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3-D Transient Dynamic Crack Analysis by a Novel Time-Domain BEM1

Ch. Zhang2 and A. Savaidis3

Abstract: A novel non-hypersingular time-domain
traction BEM is presented for three-dimensional (3-
D) transient elastodynamic crack analysis. The initial-
boundary value problem is formulated as a set of non-
hypersingular time-domain traction boundary integral
equations (BIEs). To solve the time-domain traction
BIEs, a time-stepping scheme based on the convolution
quadrature formula of Lubich (1988a,b; 1994) for tem-
poral discretization and a collocation method for spatial
discretization is adopted. Numerical examples are given
for an unbounded solid with a penny-shaped crack un-
der a tensile and shear impact loading. A comparison of
the present time-domain BEM with the conventional one
shows that the novel time-domain method is much more
stable and less sensitive to the choice of the used time-
steps.

keyword: 3-D Time-domain boundary element
method, Non-hypersingular boundary integral equations,
Transient elastodynamic crack analysis, Elastodynamic
stress intensity factors.

1 Introduction

The commonly applied time-domain BEM in elastody-
namics suffers from the crucial choice of time-steps. The
stability and the accuracy of the time-stepping method
may be significantly influenced by the applied time-steps
(Peirce and Seibrits, 1997; Frangi and Novati, 1999; Yu,
Mansur, Carrer and Gong, 2000). A too small time-step
may cause an instability in the numerical scheme, while
a too large time-step may give rise to a strong numeri-
cal damping of the results. In recent years, several ap-
proaches have been proposed to improve the stability of
the conventional time-domain BEM. Among them, the
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3 Department of Mechanics, National Technical University of
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following methods should be mentioned:

• Method using higher order temporal shape functions
(e.g., Wang, Wang and Liou, 1997);

• Half-step scheme using zeta-transform and variable
time-steps (e.g., Peirce and Seibrits, 1997);

• Time weighting method (Yu, Mansur, Carrer and
Gong, 1998a);

• Linear θ method (Yu, Mansur, Carrer and Gong,
1998b; Araujo, Mansur and Nishikava, 2000);

• Galerkin method (Yu, Mansur, Carrer and Gong,
2000);

• Method using ”causal” shape functions (Frangi,
2000);

• Method using convolution quadrature formula of
Lubich (Schanz and Antes, 1997a,b; Schanz, 1998;
Gaul and Schanz, 1999; Zhang, 2000a,b; Zhang and
Savaidis, 2000);

• Method using modified Green’s functions (Coda
and Venturini, 1996).

This paper presents an improved time-domain BEM for
transient elastodynamic crack analysis. The present
method applies the convolution quadrature formula of
Lubich (1988a,b; 1994) for approximating the temporal
convolution arising in the time-domain BIEs and the col-
location method for the spatial discretization. Unlike the
classical time-marching scheme frequently applied in the
time-domain BEM, the convolution quadrature formula
of Lubich (1988a,b;1994) bases on a multistep method
and uses Laplace-domain Green’s functions instead of
time-domain Green’s functions. For time-domain dis-
placement BIEs, this method was successfully imple-
mented by Schanz and Antes (1997a,b), Schanz (1998)
and Gaul and Schanz (1999). Applications of the convo-
lution quadrature method to time-domain traction BIEs
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for cracked solids were presented by Zhang (2000a,b) us-
ing a Galerkin method, and Zhang and Savaidis (2000c)
using a collocation method for the spatial discretization
of the traction BIEs.

A non-hypersingular time-domain traction boundary in-
tegral equation (BIE) formulation is used in the analy-
sis. Though many alternative methods are available to
derive non-hypersingular traction BIEs (e.g., Sládek and
Sládek, 1984; Nishimura and Kobayashi, 1989; Tanaka,
Sládek and Sládek, 1994; Aliabadi, 1997; Beskos,
1997; Bonnet, 1999; Chen, 1999; Tada, Fukuyama and
Madariaga, 2000), a direct method using a two-state con-
servation law of elastodynamics (Zhang and Achenbach,
1989; Zhang, 1991; Zhang and Gross, 1992) is applied
in the paper. For an unbounded solid with a crack,
the unknown quantities of the non-hypersingular traction
BIEs are the crack-opening-displacements (CODs) and
their derivatives. The temporal convolution of the time-
domain BIEs is approximated by the convolution quadra-
ture formula of Lubich (1988a,b; 1994), while the spa-
tial discretization of the BIEs is done by a collocation
method. For the purpose of simplicity, two different spa-
tial shape-functions for the CODs are adopted. While a
”square-root” shape-function is used at the crack-front, a
simple constant shape-function is applied for elements
away from the crack-front. The use of the ”square-
root” shape-function takes the proper local behavior of
the CODs at the crack-front into account and it permits
a direct and accurate calculation of the elastodynamic
stress intensity factors from the numerically computed
CODs. To show the stability and the accuracy of the
present method, numerical examples are presented for an
unbounded 3-D solid containing a penny-shaped crack
subjected to a tensile and shear impact loading. The
most important advantage of the method over the con-
ventional time-domain BEM is that the method is much
more stable and less sensitive to the choice of the applied
time-steps. Another advantage is that it can be easily ex-
tended to cases where the Laplace-domain Green’s func-
tions have closed or simpler forms than the correspond-
ing time-domain Green’s functions.

Non-hypersingular displacement gradient BEM for elas-
tic and elastic/plastic stress analysis was presented by
Okada, Rajiyah and Atluri (1988, 1989). A spectral
scheme for dynamic fracture analysis of composites was
developed by Hwang and Geubelle (2000). A 3-D
time-domain BEM for dynamic analysis of uncracked

anisotropic elastic solids was implemented by Kögl and
Gaul (2000), who used the dual reciprocity BEM and the
elastostatic Green’s functions for anisotropic solids.

2 Problem statement and time-domain BIEs

We consider a crack of arbitrary shape contained in a 3-
D homogeneous, isotropic and linearly elastic solid as
shown in Fig. 1. The cracked solid satisfies the equations
of motion (Achenbach, 1973)

σi j, j +ρpi = ρüi , (1)

the Hooke’s law

σi j = Ei jkluk,l , (2)

the zero initial conditions

ui(x, t) = u̇i(x, t) = 0 , for t = 0 , (3)

and the boundary conditions

fi(x, t) = 0 , x ∈ Ac , (4)

fi(x, t) = f ∗i (x, t) , x ∈ Aσ , (5)

ui(x, t) = u∗
i (x, t) , x ∈ Au . (6)

In Eqs. (1)-(6), σi j, ui and pi represent the stress, the
displacement and the body force components, ρ denotes
the mass density, Ei jkl is the elasticity tensor, f i(x, t) =
σi j(x, t)n j stands for the traction vector with n j being the
unit normal vector, Ac = A+

c + A−
c with “±” indicating

the upper and the lower crack-surfaces, Aσ is the exterior
boundary on which the traction components are specified
whereas Au is the exterior boundary where the displace-
ments are prescribed. Here and throughout the analysis,
the conventional summation rule over double indices is
implied, a comma after a quantity designates partial dif-
ferentiation of the quantity with respect to spatial vari-
ables, while superscript dots denote temporal derivatives
of the quantity.

The initial-boundary value problem governed by Eqs.
(1)-(6) can be described by a set of time-domain traction
BIEs. To derive non-hypersingular time-domain traction
BIEs, we use the following conservation integral of linear
elastodynamics

JD
k =

∫
A

[
1
2
(σmn ∗um,n +ρüi ∗ui)δjk −σi j ∗ui,k

]
n jdS

−
∫
V

ρpi ∗ui,kdV = 0 , (7)
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Figure 1 : A cracked 3-D solid

where A is the surface and V is the volume of a solid
considered, n j is the unit outward normal vector to A,
and an asterisk ∗ denotes Riemann convolution which is
defined by

f (t) = g(t)∗h(t) =
t∫

0

g(t− τ)h(τ)dτ . (8)

Note here that Eq. (7) is valid as long as the zero initial
conditions (3) and no singularities within the considered
solid are ensured.

We consider now two independent elastodynamic states
in the same solid

{
u(1)

i ,σ(1)
i j , p(1)

i

}
,

{
u(2)

i ,σ(2)
i j , p(2)

i

}
, (9)

and require that both states satisfy the governing equa-
tions (1)–(2) and the zero initial conditions (3). Accord-
ing to the superposition principle, the sum of the two
states

ui = u(1)
i +u(2)

i , σi j = σ(1)
i j +σ(2)

i j , pi = p(1)
i + p(2)

i ,

(10)

satisfies the governing equations (1)–(2) and the zero ini-
tial conditions (3) too. Substitution of Eq. (10) into Eq.

(7) leads to

JD
k [ui] = JD

k

[
u(1)

i

]
+JD

k

[
u(2)

i

]
+

∫
A

{
εrstεrk jσ

(2)
i j ∗u(1)

i,t ns −
[
σ(1)

i j ∗u(2)
i,k

− ρü(1)
i ∗u(2)

i δjk

]
n j

}
dS

− ρ
∫
V

[
p(1)

i ∗u(2)
i,k + p(2)

i ∗u(1)
i,k

]
dV = 0 . (11)

Since u(1)
i and u(2)

i are two distinct elastodynamic states
which satisfy the governing equations (1)–(2) and the
zero initial conditions (3), the first two terms in Eq. (11)
vanish identically. Thus, a two-state conservation inte-
gral is obtained from Eq. (11) as∫

A

{
εrstεrk jσ

(2)
i j ∗u(1)

i,t ns −
[
σ(1)

i j ∗u(2)
i,k −ρü(1)

i ∗u(2)
i δjk

]
n j

}
dS

−ρ
∫
V

[
p(1)

i ∗u(2)
i,k + p(2)

i ∗u(1)
i,k

]
dV = 0 , (12)

in which εrst represents the permutation tensor.

Now state (1) is chosen as the actual unknown displace-
ment and stress fields{

u(1)
i ,σ(1)

i j ,ρp(1)
i

}
=
{

ui ,σi j ,0
}

, (13)

and state (2) is chosen as the fundamental solutions{
u(2)

i ,σ(2)
i j ,ρp(2)

i

}
=
{

uG
ikak ,σG

i jkak ,δ(x−y)δ(t)ai
}

,

(14)

where uG
ik and σG

i jk are the 3-D time-domain Green’s func-
tions for the uncracked full-space, ak indicates the direc-
tions of the applied impulsive unit point force, and δ(·)
represents the Dirac delta. Substituting Eqs. (13) and
(14) into Eq. (12) and using the sifting property of the
Dirac delta, the volume integral in Eq. (12) can be eval-
uated analytically as

ρ
∫
V

[
p(1)

i ∗u(2)
i,k + p(2)

i ∗u(1)
i,k

]
dV = ul,k(x, t)al . (15)

Eqs. (12) and (15) together result in a representation for-
mula for the displacement gradients uk,l(x, t) as

uk,l(x, t) = −
∫
A

[
εrstεrl jσG

i jk ∗ui,tns (16)

− (
uG

ik,l ∗σi j −ρuG
ik ∗ üiδjl

)
n j
]

dS, x /∈ A .
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Substituting Eq. (16) into Hooke’s law (2), taking
the limit procedure x → A, and considering the bound-
ary conditions (4)-(6), we obtain the following non-
hypersingular time-domain traction BIEs

−Epqklnq(x)
∫

A+
c

(
εrstεrl jσG

i jk ∗∆ui,tns +ρuG
ik ∗∆üinl

)
dS

−Epqklnq(x)
∫

Aσ+Au

[
εrstεrl jσG

i jk ∗ui,tns

−(uG
ik,l ∗σi j −ρuG

ik ∗ üiδjl
)

n j

]
dS = δA fp(x, t) , x ∈ A ,

(17)

where the integrals are understood as Cauchy principal
value integrals, δA = 1 if x∈A+

c while δA = 1/2 when x∈
Aσ + Au, and ∆ui are the crack-opening-displacements
(CODs) defined by

∆ui(y,τ) = ui(y ∈ A+
c ,τ)−ui(y ∈ A−

c ,τ) . (18)

It should be mentioned here that the time-domain traction
BIEs (17) are non-hypersingular with the exception at the
crack-front. Since an additional square-root singularity
in the displacement gradients ∆ui,t occurs at the crack-
front, Eq. (17) represents a set of hypersingular BIEs
when the collocation points are selected to be located at
the crack-front.

For the sake of brevity and to show the essential features
of the present numerical solution procedure, it suffices to
consider the first integral over A+

c only, since the last in-
tegral over Aσ +Au has the same singularities as the first
integral does. This can be best done by considering an
unbounded 3-D solid. In this case, the last boundary in-
tegral of Eq. (17) vanishes and the time-domain traction
BIEs (17) are simplified to

−Epqklnq(x)
∫

A+
c

(
εrstεrl jσG

i jk ∗∆ui,tns +ρuG
ik ∗∆üinl

)
dS

= fp(x, t) , x ∈ A+
c . (19)

The actual unknown quantities of the non-hypersingular
time-domain traction BIEs (19) are the CODs and their
derivatives. Once the CODs have been computed nu-
merically by solving the non-hypersingular traction BIEs
(19), the displacements at any interior points of the
cracked solid can be calculated by using the following

representation formula from the Betti-Rayleigh recipro-
cal theorem

uk(x, t) =
∫

A+
c

σG
i jk(x, t;y,τ)∗∆ui(y,τ)n jdS , x /∈ A+

c ,

(20)

while their gradients can be determined by using Eq.
(16). The stress field can be obtained subsequently by
using the Hooke’s law (2). The elastodynamic stress in-
tensity factors can be calculated directly from the CODs,
as will be shown in section 4. Note here that the dis-
placement gradients and the stresses at points very close
to the boundaries of the cracked solid can be accurately
determined by using Eq. (16) and Hooke’s law.

3 Numerical solution procedure

A novel time-stepping method is adopted for solving the
non-hypersingular time-domain traction BIEs (19) nu-
merically. The method uses the convolution quadrature
formula of Lubich (1988a,b; 1994) for temporal convo-
lution and a collocation method for spatial discretization.
The crack-surface A+

c is discretized into E quadrilateral
elements, i.e.,

A+
c =

E

∑
e=1

A+
e , (21)

and the unknown CODs ∆ui are approximated by the fol-
lowing interpolation functions

∆ui(y,τ) =
E

∑
e=1

µe(y)ηi;e(τ) , (22)

where µe(y) is a spatial shape-function defined by

µe(y) = g(y)H(y) =
{

g(y) , y ∈ A+
e ,

0 , y /∈ A+
e ,

(23)

and ηi;e(τ) is an unknown time function to be determined.
In Eq. (23), g(y) describes the spatial variation of ∆u i

within the e-th element A+
e , and H(y) is the 3-D Heavi-

side function, see Appendix C.

Substituting Eq. (22) into the time-domain traction BIEs
(19), using the convolution quadrature formula of Lubich
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(1988a,b;1994), see Appendix A

f (t) = g(t)∗h(t) =
t∫

0

g(t− τ)h(τ)dτ

=⇒ f (n∆t) =
n

∑
j=0

ωn− j(∆t)h( j∆t) , (24)

choosing E collocation points on A +
c and requiring that

the BIEs (19) have to be satisfied at each collocation
point xd (d = 1,2, ...E), the non-hypersingular time-
domain traction BIEs (19) are converted into a system
of linear algebraic equations

n

∑
j=0

E

∑
e=1

An− j
ip;edη j

i;e = f n
p;d ,

(n = 0,1,2, ...,N ; d = 1,2, ...,E) ,

(25)

where the time variable t is divided into N equal time-
steps ∆t, i.e. t = ∑N

n=0 ∆t. The system matrix An− j
ip;ed and

the right-hand side f n
p;d of Eq. (25) are given by

An− j
ip;ed =

r−(n− j)

M

M−1

∑
m=0

Âip;ed(pm)e−2πi(n− j)m/M , (26)

f n
p;d = fp(xd,n∆t) , (27)

in which

pm =
δ(ζm)

∆t
, δ(ζm) =

2

∑
j=1

(1−ζm) j

j
, ζm = re2πi·m/M .

(28)

The numerical error in computing An− j
ip;ed using the convo-

lution quadrature formula of Lubich (1988a,b;1994) is of
the order O(

√
ε) when M = N and rN =

√
ε are selected.

Here, ε is the numerical error arised in the computation
of the Laplace-transform of the system matrix Âip;ed(pm),
which corresponds to the integration weights ωn− j(∆t)
of the convolution quadrature formula (24). The system
matrix in the Laplace-domain has the following form

Âip;ed(pm) = −Epqklnq(xd)

[
εrstεrl j

∫
A+

e

σ̂G
i jk (g,t +gH,t)nsdS

+ρp2
m

∫
A+

e

ûG
ikgnldS

]
, (29)

where ûG
ik and σ̂G

i jk represent the displacement and the
stress Laplace-domain Green’s functions which are given
in Appendix B. A special feature of the present time-
domain BEM is that it applies Laplace-domain instead of
time-domain Green’s functions. The method is advanta-
geous for cases where the Laplace-domain Green’s func-
tions have closed or simpler forms than their correspond-
ing time-domain Green’s functions. The system matrix
defined by Eq. (26) is real-valued and it can be evalu-
ated very efficiently by using the Fast Fourier Transform
(FFT).

For planar cracks whose surfaces lie in the x1−x2–plane,
Eq. (29) can be recast into the following form

Âip;ed(pm) = Ep3kl


εr3αεrl j

∫
A+

e

σ̂G
i jk(xd;y)g,α (y)dS

+ εr3αεrl j

∫
A+

e

σ̂G
i jk(xd;y)g(y)H,α (y)dS




+ ρp2
mEp3k3

∫
A+

e

ûG
ik(xd;y)g(y)dS . (30)

By invoking the property of the 3-D Heaviside function
(Appendix C) the second integral on the right-hand side
of Eq. (30) can be transformed into a line integral as

∫
A+

e

σ̂G
i jk(xd;y)g(y)H,α (y)dS

= −
∫

∂A+
e

σ̂G
i jk(xd;y)g(y)mα(y)ds , (31)

where m = t×n is the unit vector normal to ∂A+
e tangent

to A+
e and pointing outward, and t is the unit tangent vec-

tor to ∂A+
e , see Fig. 2. With Eq. (31), Eq. (30) can be

rewritten as

Âip;ed(pm) = Ep3kl


εr3αεrl j

∫
A+

e

σ̂G
i jk(xd;y)g,α (y)dS

− εr3αεrl j

∫
∂A+

e

σ̂G
i jk(xd;y)g(y)mα(y)ds




+ ρp2
mEp3k3

∫
A+

e

ûG
ik(xd;y)g(y)dS . (32)
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In the case of e �= d, i.e., xd �= y, all integrals in Eq. (32)
are regular and they can be integrated numerically by us-
ing standard Gaussian quadrature formula. For e = d, the
second integral of Eq. (32) is still regular since x d is cho-
sen to be at the centroid, i.e., off the boundary of the e-th
patch ∂A+

e . However, the first integral of Eq. (32) has a
strong singularity of the order O(1/r 2) while the last in-
tegral has a weak singularity of the order O(1/r) at r = 0.
Therefore, careful analytical or numerical treatments are
required for evaluating these two integrals. To reduce the
strong singularity O(1/r 2), the first integral is rewritten
as ∫

A+
e

σ̂G
i jk(xd;y)g,α (y)dS

=
∫

A+
e

σ̂G
i jk(xd;y)

[
g,α (y)−g,α (xd)

]
dS

+g,α (xd)
∫

A+
e

σ̂G
i jk(xd;y)dS . (33)

By using Hooke’s law

σ̂G
i jk = Ei juvûG

uk,v , (34)

and the divergence theorem the last integral on the right-
hand side of Eq. (33) can be transformed into a line inte-
gral as∫

A+
e

σ̂G
i jk(xd;y)dS = Ei juv

∫
∂A+

e

ûG
uk(xd;y)mv(y)ds. (35)

The integral on the right-hand side of Eq. (35) is again
regular since xd is located off the boundary of the e-th
patch, i.e., xd /∈ ∂A+

e . Substitution of Eqs. (33) and (35)
into Eq. (32) provides

Âip;ed(pm) = Ep3kl


εr3αεrl j

∫
A+

e

σ̂G
i jk(xd,y) ×

[
g,α (y)−g,α (xd)

]
dS

+ εr3αεrl jEi juvg,α(xd)
∫

∂A+
e

ûG
uk(xd,y)mv(y)ds

− εr3αεrl j

∫
∂A+

e

σ̂G
i jk(xd,y)g(y)mα(y)ds




+ ρp2
mEp3k3

∫
A+

e

ûG
ik(xd,y)g(y)dS . (36)

For e �= d, all integrals in Eq. (36) are regular and they
can be integrated numerically by using standard Gaus-
sian quadrature formula. For e = d, the first integral of
Eq. (36) has a weak singularity of the order O(1/r) due
to the following asymptotics

σ̂G
i jk(xd,y) = O(1/r2) , y → xd ,

g,α (y)−g,α (xd) = O(r) , y → xd , (37)

where use is made of the Hölder continuity condition of
g,α at xd. The last integral of Eq. (36) has the same weak
singularity of the order O(1/r) as the first integral does.
To handle the weak singularity O(1/r), a quadrilateral
element is divided into four triangular sub-elements and
subsequently a coordinate transform from Cartesian into
polar coordinate system (r,φ) with the origin at x d is ap-
plied where

y1−xd
1 = r cosφ, y2−xd

2 = r sinφ, y3 = xd
3 = 0 . (38)

This transformation results in

dS = rdrdφ. (39)

The r term in Eq. (39) cancels the 1/r term aris-
ing in the first and the last integrals of (36). Hence,
the weakly singular integrals of Eq. (39) after the co-
ordinate transform are regular and they can be inte-
grated numerically by using standard Gaussian quadra-
ture formula. To avoid possible cancellations in the term
[exp(−kT r)/r − exp(−kLr)/r] appearing in Laplace-
domain Green’s functions for small values of kT r or
kLr, the series expansions of the Laplace-domain Green’s
functions are used, see Appendix B for more details.

c

Figure 2 : A 3-D crack in local and global coordinate
systems
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For the purpose of simplicity, two simple spatial shape-
functions are applied in the present analysis. For ele-
ments away from the crack-front, g(y) is taken to be con-
stant (constant element), while for elements in the first
two rows behind the crack-front a ”square-root” shape
function is adopted to describe the proper local behavior
of the CODs near the crack-front. The use of ”square-
root” shape function in the second row behind the crack-
front as ”transition elements” improves the accuracy of
the present numerical solution procedure for computing
the elastodynamic stress intensity factors. Note here that
for 3-D planar cracks two uncoupled sets of BIEs are ob-
tained: one for the normal COD ∆u3 and the other for the
transverse CODs ∆uα .

It should be remarked here that the Hölder continuity
condition, i.e., the CODs must be C1,α continuous, which
is required by the first integral of Eq. (36), is ensured in
the present numerical solution procedure, since the col-
location points are chosen to be located at the elements
center and do not lie on the crack-front where the CODs
are no longer C1,α continuous. If higher order spatial
shape-functions are used, the collocation points should
be selected off the crack-front where the Hölder condi-
tion is violated. This can be done by either using dis-
continuous elements or using continuous elements with
collocation points chosen at interior element nodes near
the crack-front.

Note also that to compute the last term in Eq. (19) con-
taining the double temporal derivatives of the CODs, i.e.,
∆üi, the following convolution quadrature formula (see
Appendix A) is used

f (t) = g(t)∗ ḧ(t) = g̈(t)∗h(t) =
t∫

0

g̈(t − τ)h(τ)dτ

=⇒ f (n∆t) =
n

∑
j=0

ω̈n− j(∆t)h( j∆t) , (40)

where

ω̈n− j(∆t) =
r−(n− j)

M

M−1

∑
m=0

p2
mĝ(pm)e−2πi(n− j)m/M . (41)

An alternative way for evaluating the weights ω̈n− j(∆t)
instead of using Eq. (41) is the application of the follow-
ing formula (Lubich, 2000)

ω̈n− j(∆t) = (∆t)−2
4

∑
k=0

δ(2)
k ωn− j−k(∆t) , (42)

in which

ωn− j−k(∆t) =
r−(n− j−k)

M

M−1

∑
m=0

ĝ(pm)e−2πi(n− j−k)m/M ,

(43)

δ(2)
k is determined by the equation

4

∑
k=0

δ(2)
k ζk = δ2(ζ) , (44)

and δ(ζ) is given in Eq. (28). Both methods are tested
numerically by the present authors, and no remarkable
differences in the numerical results were found. There-
fore, only the first way by using Eq. (41) is presented
here.

By considering the zero initial conditions (3) the follow-
ing time-stepping scheme is obtained from Eq. (25)

ηn
i;e =

E

∑
d=1

(
A0

ip;ed

)−1

[
f n
p;d −

n−1

∑
j=1

E

∑
f =1

An− j
kp;d f η

j
k; f

]
,

(n = 1,2, ...,N) , (45)

where (A0
ip;ed)−1 denotes the inverse matrix of A0

ip;ed at
the time-step n = 0. The unknown time-dependent coef-
ficients ηn

i;e can be obtained by solving Eq. (45) time-step
by time-step .

4 Numerical results and discussions

In this section, numerical results for the elastodynamic
stress intensity factors will be presented to show the effi-
ciency and the accuracy of the present time-domain trac-
tion BEM. The elastodynamic stress intensity factors are
computed from the numerically calculated CODs by us-
ing the following relations




KI(t)
KII(t)
KIII(t)


=

µ
√

2π
4(1−ν)

lim
δ→0

1√
δ




∆uζ(δ, t)
∆uξ(δ, t)

(1−ν)∆uη(δ, t)


 ,

(46)

with KI(t), KII(t) and KIII(t) being the time-dependent
mode-I, mode-II and mode-III elastodynamic stress in-
tensity factors representing the strength of the inverse
square-root singularity of the stress field at the crack-
front, ν being the Poisson’s ratio, ∆uξ, ∆uη and ∆uζ be-
ing the CODs in the local coordinate system, and δ being
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a small distance of a point on the crack surface to the
crack-front, see Fig. 2. The CODs ∆uξ, ∆uη and ∆uζ are
computed at nodes nearest and with the shortest distance
δ to the crack-front.

As a test example, a penny-shaped crack subjected to a
separate tensile and shear impact loading is considered,
see Fig. 3. Poisson’s ratio is taken as ν = 0.29, and a total
number of 104 elements is used, see Fig. 4. For comput-
ing the system matrix by using Eq. (26) the relation r N =√

ε with ε = 10−12 has been applied. For convenience,
the dynamic stress intensity factors Ki(t) (i = I, II, III)
are normalized by their corresponding static values K st

i
as

KI(t) =
KI(t)
Kst

I
, Kst

I =
2
π

σ∗√πa , (47)

KII(t) =
KII(t)

Kst
II(θ = 0◦)

, Kst
II =

4
π(2−ν)

τ∗
√

πacosθ,

(48)

KIII(t) =
KIII(t)

Kst
III(θ = 90◦)

, Kst
III

= −4(1−ν)
π(2−ν)

τ∗
√

πasinθ, (49)

where σ∗ and τ∗ are the amplitudes of the impact loading.

�

Figure 3 : A penny-shaped crack

For a pure tensile impact loading σ33 = σ(t) = σ∗H(t)
the problem is axissymmetric. Hence, KII(t) = KIII(t) =
0 and KI(t) is independent of the polar angle θ. Fig. 5

�;
�;

Figure 4 : BEM mesh and impact loading

shows the normalized mode I dynamic stress intensity
factor KI(t) versus the dimensionless time cTt/a, where
cT is the velocity of the transverse shear wave. A compar-
ison of the present numerical result with that obtained via
a conventional time-domain BEM developed by Zhang
and Gross (1993) shows very good agreement. Here,
the same time-step cT ∆t/a = 0.2 and the same mesh as
shown in Fig. 4 have been used. Another check on the
present time-domain BEM is made by comparing the nu-
merical result at large cT t/a with its corresponding static
value, and it is found that the deviation between them is
less than 1%.

The influences of the applied time-steps on the normal-
ized dynamic stress intensity factor K I(t) are shown in
Figs. 6 and 7. Results presented in Fig. 6 are ob-
tained by the conventional time-domain BEM of Zhang
and Gross (1993), while Fig. 7 presents the correspond-
ing numerical results provided by the novel time-domain
BEM. Fig. 6 shows that the conventional time-stepping
scheme cannot provide stable numerical results for the
time-steps cT ∆t/a = 0.1 and cT ∆t/a = 0.05. For a large
time-step cT ∆t/a = 0.4, the conventional time-stepping
scheme causes an unreasonably large numerical damp-
ing which reveals that the conventional time-stepping
method is inaccurate for large time-steps. In contrast, the
present time-domain BEM is highly stable, even for quite
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Figure 5 : The normalized KI(t)-factor versus cT t/a

Figure 6 : Influences of time-steps on K I(t) (Conven-
tional time-domain method)

small time-steps cT ∆t/a = 0.1 and cT ∆t/a = 0.05. In
the case of a large time-step cT ∆t/a = 0.4, the numerical
damping arised in the novel time-domain method is much
smaller than in the conventional time-domain method as
shown in Fig. 6. Figs. 6 and 7 indicate clearly that the
present time-domain BEM is pretty insensitive to the se-
lected time-steps. This is an essential advantage of the
present method over the conventional time-domain BEM

Figure 7 : Influences of time-steps on K I(t) (Novel time-
domain method)

using time-domain Green’s functions.

For a pure shear impact loading σ13 = τ(t) = τ∗H(t),
KI(t) = 0 and the normalized dynamic stress intensity
factors KII(t) and KIII(t) are presented in Fig. 8, versus
the dimensionless time cT t/a and the polar angle θ. It
can be seen on Fig. 8 that the transient dynamic effect is
confined to a small-time range. As the time increases, the
dynamic stress intensity factors tend to their correspond-
ing static values. In all cases considered here, a dynamic
overshoot in the elastodynamic stress intensity factors is
observed. The normalized dynamic stress intensity fac-
tors KII(t) at θ = 0◦ and KIII(t) at θ = 90◦ along with
the corresponding numerical results obtained by the con-
ventional time-domain BEM of Zhang and Gross (1993)
are given in Figs. 9 and 10 for the comparison purpose.
Here again, a time-step cT ∆t/a = 0.2 and the same mesh
as shown in Fig. 4 have been used in both numerical
calculations. Though some discrepancies are observed in
the normalized KII(t) factor near its peak value, the over-
all agreement between both results are very satisfactory,
at least for the selected time-step cT ∆t/a = 0.2.

Finally, Fig. 11 shows a comparison of the analytical
static stress intensity factors and the numerically com-
puted dynamic stress intensity factors at c T t/a = 10. An
excellent agreement between the analytical results and
the numerical results of the present time-domain BEM is
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obtained. This additional check confirms again the high
accuracy of the novel time-domain BEM.

Figure 8 : Normalized KII(t) and KIII(t) factors
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Figure 9 : Normalized KII(t) factor (θ = 0◦)

Figure 10 : Normalized KIII(t) factor (θ = 90◦)

5 Conclusions

A novel non-hypersingular time-domain traction BEM is
presented in this paper. Unlike the conventional time-
domain BEM, the present method applies the convo-
lution quadrature formula of Lubich (1988a,b; 1994)
for approximating the temporal convolution and a col-
location method for spatial discretization of the time-
domain BIEs. A special feature of the present method

Analytical

This work

K
II

K
III

c t/a=10
T

Figure 11 : Comparison of KII(θ = 0◦) and KIII(θ =
90◦) factors at cT t/a = 10 with analytical static results

is that its formulation is in the time-domain but it re-
quires only Laplace-domain Green’s functions instead of
time-domain Green’s functions. The most important ad-
vantage of the present time-domain BEM over the con-
ventional time-domain BEM is that the method is much
more stable and less sensitive to the choice of the selected
time-steps. Another advantage of the method lies in its
efficiency for cases where the Laplace-domain Green’s
functions have closed or simpler forms than their corre-
sponding time-domain Green’s functions.

Acknowledgement: The authors are grateful to Prof.
Dr. C. Lubich, Institute of Mathematics, University of
Tübingen, Germany, for many useful discussions on his
convolution quadrature formula.
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Appendix A: Convolution quadrature formula

The Laplace transform of a function g(t) is defined by

ĝ(p) =
∞∫

0

g(t)e−ptdt , (50)

and the inverse Laplace transform is given by

g(t) =
1

2πi

∫
Br

ĝ(p)ept dp , (51)

where p is a complex transform parameter and Br rep-
resents the Bromwich integration path which is an un-
bounded straight line parallel and right to the imaginary
axis of the complex p-plane.

By using Eq. (51), the convolution integral given in Eq.
(24) can be rewritten as

f (t) =
t∫

0

[
1

2πi

∫
Br

ĝ(p)ep(t−τ)dp

]
h(τ)dτ

=
1

2πi

∫
Br

ĝ(p)
t∫

0

ep(t−τ)h(τ)dτdp . (52)

Introducing a function y(t) as

y(t) =
t∫

0

ep(t−τ)h(τ)dτ , (53)

Eq. (52) can be simplified to

f (t) =
1

2πi

∫
Br

ĝ(p)y(t)dp , (54)

where the function y(t) satisfies the following first order
differential equation and the initial condition at t = 0

ẏ(t) = py(t)+h(t) , y(0) = 0 . (55)

A linear multistep method is applied to approximate the
differential equation (55) which leads to

k

∑
j=0

α jyn− j = ∆t
k

∑
j=0

β j[pyn− j +hn− j] , n ≥ 0 (56)
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with yn− j = y((n− j)∆t), hn− j = h((n− j)∆t), and the
starting values y−k = ... = y−1 = 0. Multiplying both
sides of Eq. (56) by ζn (|ζ| ≤ 1), applying the follow-
ing power series expressions

y(t)= y(ζ) =
∞

∑
n=0

ynζn , h(t)= h(ζ) =
∞

∑
n=0

hnζn , (57)

and summing up over n from 0 to ∞ we obtain

y(t) = y(ζ) =
[

δ(ζ)
∆t

− p

]−1

h(ζ) , (58)

where the quotient of the generating polynomials of the
multistep method δ(ζ) is given by

δ(ζ) =
k

∑
j=0

α jζ j

/ k

∑
j=0

β jζ j . (59)

For practical applications, we are interested in a second-
order A-stable multistep method which satisfies the fol-
lowing conditions

Re[δ(ζ)]≥ 0 , for |ζ| ≤ 1 , (60)

δ
(
e−∆t)/∆t = 1+O

(
(∆t)2) , for ∆t → 0 .

(61)

It can be easily shown that the backward difference for-
mula where δ(ζ) = ∑2

j=1(1− ζ) j/ j and the trapezoidal
rule with δ(ζ) = 2(1− ζ)/(1 + ζ) satisfy the conditions
(60) and (61), and they are thus second-order A-stable
methods.

Substitution of Eqs. (57) and (58) into Eq. (54) and ap-
plication of the Cauchy’s integral formula to Eq. (54)
result in

f (t) =
∞

∑
n=0

f (n∆t)ζn = ĝ

(
δ(ζ)
∆t

) ∞

∑
n=0

h(n∆t)ζn , (62)

where use is made of the following asymptotic behavior
of ĝ(p)

|ĝ(p)| → 0 for Re(p) ≥ 0 , |p| → ∞ . (63)

Substituting the power series expression for ĝ(ζ)

ĝ

(
δ(ζ)
∆t

)
=

∞

∑
n=0

ωn(∆t)ζn (64)

into Eq. (62) and using Cauchy’s product formula for
two series, Eq. (62) can be recast into

∞

∑
n=0

f (n∆t)ζn =
∞

∑
n=0

n

∑
j

ωn− j(∆t)h( j∆t)ζn . (65)

By taking the nth coefficient of the power series of Eq.
(65) we obtain finally the convolution quadrature formula
(24), where the integration weights ωn(∆t) are given by

ωn(∆t) =
1

2π

∫
|ζ|=r

ĝ

(
δ(ζ)
∆t

)
ζ−n−1dζ , (66)

with r being the radius of a circle in the domain of an-
alyticity of ĝ(ζ). To approximate the integral (66) with
high accuracy, Lubich (1988b) suggested the following
formula

ωn(∆t) =
r−n

M

M−1

∑
m=0

ĝ(pm)∆t)e−2πi·nm/M , (67)

where a trapezoidal rule with M equal steps 2π/M was
used, and pm = δ(ζm)/∆t with δ(ζm) and ζm being de-
fined by Eq. (28). More details on the convolution
quadrature formula can be found in Lubich (1988a,b;
1994) and Lubich and Schneider (1993).

By using Eq. (67) and

ˆ̈g = p2ĝ , (68)

we obtain

ω̈n(∆t) =
r−n

M

M−1

∑
m=0

ˆ̈g(pm)e−2πi·nm/M

=
r−n

M

M−1

∑
m=0

p2
mĝ(pm)e−2πi·nm/M , (69)

and this proves Eq. (41).

Substitution of the relations given in Eq. (28) and

δ2(ζm) =
4

∑
k=1

δ(2)
k ζk

m (70)
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into Eq. (69) yields

ω̈n(∆t) =
r−n

M

M−1

∑
m=0

p2
mĝ(pm)e−2πi·nm/M

=
r−n

M

M−1

∑
m=0

δ2(ζm)
(∆t)2 ĝ(pm)e−2πi·nm/M

= (∆t)−2 r−n

M

M−1

∑
m=0

(
4

∑
k=0

δ(2)
k ζk

m

)
ĝ(pm)e−2πi·nm/M

= (∆t)−2
4

∑
k=0

δ(2)
k[

r−n

M

M−1

∑
m=0

(
re2πi·km/M

)k
ĝ(pm)e−2πi·nm/M

]

= (∆t)−2
4

∑
k=0

δ(2)
k

[
r−(n−k)

M

M−1

∑
m=0

ĝ(pm)e−2πi·(n−k)m/M

]

= (∆t)−2
4

∑
k=0

δ(2)
k ωn−k(∆t) , (71)

which proves Eq. (42). Note here that in deriving
Eq. (71) the backward difference formula with δ(ζ) =
∑2

j=1(1− ζ) j/ j has been used. If the trapezoidal rule
with δ(ζ) = 2(1− ζ)/(1 + ζ) is applied, then Eq. (71)
has to be modified properly.

Appendix B: Laplace-domain Green’s functions

The Green’s functions in the Laplace transform domain
satisfy the following partial differential equations

σ̂G
i jk, j −ρp2ûG

ik = −δ(x−y)δik . (72)

The 3-D displacement Green’s functions in the Laplace
transform domain, which are solutions of the partial dif-
ferential equations (72), are given by

ûG
ik(x;y) =

kT

4πµ
(δikA1 − r,i r,k A2) , (73)

where

A1 =
(
γ−1

T +γ−2
T +γ−3

T

)
exp(−γT )

− κ−3 (γ−2
L +γ−3

L

)
exp(−γL) , (74)

A2 =
(
γ−1

T +3γ−2
T +3γ−3

T

)
exp(−γT )

− κ−3 (γ−1
L +3γ−2

L +3γ−3
L

)
exp(−γL) , (75)

r = |x−y| , ri = xi −yi , r,i = ri/r ,

kL = p/cL , kT = p/cT , κ = kT /kL ,

γL = kLr , γT = kT r . (76)

By substituting Eq. (73) into Hooke’s law

σ̂G
i jk = Ei jmnûG

mk,n , (77)

the corresponding stress Green’s functions in the Laplace
transform domain can be obtained as

σ̂G
i jk =

k2
T

4π
[
δi jr,k B1 +

(
δikr, j +δjkr,i

)
B2 −2r,i r, j r,k B3

]
,

(78)

in which

B1 = 2
(
γ−2

T +3γ−3
T +3γ−4

T

)
exp(−γT )

+ κ−4 [(κ2 −2
)(

γ−1
L +γ−2

L

)
− 2

(
γ−2

L +3γ−3
L +3γ−4

L

)]
exp(−γL) , (79)

B2 =
[
γ−1

T +3
(
γ−2

T +2γ−3
T +2γ−4

T

)]
exp(−γT )

− 2κ−4 (γ−2
T +3γ−3

T +3γ−4
T

)
exp(−γL) , (80)

B3 =
(
γ−1

T +6γ−2
T +15γ−3

T +15γ−4
T

)
exp(−γT )

− κ−4 (γ−1
L +6γ−2

L +15γ−3
L +15γ−4

L

)
exp(−γL) .

(81)

To avoid possible cancellations in the term
[exp(−kT r)/r − exp(−kLr)/r] arising in the Laplace-
domain Green’s functions for small kT r or kLr, it is
convenient to use the following series expansions of the
Laplace-domain Green’s functions (e.g., Kobayashi and
Nishimura, 1982; Kitahara and Nakagawa, 1985)

ûG
ik = uS

ik + ûD
ik , (82)

where

uS
ik =

1
8πµr

[
δik
(
1+κ−2)+(1−κ−2)r,i r,k

]
, (83)

ûD
ik =

1
4πµ

(δikΦ− r,i r,k Ψ) , (84)
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Φ =
∞

∑
n=1

(−kT )n

n!
rn−1 − 1

k2
T

∞

∑
n=3

an(n−1)rn−3 , (85)

Ψ =
1

k2
T

∞

∑
n=4

an(n−1)(n−3)rn−3 . (86)

Substitution of Eqs. (82)–(84) into Hooke’s law (77) re-
sults in

σ̂G
i jk = σS

i jk + σ̂D
i jk , (87)

σS
i jk =

1

4π(λ +2µ)r2 [µ(δikr, j +δjkr,i−δi jr,k )

+ 3(λ +µ)r,i r, j r,k ] , (88)

σ̂D
i jk =

1
4π
{
(Ψ/r−Φ′)(δikr, j +δjkr,i )

+
[

λ
µ
(Ψ′ −Φ′) + 2

(
λ
µ

+1

)
Ψ/r

]
δi jr,k

+ 2(Ψ′ −2Ψ/r)r,i r, j r,k
}

, (89)

where λ and µ are Lamé’s elastic constants, Φ′ = ∂Φ/∂r,
Ψ′ = ∂Ψ/∂r, and the superscripts “S” and “D” denote the
singular static Green’s functions and the regular dynamic
terms.

Appendix C: Conversion of surface integral

By using the definition of the 3-D Heaviside function

H(x) =
{

1 , x ∈ A ,

0 , x /∈ A ,
(90)

and the theory of generalized functions, the following
identity can be obtained

∫
A

f (x)
∂H(x)

∂xi
dS = −

∫
A

H
∂ f
∂xi

dS

= −
∫
A

(
∂ f
∂n

−K f

)
nidS−

∫
∂A

f mids , (91)

with K being the mean curvature of a sufficiently smooth
surface A, m = t × n being the unit vector normal to
∂A tangent to A and pointing outward, t being the unit
tangent vector of ∂A (see Fig. 2), and ∂ f/∂n being the
derivative of f in the n-direction. For a planar surface A

lying in the x1-x2-plane, K = ∂ f/∂n = 0, and Eq. (91) is
simplified to

∫
A

f (x)
∂H(x)

∂xi
dS = −

∫
∂A

f mids . (92)


