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A MLPG (LBIE) method for solving frequency domain elastic problems

E. J. Sellountos1 and D. Polyzos2

Abstract: A new meshless local Petrov-Galerkin
(MLPG) method for solving two dimensional frequency
domain elastodynamic problems is proposed. Since the
method utilizes, in its weak formulation, either the elas-
tostatic or the frequency domain elastodynamic funda-
mental solution as test function, it is equivalent to the
local boundary integral equation (LBIE) method. Nodal
points spread over the analyzed domain are consid-
ered and the moving least squares (MLS) interpolation
scheme for the approximation of the interior and bound-
ary variables is employed. Two integral equations suit-
able for the integral representation of the displacement
fields in the local sub- domains are used. The first utilizes
the frequency domain fundamental solution, comprises
only boundary integrals and exploits the elastodynamic
companion solution, which is derived in the framework
of the present work. The second equation makes use of
the simple elastostatic fundamental solution, employs the
elastostatic companion solution in order to get rid of trac-
tions on the local boundaries and contains both boundary
and volume integrals. On the global boundary, deriva-
tives of the shape functions of the MLS approximation
are avoided by considering displacements and tractions
as independent variables. Direct numerical techniques
for the accurate evaluation of both surface and volume
integrals are employed and presented in detail. All the
strongly singular integrals are computed directly through
highly accurate integration techniques. Three represen-
tative numerical examples that demonstrate the accuracy
of the proposed methodology are provided.
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1 Introduction

The boundary element method (BEM) is a well-known
and robust numerical tool, successfully used to date
to solve various types of engineering elastic problems
[Beskos (1987); Beskos (1997)]. Nevertheless, the re-
quirement of using the fundamental solution of the dif-
ferential equation or system of differential equations that
describe the problem of interest renders BEM less at-
tractive than FEM when non-linear, non-homogeneous
and anisotropic elastic problems are considered. Also,
the final system of linear equations taken by a BEM for-
mulation leads to unsymmetric and full-populated ma-
trices the numerical treatment of which is in general
computationally expensive. Although some interesting
works dealing with BEM solutions of anisotropic [Kogl
and Gaul (2000)] and non-homogeneous [Manolis and
Pavlou (2000)] have appeared in the literature, the re-
quirement of using fundamental solutions confines the
use of the BEM to linear problems only.
Recently, [Zhu, Zhang, and Atluri (1998a)] proposed
a very promising meshless methodology called Local
Boundary Integral Equation (LBIE) method that seems
to circumvent the two aforementioned problems associ-
ated with a conventional boundary element formulation.
Their methodology is characterized as meshless since
a cloud of properly distributed nodal points, covering
the domain of interest as well as the surrounding global
boundary, is employed instead of any boundary or finite
element discretization. All nodal points belong in regular
sub-domains (e.g. circles for two-dimensional problems)
centered at the corresponding collocation points. When
non-linear elastic problems or elastic problems with body
forces are considered, the displacement field at these sub-
domains is described through the same surface integral
equation used in the conventional static elastic BEM ac-
companied by volume integrals coming from the non-
linear terms and/or the body forces appearing in the con-
stitutive equations. The displacements at the local and
global boundaries as well as in the interior of the sub- do-
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mains are usually approximated by a moving least square
(MLS) scheme. Owing to regular shapes of the sub-
domains, both surface and volume integrals are easily
evaluated. The local nature of the sub-domains leads to a
final linear system of equations the coefficient matrix of
which is sparse and not full populated as in the case of the
conventional BEM. As representative works on the LBIE
method one can mention the papers of [Zhu, Zhang,
and Atluri (1998a)], [Zhu, Zhang, and Atluri (1998b)],
[Zhu, Zhang, and Atluri (1999)] and [Zhu (1999)] in lin-
ear and non linear acoustic and potential problems, the
works of [Sladek, Sladek, and Atluri (2000)], [Atluri,
Sladek, Sladek, and Zhu (2000)] and [Sladek, Sladek,
and Keer (2003)] dealing with non- homogeneous linear
elastic and elastodynamic problems, the works of [Long
and Zhang (2002)], [Sladek, Sladek, and Mang (2002a)],
[Sladek, Sladek, and Mang (2002b)] and [Sladek, Sladek,
and Mang (2003)] for plates, the works of [Sladek,
Sladek, and Atluri (2001)] and [Sladek, Sladek, and Keer
(2002)] for thermoelastic and diffusion problems respec-
tively, and the work of [Sladek and Sladek (2003)] for
treating micropolar elastic problems. Details concern-
ing the numerical implementation of the LBIE method,
the representation of field variables through meshless in-
terpolation schemes and the numerical evaluation of sur-
face and volume integrals can be found in the works of
[Atluri, Kim, and Cho (1999)], [Atluri and Zhu (2000)],
[Sladek, Sladek, Atluri, and Keer (2000)], and [Sladek
and Sladek (2002)]. Finally, a comprehensive presen-
tation on the application of the LBIE method to differ-
ent types of boundary value problems one can find in the
very recent review paper of [Sladek, Sladek, and Atluri
(2002)].
In this paper a new meshless LBIE method for solv-
ing two dimensional (2D) frequency domain elastody-
namic problems is demonstrated and numerically imple-
mented. As it is explained in the works of [Atluri and Zhu
(1998)], [Atluri, Kim, and Cho (1999)], and [Atluri and
Shen (2002b)] as well as in the book of [Atluri and Shen
(2002a)], the LBIE method can be considered as a spe-
cial case of the Meshless Local Petrov-Galerkin (MLPG)
approach proposed by Atluri and co-workers. This facts
explains the use of the initials MLPG (LBIE) in the title
of the present work. The interior as well as the boundary
of the domain of interest are covered by properly dis-
tributed nodal points each of which corresponds to a cir-
cular sub-domain where a MLS approximation scheme
is applied for the meshless interpolation of the interior

and boundary variables. On the global boundary, dis-
placements and tractions are considered as independent
variables. The local integral representation of displace-
ments is accomplished with the aid of BEM-type inte-
gral equations defined on the sub- domain of each node.
In the present work two local integral equations are em-
ployed for the formulation of the proposed LBIE method.
The first employs the frequency domain fundamental so-
lution and avoids the local traction fields with the aid of
an elastodynamic companion solution, which is analyti-
cally derived for the needs of the present work. This in-
tegral equation leads to a truly LBIE method since only
boundary integrals are involved in the final formulation
of the method. On the contrary the second integral equa-
tion leads to a Local Boundary/Volume Integral Equation
(LB/VIE) method since it makes use of the elastostatic
fundamental solution instead of the time harmonic elas-
todynamic one and treats the inertia terms as body forces.
The numerical evaluation of the surface and volume in-
tegrals involved in the above two formulations is accom-
plished with the aid of some practical and very accurate
techniques presented in detail, while the direct and very
accurate technique of [Guiggiani and Casalini (1987)] is
employed for the numerical evaluation of the singular in-
tegrals involved in both LBIE and LB/VIE formulations
Comparing the present LBIE with those of [Sladek,
Sladek, and Atluri (2000)], [Atluri, Sladek, Sladek, and
Zhu (2000)] and [Sladek, Sladek, and Keer (2003)] , one
can say that the proposed here LBIE appears the follow-
ing new elements: a) it employs either the static or the
frequency domain elastodynamic fundamental solution
b) on the global boundary displacements and tractions
are treated as independent variables c) the surface and
volume integrals are evaluated with the aid of some prac-
tical and accurate techniques, explained in the fourth sec-
tion of the present paper and d) the strongly singular and
hypersingular integrals are computed directly with high
accuracy.
The paper is organized as follows: in the next section
the local integral formulation of the LBIE and LB/VIE is
presented. The MLS approximation scheme used for the
interpolation of the unknown displacements and bound-
ary tractions is explained in section 3. Next the numerical
implementation of the proposed methodology, the treat-
ment of the essential boundary conditions and the inte-
gration techniques used for the numerical evaluation of
surface, volume, regular and singular integrals are de-
scribed in section 4. Finally, in section 5 three numerical
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examples that illustrate the accuracy of the proposed here
LBIE and LB/VIE are presented.

2 Local integral equations

In this section the two local integral equations used for
the formulation of the LBIE and LB/VIE are presented.
As it is mentioned in the introduction, the first local in-
tegral equation employs the 2D frequency domain elas-
tic fundamental solution and contains only boundary in-
tegrals, while the second one comprises both boundary
and volume integrals since the inertia term of the elasto-
dynamic operator is treated as body force.

2.1 Local boundary integral equations

Consider a two-dimensional linear elastic domain V sur-
rounded by a surface S part of which is subjected to an
exterior harmonic excitation. Assuming harmonic de-
pendence on time, the amplitude u of the displacement
vector at x satisfies the differential equation [Manolis and
Beskos (1988)], [Dominguez (1993)]:

µ∇ 2u(x)+(λ +µ) ∇∇ ·u(x)+ρω2u(x) = 0 (1)

where λ, µ and ρ stand for the Lame constants and the
mass density, respectively, ∇ is the gradient operator and
ω the excitation frequency. The boundary conditions are
assumed to be

u(x) = u(x) ,x ∈ Su

t(x) = t(x) ,x ∈ St
(2)

with t denoting traction vector, u, t represent prescribed
vectors and Su∪St ≡ S. Considering the fundamental so-
lution of Eq. 1 [Dominguez (1993)], [Polyzos, Tsinopou-
los, and Beskos (1998)] and employing Bettis reciprocal
identity, one can obtain the integral representation of the
above described boundary value problem in the form

αu(x)+
∫

S
t̃∗ (x,y) ·u(y)dSy =∫

S
ũ∗ (x,y) · t(y)dSy (3)

where ũ∗, t̃∗ are the dynamic fundamental displacement
and the corresponding traction tensor, respectively, and
α is the well known jump coefficient taking the value 1
for interior field points x and the value 1/2 when bound-
ary points are considered. Since both ũ∗ and t̃∗ become

Γs
x
Ωs

∂Ωs

Γs

x
Ωs

∂Ωs

x
Ωs

∂Ωs

V

S

Figure 1 : Local domains and local boundaries used for
the integral representation of displacements at point x

singular only when y approaches x, it is easy to find one
that the integral Eq. 3 can also be written in the form

u(x)+
∫

∂Ωs

t̃∗ (x,y) ·u(y)dSy =∫
∂Ωs

ũ∗ (x,y) · t(y)dSy (4)

where ∂Ωs is the boundary of an arbitrarily small circle
Ωs centered at the field point x. In case where the field
point x locates either near or on the global boundary S
so that the corresponding local domain Ω s intersects the
global boundary S, Eq. 4 obtains the form

αu(x)+
∫

∂Ωs

t̃∗ (x,y) ·u(y)dSy+∫
Γs

t̃∗ (x,y) ·u(y)dSy = (5)∫
∂Ωs

ũ∗ (x,y) · t(y)dSy +
∫

Γs

ũ∗ (x,y) · t(y) dSy

with Γs being the part of S intersected by the sub- do-
main Ωs and ∂Ωs the boundary of Ωs belonging in the
interior space V (Fig.1). As it is explained in the work
of [Atluri, Sladek, Sladek, and Zhu (2000)], the integral
Eqs. 4 and 5 can be further simplified by eliminating the
unknown traction vectors t defined on the circular bound-
aries ∂Ωs. This can be accomplished with the aid of a
companion solution ũc, which modifies the fundamental
displacement ũ∗ to be vanished on the circular boundary
∂Ωs. For the present case the companion solution is taken
as solution of the boundary value problem described by
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the equations

µ∇ 2ũc (x,y)+(λ +µ) ∇∇ · ũ (x,y)+
ρω2ũc (x,y) = 0 (6)

ũc (x,y) = ũ∗ (x,y) , y ∈ Ωs

and has the form

ũc =
1

2πµ

[
ΨĨ−X r̂⊗ r̂

]
(7)

where µ is the shear modulus, Ĩ is the unit tensor, r̂ =
(x−y)/ |x−y| and ⊗ denotes dyadic product. The ex-
pressions of the scalar functions Ψ and X as well as the
derivation of ũc can be found in Appendix A. The corre-
sponding traction tensor t̃c is written as

t̃c =
1

2π

[(
dΨ
dr

− X
r

)(
(r̂ · n̂) Ĩ+ n̂⊗ r̂

)−
2
r

X (r̂⊗ n̂−2r̂⊗ r̂ (r̂ · n̂))−2
dX
dr

r̂⊗ r̂ (r̂ · n̂)+ (8)(
2(1−ν)
1−2ν

−2

)(
dΨ
dr

− dX
dr

− X
r

)
r̂⊗ n̂

]

where n̂ is the unit vector normal to the boundary S, and ν
is the Poisson’s ratio. Applying Betti’s reciprocal identity
for the fields u, ũc over the sub-domain Ωs and taking
into account Eq. 6, it is easy to see one that integral Eqs.
4 and 5 become

u(x)+
∫

∂Ωs

[
t̃∗ (x,y)− t̃c (x,y)

] ·u(y) dSy = 0 (9)

and

αu(x)+
∫

∂Ωs∪Γs

[
t̃∗ (x,y)− t̃c (x,y)

] ·u(y) dSy =∫
Γs

[ũ∗ (x,y)− ũc (x,y)] · t(y) dSy (10)

The boundary integral Eq. 9 describes locally the dis-
placement field at any point x ∈ V ∪ S in terms of dis-
placements defined on the surface of the sub domain Ωs.
For points being near or on the global boundary S, the
corresponding displacement fields are described by the
integral Eq. 10, which contains boundary integrals de-
fined on the circular surface ∂Ωs as well as on the portion
of the global boundary Γ s intersected by the sub-domain
Ωs.

2.2 Local boundary/volume integral equations

An alternative to above described formulation is that of
utilizing in Eq. 4 and Eq. 5 the elastostatic fundamental
solution instead of the more complicated elastodynamic
one. In that case, the inertia term ρω2u of Eq. 1 is treated
as body force, thus inserting volume integrals in the form
of the local integral Eqs 4 and 5, respectively, i.e.,

u(x)+
∫

∂Ωs

T̃∗ (x,y) ·u(y) dSy =∫
∂Ωs

Ũ∗ (x,y) · t(y) dSy+ (11)

ρω2
∫

Ωs

Ũ∗ (x,y) ·u(y) dVy

αu(x)+
∫

∂Ωs

T̃∗ (x,y) ·u(y) dSy+∫
Γs

T̃∗ (x,y) ·u(y) dSy =∫
∂Ωs

Ũ∗ (x,y) · t(y) dSy+ (12)∫
Γs

Ũ∗ (x,y) · t(y) dSy+

ρω2
∫

Ωs

Ũ∗ (x,y) ·u(y) dVy

where Ũ∗ is the elastostatic fundamental displacement
tensor and T̃∗ the corresponding fundamental traction
[Brebbia and Dominguez (1989)], [Polyzos, Tsinopou-
los, and Beskos (1998)]. In order to get rid of the un-
known tractions on the circular boundaries ∂Ω s, the elas-
tostatic companion solution Ũc, derived in the work of
[Atluri, Sladek, Sladek, and Zhu (2000)], is employed.
This companion solution, which for illustration purposes
is also derived in Appendix A, satisfies the equations

µ∇ 2Uc(r)+(λ +µ)∇∇ ·Uc(r) = 0, r ≤ r0

Uc(r0) = U∗(r0)
(13)

and has the following analytic form:

Uc(r) =
1

8πµ(1−ν)
r2

r2
0

r̂⊗ r̂+ (14)

1
8πµ(1−ν)

[
5−4ν

2(3−4ν)

(
1− r2

r2
0

)
+(4ν−3) lnr0

]
Ĩ

where r0 is the radius of the circular sub-domain Ω s and
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r = |r| = |x−y|. The corresponding traction field is

Tc =
1

4π(1−ν)(3−4ν)r2
0[

3r⊗ n̂− n̂⊗r− (r · n̂) Ĩ
]

(15)

By invoking Betti’s reciprocal identity for the fields u, Ũc

over the sub-domain Ωs and exploiting Eq. 13, the local
integral representations of Eqs 11 and 12 obtain eventu-
ally the form

u(x)+
∫

∂Ωs

[
T̃∗ (x,y)− T̃c (x,y)

] ·u(y) dSy =

ρω2
∫

Ωs

[
Ũ∗ (x,y)− Ũc (x,y)

] ·u(y) dVy (16)

and

αu(x)+
∫

∂Ωs∪Γs

[
T̃∗ (x,y)− T̃c (x,y)

] ·u(y) dSy =∫
Γs

[
Ũ∗ (x,y)− Ũc (x,y)

] · t(y) dSy+ (17)

ρω2
∫

Ωs

[
Ũ∗ (x,y)− Ũc (x,y)

] ·u(y) dVy

Comparing the local integral Eqs 9, 10 with the just de-
rived ones Eqs 16 and 17, one can say that the later have
the advantage of employing the simple elastostatic funda-
mental solution and the disadvantage of containing vol-
ume integrals.

3 MLS approximation of displacements and trac-
tions

In almost all the LBIE methodologies appearing to date
in the literature, the assembly of the local integral equa-
tions valid for each nodal point x is accomplished with
the MLS local interpolation scheme. Details on the sub-
ject one can find in the papers of [Lancaster and Salka-
uskas (1981)], [Belytchko, Krongauz, Organ, and Flem-
ing (1996)] and [Atluri, Kim, and Cho (1999)]. In this
section the MLS schemes used for the approximation of
the displacement field u and the boundary tractions t at
the neighborhood of a point x are explained. Consider
a set of properly distributed nodal points covering the
boundary and the interior space of the analyzed domain
as it is shown in Fig.2. At each internal or boundary
nodal point x(k) corresponds a circular sub- domain Ω̂(k)

of radius r(k) called support domain of the node x (k). For
a given internal or boundary point x, the support sub-
domains Ω̂( j) of the adjacent nodes x( j), j = 1,2, ...n

∂Ω̂(k)

Ω̂(k)

r(k)

x(k)

x

Ω(x)

Figure 2 : Support domain Ω̂(k) of a node x(k) and do-
main of definition Ω(x) used for the MLS field approxi-
mation at point x

that contain the point x define a non-circular sub-domain
Ω(x) called domain of definition of the MLS field ap-
proximation at x. Both domains Ω̂(k) and Ω̂(x) are il-
lustrated in fig (1). The MLS approximant uh

i (x) of the
displacement component ui(x), i = 1 or 2 is defined as
follows

uh
i (x) = p(x) ·a(i)(x) (18)

with p(x) being a vector the m components of which
form a complete basis of monomials of the spatial vari-
ables x1 and x2, i.e.,

p(x) = [1,x1,x2] , linear basis (m = 3) (19)

p(x) =
[
1,x1,x2,x2

1,x1x2,x2
2

]
, (20)

quadratic basis (m = 6)

and a(i)(x) is a coefficient vector. The m unknown co-
efficients of a(i)(x) are determined by minimizing the
weighted discrete L2-norm

J(x) =
[
P

(
x( j)

)
·a(i) (x)−u(i)

(
x( j)

)]T ·W(x)·[
P

(
x( j)

)
·a(i) (x)−u(i)

(
x( j)

)]
(21)

where P
(
x( j)) is a nxm matrix composed by the n vec-

tors p
(
x( j)

)
of each node x( j), u(i)

(
x( j)

)
is a vector the

n components of which correspond to unknown fictitious
nodal displacement ui

(
x( j)

)
, i = 1 or 2 and W(x) is a di-

agonal Gaussian weighted matrix. In the present work
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the diagonal elements of W(x) have the form

Wj j(x) =




exp

[
−

(
d( j)

c

)2
]
−exp

[
−

(
r( j)

c

)2
]

1−exp

[
−

(
r( j)

c

)2
] d( j) ≤ r( j)

0 d( j) > r( j)



(22)

where d( j) =
∣∣x−x( j)

∣∣ is the distance between the point x
and the adjacent node x( j), c is a constant controlling the
shape of the weighted function W j j and r( j) is the radius
of the support domain Ω̂( j) where the weighted function
Wj j is defined. The minimization of J(x) leads to the
linear relation

A
(

x,x( j)
)
·a( j) (x) = B

(
x,x( j)

)
·u( j)

(
x( j)

)
(23)

with the matrices A
(
x,x( j)

)
, B

(
x,x( j)

)
having the form

A
(

x,x( j)
)

= PT
(

x( j)
)
·W(x) ·P

(
x( j)

)
B

(
x,x( j)

)
= PT

(
x( j)

)
·W(x) (24)

Assuming properly distributed nodes x ( j) so that the in-
verse matrix of A

(
x,x( j)

)
to exist [Breitkopf, Rassineux,

Touzot, and Villon (2000)], Eq. 23 yields

ai (x) = A−1
(

x,x( j)
)
·B

(
x,x( j)

)
·u(i)

(
x( j)

)
(25)

The MLS approximant uh
i (x) of the component ui(x),

i = 1 or 2 of the displacement field u(x) is eventu-
ally obtained through a finite- element-type interpolation
scheme

uh
i (x) = φ

(
x,x( j)

)
· û( j)

(
x( j)

)
(26)

where the approximation vector function φ
(
x,x( j)) has

the form

φ
(

x,x( j)
)

= p(x) ·A−1
(

x,x( j)
)
·B

(
x,x( j)

)
(27)

Thus, it is easy to see one that the MLS approximation of
the displacement vector is

uh (x) =
n

∑
j=1

φj

(
x,x( j)

)
û( j) (28)

where û
(
x( j)) is the unknown fictitious displacement

vector at the node x( j) and

φj

(
x,x( j)

)
=

m

∑
l=1

pl (x)
[
A−1

(
x,x( j)

)
·B

(
x,x( j)

)]
l j

(29)

Eq. 28 represents the MLS approximation of the dis-
placement vector at the neighborhood of an internal or
boundary point x.
The approximation of a traction vector defined at a
boundary point x can be accomplished either by writ-
ing the traction t(x) as a combination of the adjacent
nodal displacement vectors û

(
x( j)) or by considering the

boundary nodal traction vectors t(x) as independent vari-
ables of the problem. In the first case the traction vec-
tors t(x) is expressed through the displacement vectors
û
(
x( j)) by substituting the MLS approximation (28) into

the definition of tractions. More specifically, the gradient
operator on Eq. 28 yields

∇ xu(x) =
n

∑
j=1

∇ xφj

(
x,x( j)

)
⊗ û

(
x( j)

)
(30)

where the components of the vector ∇φ j are given by

φj,k =
m

∑
l=1

[
pl,k

(
A−1 ·B)

l j + pl

(
A−1 ·B,k +A−1

,k ·B
)

l j

]
(31)

Applying Hookes law on Eq. 28 and taking into account
Eq. 30 and Eq. 31, the MLS approximation of the trac-
tion vector at x is finally written in the form [Sladek and
Sladek (2002)]

th (x) = N(x) ·D ·
n

∑
j=1

E
(

x,x( j)
)
· û

(
x( j)

)
(32)

where the matrix N contains the two components n 1,n2

of the unit normal vector at x, i.e.,

N(x) =
[

n1 (x) 0 n2 (x)
0 n2 (x) n1 (x)

]
(33)

and the matrices D, E
(
x,x( j)

)
have the analytic form

D =


 λ +2µ λ 0

λ λ +2µ 0
0 0 µ


 (34)

and

E
(

x,x( j)
)

=


 φj,1 0

0 φj,2

φj,2 φj,1


 (35)
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with φj,1,φj,2 being the derivatives of Eq. 29 with respect
to spatial variables x1 and x2, respectively, both given
in the Eq. 31. In the second case where the boundary
tractions are considered as independent variables of the
problem, the MLS approximation of t(x) can be accom-
plished directly through the relation

th (x) =
n

∑
j=1

φj

(
x,x( j)

)
t̂
(

x( j)
)

(36)

where the fictitious nodal tractions t̂
(
x( j)) are zero for

internal nodes and unknown vectors for the nodes lying
on the global boundary. In other words, the approxi-
mation Eq. 36 utilizes all the nodal points belonging in
the domain of definition of x in order to define the shape
functions φj

(
x,x( j)), employs however, only the traction

vectors of the adjacent boundary nodes to approximate
the traction vector at x.
In the present work, tractions and displacements are con-
sidered as independent variables and thereby Eq. 28 and
Eq. 36 are employed for the MLS approximation of dis-
placements and tractions, respectively.

4 Numerical implementation, enforcement of essen-
tial boundary conditions and evaluation of bound-
ary and volume integrals

The subject of this section is the numerical formulation
of the proposed here LBIE method and the numerical
evaluation of the integrals appearing in the local integral
equations described in paragraphs 2.1 and 2.2. For the
sake of brevity and because of containing both surface
and volume integrals only the LB/VIE method is imple-
mented in the present section.

4.1 Numerical implementation of the LB/VIE method

Consider N +L nodal points properly dispersed through-
out the 2D elastic domain V ∪ S, with L of them being
distributed across the global boundary S. The support do-
main of each node is a circular area intersecting the cor-
responding support domains of the adjacent nodes. Writ-
ing the local boundary/volume integral equation Eq. 16
for the support domain corresponding to node k one ob-
tains:

u
(

x(k)
)

+
∫

∂Ω̂(k)
s

T̃
(

x(k),y
)
·u(y) dSy− (37)

ρω2
∫

Ω̂(k)
s

Ũ
(

x(k),y
)
·u(y) dVy = 0

where Ũ = Ũ∗−Ũc and T̃ = T̃∗− T̃c. Similarly, the local
boundary/volume integral Eq. 17 obtains the forms

αu
(

x(k)
)

+
∫

∂Ω̂(k)
s

T̃
(

x(k),y
)
·u(y) dSy+∫

Γ(k)
s

T̃
(

x(k),y
)
·u(y) dSy−∫

Γ(k)
s

Ũ
(

x(k),y
)
· t(y) dSy− (38)

ρω2
∫

Ω̂(k)
s

Ũ
(

x(k),y
)
·u(y) dVy = 0

Inserting the MLS approximations 28 and 36 for dis-
placements and tractions respectively, into the local in-
tegral equations 37 and 38 one obtains

n

∑
j=1

φ
(

x(k),x( j)
)

û
(

x( j)
)

+

n

∑
j=1

(
H̃k, j − D̃k, j

)
· û

(
x( j)

)
= 0 (39)

and

a
n

∑
j=1

φ
(

x(k),x( j)
)

û
(

x( j)
)

+

n

∑
j=1

(
H̃k, j − D̃k, j + F̃k, j

)
· û

(
x( j)

)
− (40)

n

∑
j=1

G̃k, j · t̂
(

x( j)
)

= 0

where

H̃k, j =
∫

∂Ω̂(k)
s

T̃
(

x(k),y
)

φj

(
y,x( j)

)
dSy

F̃k, j =
∫

Γ(k)
s

T̃
(

x(k),y
)

φj

(
y,x( j)

)
dSy (41)

G̃k, j =
∫

Γ(k)
s

Ũ
(

x(k),y
)

φj

(
y,x( j)

)
dSy

D̃k, j = ρω2
∫

Ω̂(k)
s

Ũ
(

x(k),y
)

φj

(
y,x( j)

)
dVy

The integrals H̃k, j are always regular since x(k) �∈ ∂Ω̂(k).
On the contrary, the surface integrals F̃k, j, G̃k, j as well
as the volume integrals D̃k, j become singular when the
source point y approaches the node x (k). Collocating Eqs
39 and 40 at the N and L nodes distributed in V and across
the boundary S, respectively, one obtains the following
linear system of algebraic equations

K̃ · û +R̃ · t̂ = 0 (42)
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where the vector û comprises all the components of the
fictitious displacement vectors corresponding to N inter-
nal and L boundary nodes, while the vector t̂ consists of
the L fictitious boundary traction vectors. The matrices
K̃ and R̃ contain all the H̃k, j,F̃k, j, D̃k, j and G̃k, j integrals,
respectively, taken from the collocation of Eqs 39 and 40
at all the internal and boundary nodes.
Inserting the boundary conditions Eq. 2 in Eq. 42, with a
way explained in the next paragraph, and rearranging the
matrices one concludes to a final symmetric structured
sparse linear system of algebraic equations written in the
form

Ã ·X = b (43)

where the vector X consists of all the unknown fictitious
nodal displacements and boundary tractions.
The system of equations Eq. 43 can be solved through
a LU decomposition solver. Finally inserting the evalu-
ated fictitious nodal displacements and tractions in Eqs
28 and 36, respectively, one obtains the nodal values of
displacements and boundary tractions throughout the an-
alyzed domain.

4.2 Enforcement of essential boundary conditions

The main attractive feature of the just described LB/VIE
method is that all the components of the matrices K̃,
R̃ appearing in the final system of Eq. 42 are integrals
where only the MLS shape functions and not their deriva-
tives are involved. The problem, however, is that Eq. 42
is expressed in terms of the fictitious displacements and
tractions which, in general, are not identical to the corre-
sponding nodal values due to the lack of Kronecker delta
property of the MLS interpolants φ j. Thus, the question
here is how to enforce one the essential boundary condi-
tions given in Eq. 2 into Eq. 42. The problem seems to
be the same to that appearing in the mesh-free Galerkin
methods where the final system of equations is referred
to the fictitious displacements and not to the correspond-
ing nodal ones. In those methods, the essential boundary
conditions are imposed either with the aid of transforma-
tion techniques like those proposed by [Chen, Pan, Wu,
and Liu (1996)], [Gunther and Liu (1998)], [Atluri, Kim,
and Cho (1999)] and [Wagner and Liu (2000)] or with
the use of more complicated strategies cited in the re-
cent review paper of [Li and Liu (2002)]. Due to the na-
ture of the proposed here LBIE method, the most suitable
methods for imposing the essential boundary conditions

in Eq. 42 are the simple total transformation method of
[Atluri, Kim, and Cho (1999)] and the boundary transfor-
mation method proposed by Liu and co- workers. How-
ever, besides these methodologies Li and Liu report in
their review paper a very interesting procedure, which
enables one to enforce the essential boundary conditions
directly in Eq. 42 by equating the fictitious boundary
nodal values of displacements and tractions with the cor-
responding real ones, i.e., û

(
x j

)
= u

(
x j

)
,x ∈ Su and

t̂
(
x j

)
= t

(
x j

)
,x ∈ St . This is possible when the bound-

ary of the analyzed domain is piece- wise linear and
the distribution of the used particles is arranged such
that they are evenly distributed along the global bound-
ary. Then, one may obtain Kronecker delta property in
the MLS representation of the boundary displacements
and tractions. As it is mentioned by the authors, this is
a hardly known fact, which was discussed first in the
paper of [Gosz and Liu (1996)]. In the present work
two methodologies for the enforcement of the essential
boundary conditions in Eq. 42 have been tested. The first
concerns the simple transformation method of [Atluri,
Kim, and Cho (1999)] where for a given map of dis-
tributed particles the MLS approximations of Eqs 28 and
36 are globally reinterpreted and expressed in terms of
the nodal values of displacement and traction vectors, re-
spectively, instead of the fictitious ones. Then, since the
components of the vectors û, t̂ in Eq. 42 represent nodal
and not fictitious values, the enforcement of the essen-
tial boundary conditions is straightforward. The second
strategy tested in the present work is the direct procedure
of [Gosz and Liu (1996)] where evenly distributed points
along to the global boundary are considered and the es-
sential boundary conditions are directly imposed on the
fictitious values of displacements and tractions of Eq. 42.
Although Gosz and Liu claim that this procedure works
only for piece- wise linear global boundaries, numerical
experiments performed in the framework of the present
work shown that a Kronecker delta behavior of the MLS
approximation of boundary displacements and tractions
is also possible for problems with curved boundaries.

4.3 Numerical Evaluation of boundary and volume
integrals

It is well known that the accuracy of the above described
LBIE methodology depends on the accurate numerical
evaluation of the singular and non- singular integrals ap-
pearing in the expressions of Eq. 41. Numerical experi-
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ments performed in the work of [Atluri, Kim, and Cho
(1999)] as well as by the authors of the present work
have shown that the division of the domain of integra-
tion into small segments give much better accuracy than
in the case where the integration is performed over the
entire domain with a large number of integration points.
Thus, the numerical evaluation of the non-singular H k, j

integrals is accomplished by dividing the boundary ∂ Ω̂(k)
s

into segments each of which is defined by the intersection
of ∂Ω̂(k)

s with the support sub-domains of the adjustment
nodes x( j) (Fig 3(a)). Assuming that the boundary ∂Ω̂(k)

s

is divided into M totally segments, the integral can be
written as follows:

Hk, j =
∫

∂Ω(k)
s

T
(

x(k),y
)

φj dSy =

M

∑
m=1

∫
C(k)

m

T
(

x(k),y
)

φj dSy (44)

where C(k)
1 ∪C(k)

2 ∪ ...∪C(k)
M ≡ ∂Ω(k)

s . Considering a polar
co-ordinate system having its center at the node x (k) and
transforming to the new co-ordinates one obtains

Hk, j =
M

∑
m=1

∫ φ(m)
2

φ(m)
1

T
(

x(k),y
)

φjJφdφ (45)

with φ(m)
1 ,φ(m)

2 being the two polar angles define the seg-

ment C
(k)
m and Jφ the Jacobian of the transformation. Ap-

plying the linear transformation φ= φ(m)
1 +φ(m)

2
2 + φ(m)

2 −φ(m)
1

2 ξ
for each segment, the integral (45) is eventually written
in the form

Hk, j =
M

∑
m=1

∫ 1

−1
T

(
x(k),y

)
φjJφJξ dξ (46)

and it is numerically evaluated through standard Gaus-
sian quadrature. Similarly, for the evaluation of Fk, j and
Gk, j integrals the intersected global boundary Γ (k)

s is di-
vided into segments as it is illustrated in Fig 3(b). Uti-
lizing for the description of the segments the space vari-
ables z(m)

1 , z(m)
2 instead of the polar angles φ(m)

1 , φ(m)
2 and

applying the above-described integration procedure, the
integrals of Fk, j and Gk, j are easily evaluated. When the
node x(k) lies on the global boundary S, both integrals
Fk, j and Gk, j defined on the segment of containing the
node x(k) (Fig. 3(c)) become singular. In that case, the di-
rect technique of [Guiggiani and Casalini (1987)] is em-
ployed and the integrals Fk, j and Gk, j are evaluated with

(a)

(b)

(c)

Figure 3 : Splitting of integration domains into segments
when the support domain of the nodal point x (k) (a) is en-
tirely interior to V, (b) intersects the global boundary S
and x(k) is internal node, (c) intersects the global bound-
ary and x(k) is a boundary node

high accuracy. Finally, the volume integrals Dk, j can be
written in the form [Atluri, Kim, and Cho (1999)]

Dk, j =ρω2
∫

Ω̂s
(k)

U
(

x(k),y
)

φj dVy =

ρω2
n

∑
j=1

∫
Ak, j

U
(

x(k),y
)

φj dVy (47)
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(a)

(b)

Ωk
s

Ω j
sx(k) x( j)

Figure 4 : (a) The integration area Ak, j defined by the in-
tersection of the support domains Ω k

s ,Ω j
s with the global

boundary S (b) splitting of Ak, j into triangular segments

where Ak, j represents the domain Ω̂(k)
S ∩ Ω̂( j)

S defined by

the intersected support domains Ω̂(k)
S and Ω̂( j)

S of the
nodal point x(k) and the adjustment node x( j), respec-
tively. In case where the two sub-domains Ω̂(k)

S and Ω̂( j)
S

intersect the global boundary S, the domain A k, j is illus-
trated in Fig 4(a). Adopting the same technique applied
for the evaluation of the boundary integrals H k, j, the nu-
merical evaluation of the volume integral Dk, j defined
on the domain Ak, j is accomplished by splitting the inte-
gration domain Ak, j into small triangular segments (Fig.
4(b)) and performing, for each segment separately, the
integration in a local coordinate system ξ 1,ξ2 through
standard Gaussian quadrature. In the present work, the
advanced Delaunay type triangular mesh generation al-
gorithm, proposed recently by [Shewchuk (2002)], is em-
ployed for the splitting of A k, j into triangular segments.

5 Examples

In order to demonstrate the accuracy of the LBIE method
presented in the previous sections three representative
harmonic elastic problems are solved. In all the nu-
merical examples presented in this section the boundary
conditions have been taken into account with the aid of
the simple transformation method of [Atluri, Kim, and
Cho (1999)] and the direct procedure of [Gosz and Liu
(1996)], both explained in paragraph 4.2. The main con-
clusion here is that both procedures provide results of
the same accuracy with the later, however, being much
more efficient than the first one. The first problem deals
with the uniform harmonic tension of the plane 6m x
6m domain shown in Fig 5(a). The material proper-
ties are considered E = 2.50E + 06 N/m2, ν = 0.25 and
ρ = 100kg/m3 with E, ν, ρ denoting the Young modulus,
the Poisson ration and the mass density, respectively. The
prescribed boundary conditions are: zero shear traction
along the four sides, zero displacements at the three sup-
ported sides and a normal, harmonic and uniform trac-
tion t = 100N/m2 at the free side of the square. The first
two resonance frequencies of the above described prob-
lem are ω1 = 45.345,ω2 = 136.035 [Dominguez (1993)].
For the LBIE method solution of the problem in the fre-
quency rage 4 to 140 Hz, 81 ordered nodal points are
used (Fig 5(b)). The radii of the support domains was se-
lected to be the same for all nodes and equal to 1.55. The
problem is solved with the aid of both methodologies ad-
dressed in the present work, i.e. the LBIE method and
the LB/VIE method. The displacement and traction vec-
tors at the nodes 1 and 2, respectively, are calculated and
demonstrated in Figs 6 and 7. The obtained results are
compared to the numerical ones taken with a BEM code
reported in [Polyzos, Tsinopoulos, and Beskos (1998)].
Observing the results shown in Figs 6 and 7, one can
say that (a) the agreement between LBIE method and
BEM solutions is excellent and (b) for the same distri-
bution of nodes both LBIE method and LB/VIE method
provide results of the same accuracy. Next, consider a
long cylindrical shell of density ρ, with inner and outer
radii a and b, respectively, subjected to an internal uni-
form harmonic pressure P(ω) = Pieiωt . The analytical
expressions for displacements and tractions of this prob-
lem are given in the work of [Polyzos, Tsinopoulos, and
Beskos (1998)] As in the previous example, this prob-
lem is solved numerically (Pi = 1,µ = 240,ν = 0.25,ρ =
1,a = 0.8,b = 1.0) with both the LBIE method and the
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(a)

(b)

2

1

Figure 5 : (a) Tension of a square plane with a harmonic
traction. (b) Distribution of the used nodal points

Figure 6 : Displacement at nodal point 1 versus fre-
quency

Figure 7 : Traction at nodal point 2 versus frequency
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LB/VIE method. Due to the symmetry only one quarter
of the problem needs to be considered (Fig 8(a)). For the
solution of the problem in the frequency range of 1 to
440 rad/sec, a distribution of 877 nodes is employed for
all the frequencies (Fig. 8(b)). In order to have a compar-

Pi

a

b

(a)

(b)

1

2

Figure 8 : (a) Hollow cylinder subjected to internal pres-
sure Pi. (b) Distribution of the used nodal points at the
one quarter of the cylinder.

ison between the LBIE method and the LB/VIE method,
the same distribution of nodes are used for both method-

Figure 9 : Displacement at nodal point 1 versus fre-
quency

Figure 10 : Traction at nodal point 2 versus frequency

ologies. The radial displacement of node 1 as well as the
shear traction vector at the node 2, shown in Fig. 8(b), are
numerically evaluated and depicted in Figs 9 and 10, re-
spectively. As it is evident, the numerical results obtained
by the proposed here LBIE method and LB/VIE method
are in excellent agreement with the analytical ones. Also,
as in the previous example, it should be noticed that for
the same distribution of nodes both LBIE method and
LB/VIE method provide results of the same accuracy.
The third example deals with the harmonic excitation of
the cantilever beam of Fig 11. The problem is solved for
plane strain conditions with P = 1,E = 1,D = 1,L = 8
and ν = 0.25. Both LBIE method and LB/VIE method
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Figure 11 : (a) Bending of a cantilever beam. (b) Distri-
bution of the used nodal points.

Figure 12 : Displacement at nodal point 1 versus fre-
quency

are employed and the vertical displacement as well as
the normal tractions at the points 1 and 2 respectively are
evaluated. A uniform distribution of 349 nodal points is
used and the radii of the support domains are selected to
be the same for all nodes and equal to 0.384. The ob-
tained results are depicted in Fiqs 12 and 13 and com-
pared to the corresponding ones taken with the BEM
code described in Polyzos et. al (1998). As it is evi-
dent the agreement is very good for both LBIE method
and LB/VIE method.

6 Conclusions

Two new meshless local integral equation methods for
solving two dimensional frequency domain elastody-
namic problems have been proposed. The first, called

Figure 13 : Traction at nodal point 2 versus frequency

local boundary integral equation (LBIE) method, utilizes
the frequency domain elastodynamic fundamental solu-
tion, thus concluding to a boundary only local integral
formulation, while the second one, called local bound-
ary/volume integral equation (LB/VIE) method, makes
use of the static fundamental solution, which derives
both surface and volume integrals in the final local in-
tegral representation of displacements. In order to get
rid of tractions on the local boundaries, the LBIE and
the LB/VIE methods exploit the elastodynamic and the
elastostatic companion solutions, respectively, with the
first derived explicitly in the framework of the present
paper. The interpolation of the internal and boundary
vector fields is accomplished with the aid of the mov-
ing least squares (MLS) approximation. On the global
boundary displacements and tractions are treated as in-
dependent variables. Thus, derivatives of the MLS inter-
polation shape functions are avoided throughout the nu-
merical implementation of the two methods. The trans-
formation method of [Atluri, Kim, and Cho (1999)] as
well as the direct procedure of [Gosz and Liu (1996)]
, both explained in the paragraph 4.2, have been used
for the enforcement of the essential boundary conditions.
The surface and volume integrals defined over the sup-
port domain of each node have been evaluated with great
accuracy by means of some very efficient numerical tech-
niques described in the paragraph 4.3. Highly accurate
and direct integration techniques proposed by Guiggiani
and co- workers have been employed for the numeri-
cal evaluation of the singular integrals appearing in both
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LBIE and LB/VIE methods formulations. Three repre-
sentative plane strain elastodynamic problems have been
solved in order to demonstrate the high accuracy of the
proposed methodologies. On the basis of the obtained
results, the following two interesting conclusions can be
drawn:
1.For the same distribution of nodes both the LBIE and
the LB/VIE methods provide solutions of the same accu-
racy. This fact indicates the versatility of the LB/VIEM
since it can be successfully used for the solution of
anisotropic, non- homogeneous and non-linear elastody-
namic problems where the corresponding fundamental
solutions are not available.
2. Comparing the results taken by the LB/VIE method
when the essential boundary conditions are imposed
through the transformation method of [Atluri, Kim, and
Cho (1999)] with those taken when the direct procedure
of [Gosz and Liu (1996)] is employed for the enforce-
ment of the boundary conditions, one can say that both
methodologies provide results of the same accuracy with
the later being much more efficient than the first one.

Acknowledgement: The authors acknowledge with
thanks the support of the Greek Institute of Governmen-
tal Scholarships (I.K.Y) through the program IKYDA
2002 (Scientific cooperation between the University of
Patras, Greece and the Ruhr- University Bochum, Ger-
many).

References

Atluri, S. N.; Kim, H.-G.; Cho, J. Y. (1999): A critical
assessment of the truly Meshless Local Petrov-Galerkin
(MLPG) and Local Boundary Integral Equation (LBIE)
methods. Comp. Mech., vol. 24, pp. 348–372.

Atluri, S. N.; Shen, S. P. (2002): The Meshless Local
Petrov-Galerkin (MLPG) Method. Tech Science Press.

Atluri, S. N.; Shen, S. P. (2002): The meshless lo-
cal Petrov-Galerkin (MLPG) method: A simple and less
costly alternative to the finite element and boundary el-
ement methods. CMES: Computer Modeling in Engi-
neering & Sciences, vol. 3, pp. 11–51.

Atluri, S. N.; Sladek, J.; Sladek, V.; Zhu, T. (2000):
The local boundary integral equation (LBIE) and it’s
meshless implementation for linear elasticity. Comp.
Mech., vol. 25, pp. 180–198.

Atluri, S. N.; Zhu, T. (1998): A New Meshless
Local Petrov-Galerkin (MLPG) Approach in Computa-
tional Mechanics. Computational Mechanics, vol. 22,
pp. 117–127.

Atluri, S. N.; Zhu, T. (2000): New concepts in mesh-
less methods. Int. J. Numer. Methods Engng., vol. 47,
pp. 537–556.

Belytchko, T.; Krongauz, Y.; Organ, D.; Fleming, M.
(1996): Meshless methods: an overview and recent
developments. Comp. Meth. Appl. Mech. Engng., vol.
139, pp. 3–47.

Beskos, D. E. (1987): Boundary element methods in
dynamic analysis. Appl. Mech., vol. 40, pp. 1–23.

Beskos, D. E. (1997): Boundary element methods in
dynamic analysis. Part II. Appl. Mech., vol. 50, pp. 149–
197.

Brebbia, C. A.; Dominguez, J. (1989): Boundary Ele-
ments. An Introductory Course. Computational Mechan-
ics Publications, Southampton.

Breitkopf, P.; Rassineux, A.; Touzot, G.; Villon, P.
(2000): Explicit form and efficient computation of
MLS shape functions and their derivatives. Int. J. Nu-
mer. Meth. Engng., vol. 48, pp. 451–466.

Chen, J. S.; Pan, C.; Wu, C. T.; Liu, W. K. (1996):
Reproducing kernel methods for large deformation anal-
ysis on nonlinear structures. Comput. Mathods Appl.
Mech. Eng., vol. 139, pp. 195–227.

Dassios, G.; Lindell, I. V. (2001): On the helmholtz
decomposition for polyadics. Quarterly of Appl. Math.,
vol. LIX4, pp. 787–796.

Dominguez, J. (1993): Boundary Elements in Dynam-
ics. CMP, Southampton and Elsevier Applied Sience,
London.

Gosz, S.; Liu, W. K. (1996): Admissible approxima-
tions for essential boundary conditions in the reproduc-
ing kernel particle method. Comp. Mech., vol. 19, pp.
120–135.

Guiggiani, M.; Casalini, P. (1987): Direct computation
of Cauchy principal value integrals in advanced bound-
ary elements. Int. J. Numer. Methods Engng., vol. 24,
pp. 1711–1720.

Gunther, F.; Liu, W. K. (1998): Implementation of
boundary conditions for meshless methods. Comput.
Mathods Appl. Mech. Eng., vol. 163, pp. 205–230.



Manuscript Preparation for CMES 633

Kogl, M.; Gaul, L. (2000): A 3-D Boundary Ele-
ment Method for Dynamic Analysis of Anisotropic Elas-
tic Solids. CMES: Computer Modeling in Engineering
& Sciences, vol. 1, pp. 27–44.

Lancaster, P.; Salkauskas, K. (1981): Surface gener-
ation by moving least square methods. Math. Comput.,
vol. 37, pp. 141–158.

Li, S.; Liu, W. K. (2002): Meshfree and particle meth-
ods and their applications. Appl. Mech. Rev., vol. 54, pp.
1–34.

Long, S.; Zhang, Q. (2002): Analysis of thin plates
by the local boundary integral equation (LBIE) method.
Engng. Anal. Boundary Elem., vol. 26, pp. 707–718.

Manolis, G. D.; Beskos, D. E. (1988): Boundary El-
ement Methods in Elastodynamics. Unwin Hyman, Lon-
don.

Manolis, G. D.; Pavlou, S. (2000): A Green’s Function
for Variable Density Elastodynamics under Strain Condi-
tions by Hormander’s Method. CMES: Computer Mod-
eling in Engineering & Sciences, vol. 3, pp. 399–416.

Polyzos, D.; Tsinopoulos, S. V.; Beskos, D. E. (1998):
Static and dynamic boundary element analysis in incom-
pressible linear elasticity. European. J. Mech. A/Solids,
vol. 17, pp. 515–536.

Shewchuk, J. R. (2002): Delaunay refinement algo-
rithms for triangular mesh generation. Computational
Geometry, vol. 22, pp. 21–74.

Sladek, J.; Sladek, V. (2002): A Trefftz function ap-
proximation in local boundary integral equations. Comp.
Mech., vol. 28, pp. 212–219.

Sladek, J.; Sladek, V. (2003): Application of local
boundary integral method in to micropolar elasticity. En-
gng. Anal. Boundary Elem., vol. 27, pp. 81–90.

Sladek, J.; Sladek, V.; Atluri, S. N. (2000): Lo-
cal boundary integral equation (LBIE) method for solv-
ing problems of elasticity with nonhomogeneous mate-
rial properties. Comp. Mech., vol. 24, pp. 456–462.

Sladek, J.; Sladek, V.; Atluri, S. N. (2001): A pure
contour formulation for meshless local boundar integral
equation method in thermoelasticity. CMES: Computer
Modeling in Engineering & Sciences, vol. 2, pp. 423–
434.

Sladek, J.; Sladek, V.; Keer, R. V. (2002): New inte-
gral equation approach to solution of diffusion equation.
Comp. Assisted Mech. and Engng. Sci., vol. 9, pp. 555–
572.

Sladek, J.; Sladek, V.; Keer, R. V. (2003): Meshless
local boundary integral equation method for 2D elasto-
dynamic problems. Int. J. Numer. Meth. Engng., vol. 57,
pp. 235–249.

Sladek, J.; Sladek, V.; Mang, H. A. (2002): Mesh-
less formulation for simply supported and clamped plate
problems. Int. J. Numer. Meth. Engng., vol. 55, pp. 359–
375.

Sladek, J.; Sladek, V.; Mang, H. A. (2002): Meshless
local boundary integral equation method for plates rest-
ing on elastic foundation. Comput. Meth. Appl. Mech.
Eng., vol. 191, pp. 5943–5959.

Sladek, J.; Sladek, V.; Mang, H. A. (2003): Mesh-
less LBIE formulationsfor simply supported and clamped
plates under dynamic load. Computers and Structures,
vol. 81, pp. 1643–1651.

Sladek, V.; Sladek, J.; Atluri, S. N. (2002): Appli-
cation of the local boundary integral equation method to
boundary value problems. Int. Appl. Mech., vol. 38, pp.
1025–1043.

Sladek, V.; Sladek, J.; Atluri, S. N.; Keer, R. V. (2000):
Numerical integration of singularities of local boundary
integral equations. Comp. Mech., vol. 25, pp. 394–403.

Wagner, G. J.; Liu, W. K. (2000): Application of essen-
tial boundary conditions in mesh-free methods: A cor-
rected collocation method. Int. J. Numer. Meth. Engng.,
vol. 47, pp. 1367–1379.

Zhu, T. (1999): A new meshless regular local boundary
integral equation (MRLBIE) approach. Int. J. Numer.
Methods Engng., vol. 46, pp. 1237–1252.

Zhu, T.; Zhang, J. D.; Atluri, S. N. (1998): A local
boundary integral equation (LBIE) method in computa-
tional mechanics and a meshless discretization approach.
Comp. Mech., vol. 21, pp. 223–235.

Zhu, T.; Zhang, J. D.; Atluri, S. N. (1998): A mesh-
less local boundary integral equation (LBIE) for solving
nonlinear problems. Comp. Mech., vol. 22, pp. 174–186.

Zhu, T.; Zhang, J. D.; Atluri, S. N. (1999): A meshless
numerical method based on the local boundary integral
equation (LBIE) to solve linear and non-linear boundary
value problems. Engng. Anal. Boundary Elem., vol. 23,
pp. 375–389.



634 Copyright c© 2003 Tech Science Press CMES, vol.4, no.6, pp.619-636, 2003

Appendix A: 2D companion solutions

In this appendix the elastostatic and frequency domain
elastodynamic companion solutions U c and uc, respec-
tively, are explicitly derived. Allthough the elastostatic
companion solution in known from the literature, it is de-
rived here just for illustration purposes.

Appendix A:.1 2d Elastostatic companion solution

According to Eq. 13 the 2D elastostatic companion solu-
tion Uc satisfies the following boundary value problem

µ∇ 2Uc(r)+(λ +µ)∇∇ ·Uc(r) = 0, r ≤ r0

Uc(r0) = U∗(r0)
(48)

where U∗(r) is the 2D elastostatic fundamental solution
having the form [Brebbia and Dominguez (1989)]

U∗ =
1

8πµ(1−ν)
[(4ν−3) lnrĨ+ r̂⊗ r̂] (49)

Applying the Helmholtz decomposition theorem pro-
posed by [Dassios and Lindell (2001)], U c can be written
as

Uc(r) = ∇∇φ (r)+ ∇∇ ×A(r)+ ∇ × ∇ ×G(r) (50)

where φ(r) is a scalar function, A(r) a vector function
and G(r) a dyadic function. Since φ(r), A(r) and G(r)
are functions of r, it is easy to see one that

∇ ×A(r) = 0 (51)

and

0 =∇∇
(
c1r2 +c2

)
+

∇ × ∇ ×[(
2c1r2 +c2

)
Ĩ+2c1r2r̂⊗ r̂

]
(52)

where c1,c2 are constants. Substituting Eqs (50) and
(52) into the first equation of (48) and taking into account
Eq. (51) and the identities

∇ 2∇∇φ = ∇∇∇ 2φ
∇ 2 (∇ × ∇ ×G) = ∇ × ∇ ×(

∇ 2G
) (53)

one obtains

∇∇
[

2µ(1−ν)
1−2ν

∇ 2φ
]
+ ∇ × ∇ ×(

µ∇ 2G
)

=

∇∇
(
c1r2 +c2

)
+ (54)

∇ × ∇ ×[(
2c1r2 +c2

)
Ĩ+2c1r2r̂× r̂

]

Due to the irrotational and solenoidal nature of φ(r) and
G(r) respectively, Eq. (54) is satisfied when

∇ 2φ=
1−2ν

2µ(1−ν)
(
c1r2 +c2

)
(55)

∇ 2G =
1
µ

(
2c1r2 +c2

)
Ĩ+

2c1

µ
r2r̂⊗ r̂ (56)

Since G is a function of r it can be written as

G(r) = G1 (r) Ĩ+G2 (r) r̂⊗ r̂ (57)

Thus the scalar functions φ(r),G1(r) and G2(r) satisfy
the differential equations

d2φ
dr2 +

1
r

dφ
dr

=
1−2ν

2µ(1−ν)
(
c1r2 +c2

)
d2G1

dr2 +
1
r

dG1

dr
+

2G2

r2 =
1
µ

(
2c1r2 +c2

)
(58)

d2G2

dr2 +
1
r

dG2

dr
− 4G2

r2 =
2G1

µ
r2

and they have the form

φ(r) =
1−2ν

8µ(1−ν)

(c1

4
r4 +c2r2

)

G1(r) =
5c1

48µ
r4 − c2

4µ
r2 (59)

G2(r) =
c1

6µ
r4 +

c2

µ
r2

Inserting Eq. (59) into Eq. (50) and taking into account
Eqs. (51) and (57) one eventually obtains

Uc(r) =
3−4ν

4µ(1−ν)
c1r2r̂⊗ r̂− 5−4ν

8µ(1−ν)
c1r2Ĩ+

4−5ν
4µ(1−ν)

c2Ĩ (60)

Satisfying the boundary conditions of the problem
Uc(r0) = U∗(r0), the constants c1 and c2 are easily eval-
uated and the elastostatic companion solution U c(r) ob-
tains the final form

Uc(r) =
1

8πµ(1−ν)
r2

r2
0

r̂⊗ r̂+ (61)

1
8πµ(1−ν)

[
5−4ν

2(3−4ν)

(
1− r2

r2
0

)
+(4ν−3) lnr0

]
Ĩ
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Appendix A:.2 2D frequency domain elastodynamic
companion solution

In the present case, as companion solution is defined the
tensor uc(r) that satisfies the following boundary value
problem

µ∇ 2uc(r)+(λ +µ)∇∇ ·uc(r)+ρω2uc(r) = 0, r ≤ r0

uc(r0) = u∗(r0)
(62)

where u(r) is the 2D frequency domain elastodynamic
fundamental solution written as [Dominguez (1993)]

u∗ (r) =
1

2πµ

(
Ψ(r) Ĩ−X (r) r̂⊗ r̂

)
Ψ(r) = K0 (iksr)+

1
iksr

[
K1 (iksr)− Cs

Cp
K1 (ikpr)

]
(63)

X (r) = K2 (iksr)− C2
s

C2
p

K2 (ikpr)

where Kn (a) is the second kind modified Bessel function
of order n, k and c represent wave numbers and wave
phase velocities, respectively, and the subscripts p and s
indicate longitudinal and shear wave respectively. Con-
sidering the Helmholtz decomposition form of Eq. 50 for
u(r) and applying the same procedure as in the static
case, one concludes to the following system of differ-
ential equations, which should be satisfied by the scalar
functions φ(r), G1 (r) and G2 (r)

d2φ
dr2 +

1
r

dφ
dr

+kp
2φ=

1−2ν
2µ(1−ν)

(
c1r2 +c2

)
d2G1

dr2 +
1
r

dG1

dr
+ks

2G1 +
2G2

r2 =
1
µ

(
2c1r2 +c2

)
(64)

d2G2

dr2 +
1
r

dG2

dr
+ks

2G2 − 4G2

r2 =
2c1

µ
r2

Since only the dynamic behavior of uc is considered the
constants c1 and c2 are taken to be equal to zero. Thus
the system (64) obtains the form

z2 d2φ2

dz2 + z
dφ
dz

− z2φ= 0

ζ2 d2G2

dζ2 +ζ
dG2

dζ
−(

ζ2 +4
)

G2 = 0 (65)

ζ2 d2G1

dζ2 +ζ
dG1

dζ
−ζ2G1 = −2G2

where z = ikpr and ζ = iksr It is easy to find one that the
solution of system (65) is

φ(r) = D1I0 (ikpr)

G1 (r) = D3I0 (iksr)− D2

2
I2 (iksr) (66)

G2 (r) = D2I2 (iksr)

where In (a) is the first kind modified Bessel functions of
order n. Inserting Eq. (65) into Eq. 50 and taking in to
account Eqs. 51 and 57 one takes

u∗ (r) =
(

d2φ
dr2 − 1

r
dφ
dr

)
r̂⊗ r̂ +

1
r

dφ
dr

Ĩ+(
d2G1

dr2 − 1
r

dG1

dr

)
r̂⊗ r̂− d2G1

dr2 Ĩ+ (67)(
2

G2

r2
− 1

r
dG2

dr

)
r̂⊗ r̂ +

(
1
r

dG2

dr
− G2

r2

)
Ĩ

After some algebra, one can find that

d2φ
dr2 − 1

r
dφ
dr

= −D1k2
pI2 (ikpr) (68)

1
r

dφ
dr

=
D1

2
k2

p [I2 (ikpr)− I0 (ikpr)] (69)

d2G1

dr2 − 1
r

dG1

dr
+

2G2

r2 − 1
r

dG2

dr
=

−k2
s

(
D3 − D2

2

)
I2 (iksr) (70)

− d2G1

dr2 +
1
r

dG2

dr
− G2

r2 = (71)

k2
s

r

(
D3 − D2

2

)
[I0 (iksr)+ I2 (iksr)]

Substituting the above relations to Eq. 67, one eventually
obtains

U(r) =
1

2πµ

[
Ψ(r) Ĩ+X(r) r̂⊗ r̂

]
(72)

where

Ψ(r) = 2πµ

{
D
2

k2
p [I2 (ikpr)− I0 (ikpr)]+

R
2

ks2 [I2 (iksr)+ I0 (iksr)]
}

(73)
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and

X (r) = −2πµ
[
Dk2

pI2 (ikpr)+Rk2
s I2 (iksr)

]
(74)

The constants D and R = D3 − D2
2 can be evaluated with

the aid of the boundary condition u c (r) = u∗ (r). Thus,
satisfying the second equation of (62) the constants D
and R are found to be

D =
P [I2 (s)+ I0 (s)]−QI2 (s)

k2
p [I2 (p) I0 (s)+ I2 (s) I0 (p)]

R =
QI2 (p)−P [I2 (p)− I0 (p)]

k2
s [I2 (p) I0 (s)+ I2 (s) I0 (p)]

(75)

where

p = ikpr0 , s = iksr0

P =
1

2πρC2
s

[
K2 (s)− C2

s

C2
p

K2 (p)

]
(76)

Q =
1

πρC2
s

[
K0 (s)+

1
iksr0

[
K1 (s)− Cs

Cp
K1 (p)

]]


