all cases, the Memetic GA was able to outperform the
simple genetic algorithm in terms of the quality of solu-
tions and the statistical measures of performance. The
next best performance was by the gradient-based algo-
rithm for the one-gate case, and the serial GA for the two
gate case. This is due to the fact that the search space
is relatively simple for the one-gate case, which makes
it tractable for the gradient-based algorithm. In the two-
gate case, the search space is considerably more complex
which makes it difficult for the gradient-based algorithm
to perform without good starting points. The serial GA,
in which the results from a pure GA are improved upon
by the gradient-based algorithm, provides high quality
initial starting points to the gradient-based algorithm to
perform local search.

Though the Memetic GA required a larger number of
simulations, the number of simulations was much less
than that required by the exhaustive search and the
gradient-based optimization algorithm. The inherent
trade-off is definitely worthwhile in consistently good
performance and high quality of solutions obtained.
Hence, it can be concluded that the Memetic GA is a bet-
ter optimization algorithm for gate location with the ob-
jective of mold fill time minimization for complex mold
geometries.

This research work has demonstrated that though
general-purpose global optimization algorithms such as
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GAs can be used to solve design optimization problems,
there is no guarantee of good performance. Problem spe-
cific algorithms developed using the process physics do
guarantee improvement but they perform best as local op-
timizers. The development of problem specific global op-
timization algorithms that can outperform GAs at a lower
computational cost may be a possibility. Such a global
optimization algorithm would take advantage of the fea-
tures of the problem domain to determine the global op-
timum in a smaller number of computations than the
GA. This is especially important as the complexity of
the composite parts increases, since the search space for
optimization will show a corresponding growth. The ad-
dition of design for control and sensor locations to the
optimization problem will also increase the complexity
of the search space. Hence, robust and reliable optimiza-
tion algorithms are necessary to address needs such as
use of simulations of manufacturing flows for design and
control of the process.
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