
Copyright c© 2003 Tech Science Press CMES, vol.4, no.6, pp.679-689, 2003

Three-Dimensional Simulation of Turbulent Cavitating Flows in a Hollow-Jet
Valve

Jiongyang Wu1, Inanc Senocak1, Guoyu Wang2, Yulin Wu 3 and Wei Shyy1

Abstract: Cavitation appears in a wide variety of fluid
machinery, and can often cause negative impacts on per-
formance and structural integrity. A main computa-
tional difficulty for cavitation is the large density ratio
between liquid and vapor phases, around 1000 for wa-
ter under normal temperature and pressure conditions.
Moreover, cavitating flows are usually turbulent and the
interfacial dynamics is complex. The fast time scales
associated with turbulent cavitation also poses substan-
tial challenges computationally and experimentally. In
the present study, pressure-based algorithms are adopted
to simulate three-dimensional turbulent cavitating flows
in a hollow-jet valve. The Favre-averaged Navier-Stokes
equations are employed along with a transport equation-
based cavitation model and the k − ε two-equation tur-
bulence model. Both steady state and time dependant
computations are conducted. The time dependency of
the flow field reflects the auto-oscillations of the cavity,
formed at the needle tip of the hollow-jet valve. The pres-
sure field throughout the flow domain, as well as the den-
sity field inside the cavity oscillates quasi-periodically
in response to cavity oscillations. For the case investi-
gated, the difference in the detailed cavitation dynamics
between time dependent and steady state cases does not
exhibit substantial influence on the overall flow pattern.

1 Introduction

Cavitation appears in a wide variety of fluid machinery
like pumps, inducers, turbine blades, propellers and im-
mersed hydrofoils. Pressure fluctuations, noise, power
loss, vibrations and erosion are some of the pronounced
effects of the cavitation phenomenon. It thus becomes
imperative to gain insight into this phenomenon and as a
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result has been a topic of interest for many researchers.
Athavale et al. (2000) adopted a vapor transport equation
for vapor phase coupled with the turbulent N-S equations
and reduced Rayleigh-Plesset equations to study of cavi-
tation in pumps and inducers. To simulate the cavitating
flows in rocket turbopump elements, Athavale and Sing-
hal (2001) presented a homogeneous two-phase approach
with a transport equation for vapor, again, using the re-
duced Rayleigh-Plesset equations for bubble dynamics
and phase change rates. Medvitz et al. (2002) used multi-
phase computations to analyze the performance of cen-
trifugal pumps under cavitating conditions. Duttweiler
& Brennen (2002) experimentally investigated a previ-
ously unrecognized instability on a cavitating propeller
in a water tunnel. The cavitation on the blades and in
the tip vortices was explored through visual observation.
Numerous other publications in the subject can be found
in the references of the above-mentioned works and a re-
cent review by Wang et al. (2001).

A main computational difficulty for cavitation is the large
density ratio between the liquid phase and the vapor
phase that can go up to 1000. Moreover, cavitating
flows are usually turbulent and the interfacial dynam-
ics involves complex interactions between vapor and liq-
uid phases. The fast time scales associated with turbu-
lent cavitation also poses substantial challenges to ex-
perimental observations. Multi-scale modeling and com-
putational treatments typically utilize techniques such as
averaging, matching, patching, or asymptotes. For ref-
erences covering different fluid dynamics type of multi-
scale problems, we refer to Shyy et al. (1997a, b), Martin
et al. (1998), Shyy (2002), Garikipati (2002), and Wang
et al. (2002).

In this present study, we focus on the cavitation phe-
nomenon in flow-control valves. There are serious impli-
cations on the safe and sound operation for such issues.
A limited number of experimental studies have been pub-
lished on this topic, such as those by Oba et al. (1985)
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and Tani et al. (1991a, 1991b). In addition, Wang (1999)
used high-speed cameras and Laser Light Sheet (LLS) to
observe the cavitation behavior in a hollow-jet valve un-
der various cavitation conditions and for different valve
openings. However, to the best of our knowledge, to date,
no comprehensive numerical study has been done in this
respect. Furthermore, complex geometries and inacces-
sible regions of occurrence restrain experimental investi-
gations in cavitation. In addition, we investigate the ca-
pability of transport equation-based cavitation models to
predict incipient level cavitation.

In order to treat turbulent cavitating flows, we adopt a
transport equation model for the volume or mass frac-
tion, which allows coexistence of the liquid and vapor
phases. Several recent studies have presented alterna-
tive modeling concepts and computational approaches
based on this general idea. Singhal et al. (1997) em-
ployed a mass fraction equation with pressure depen-
dent source terms. Kunz et al. (2000) utilized the arti-
ficial compressibility method with special focus on the
preconditioning formulation. Ahuja et al. (2001) de-
veloped an algorithm to account for the compressibility
effects in context of the artificial compressibility meth-
ods with use of adaptive unstructured grids. Senocak
and Shyy (2002a) introduced a pressure-based algorithm
to correct the density fields, which in turn was coupled
with the k− ε turbulence equations. Senocak and Shyy
(2002b) developed an interfacial-dynamics-based model
and appraised different cavitation models for N-S com-
putation. They found that these alternative models gave
qualitatively comparable and satisfactory predictions for
the pressure distributions but quantitatively produced dif-
ferences, such as phase fractions and pressure distribu-
tions, in the closure region of the cavity.

In SIMPLE-type of the pressure-based methods
(Patankar 1980, Shyy 1994), the equations are solved
successively by employing iterations. In cavitating flow
computations, the typical relaxation factors used in the
iterative solution process are smaller than the ones used
in single-phase flows, and hence smaller time steps are
needed to study the cavitation dynamics. Issa (1985)
developed a method call the Pressure-Implicit with
Splitting of Operator (PISO) for the solution of unsteady
flows. The splitting of pressure and velocity makes
the solution procedure sequential in time domain and
enables the exact solution of the discretized equations
to have a formal order of accuracy at each time step,

and eliminates the need for severe under-relaxation in
SIMPLE type algorithm. Bressloff (2001) extended the
PISO for high-speed flows by adopting the pressure-
density coupling procedure in all-speed SIMPLE type of
methods. Oliveira and Issa (2001) followed the previous
PISO work to combine the temperature equation to
simulate buoyancy-driven flows. Thakur and Wright
(2002) have developed approaches using curvilinear co-
ordinates with suitability to all speeds. Senocak (2002)
have further extended this PISO algorithm to enhance
the coupling of cavitation and turbulence models and to
handle the large density ratio associated with cavitation.

In this current study, we apply pressure-based algo-
rithms, with the turbulence closure achieved by the k−ε
turbulence equations, combined with the Kunz et al.’s
(2000) cavitation model, to simulate the turbulent cavitat-
ing flows in a hollow-jet valve. The single-phase steady
state computations are handled using the extended SIM-
PLE type pressure-correction method (Shyy 1994). For
cavitating flow simulations the pressure-based method,
described in Senocak and Shyy (2002a), is used for
steady state computations, and the pressure-based opera-
tor splitting method, described in Senocak (2002), is used
for time-dependant computations. The numerical solu-
tions and discussions are qualitatively assessed with the
experimental observations from Wang (1999).

2 Theoretical formulation

2.1 Governing equations

The set of governing equations consists of the conserva-
tive form of the Favre-averaged Navier-Stokes equations,
the k− ε two-equation turbulence closure, and a volume
fraction transport equation-based cavitation model. The
mass continuity, momentum and cavitation model equa-
tions are given below:

∂ρm

∂t
+

∂(ρmu j)
∂x j

= 0 (1)

∂(ρmui)
∂t

+
∂(ρmuiu j)

∂x j
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∂xi
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∂
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[(µ+µt)(

∂ui

∂x j
+

∂u j

∂xi
− 2

3
∂uk

∂xk
δi j)] (2)
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∂αl

∂t
+

∂(αlu j)
∂x j

= (ṁ+ + ṁ−) (3)

The mixture density and turbulent viscosity are:

ρm = ρlαl +ρv(1−α l);µt =
ρmCµ k2

ε
(4)

where αl is the liquid volume fraction.

2.2 Cavitation modeling

Physically, the cavitation process is governed by the
thermodynamics and the kinetics of the phase change
process. The liquid-vapor conversion associated with
the cavitation process is modeled through ṁ + and ṁ−

terms in Eq.(3), which represents, respectively, conden-
sation and evaporation. The particular form of these
phase transformation rates are adopted from Kunz et al.
(2000). Surface tension and buoyancy effects are ne-
glected here considering the typical situation that the We-
ber and Froude numbers are large. The source terms
adopted here are:

ṁ− =
CdestρvαlMin(0, p− pv)

ρl(ρlU2
∞/2)t∞

ṁ+ =
Cprodρvα2

l (1−α l)
ρlt∞

(5)

where Cdest = 9.0×105 and Cprod = 3.0×104 are empir-
ical constant values, U∞is a characteristic velocity scale,
here it is chosen as the inlet value. The time scale in
the equation is defined as the ratio of the characteristic
length scale to the reference velocity scale (D/U). The
nominal density ratio (ρv

/
ρl) is the ratio between ther-

modynamic values of density of vapor and liquid phases
at the corresponding flow condition.

2.3 Turbulence modeling

For the system closure, the original k − ε turbulence
model with wall functions is presented as follows:

∂(ρmk)
∂t

+
∂(ρmu jk)

∂x j

= Pt −ρmε+
∂

∂x j
[(µ+

µt

σk
)

∂k
∂x j

] (6)

∂(ρmε)
∂t

+
∂(ρmu jε)

∂x j

= Cε1
ε
k

Pt −Cε2ρm
ε2

k
+

∂
∂x j

[(µ+
µt

σε
)

∂ε
∂x j

] (7)

The turbulent production, Reynolds stress tensor terms,
and the Boussinesq eddy viscosity concept are defined:

Pt = τi j
∂ui

∂x j

τi j = −ρu′iu
′
j

u′iu
′
j =

2kδi j

3
−νt(

∂ui

∂x j
+

∂u j

∂xi
) (8)

In the above equations, coefficients Cε1 = 1.44, Cε2 =
1.92, σε = 1.3, σk = 1.0 are empirical constants.

2.4 Dimensionless parameters

The non-dimensional parameters of interest in this report,
including Reynolds number, cavitation number and the
pressure coefficient, are defined in the following:

Re =
ρlU∞D

µl
(9)

σ =
P2 −Pv
1
2 ρlV 2

(10)

Cp =
P−P2
1
2 ρlU2

∞
(11)

Here, ρl,µl are liquid density and viscosity, D is the di-
ameter of the valve needle, V is the mean flow velocity
at the valve section through the needle seal (tip), P2is the
outlet pressure,Pv is the saturated vapor pressure. The
definition of cavitation number σ is taken as that in Wang
(1999).

3 Numerical method

The present Navier-Stokes solver employs pressure-
based algorithms and the finite volume approach (Shyy
1994, Shyy et al. 1997a). The governing equations are
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solved on multi-block structured curvilinear grids. To
represent the cavitation dynamics, a transport equation
model is adopted along with the particular source terms
as suggested by Kunz et al (2000). The pressure-based
method described in Senocak and Shyy (2002a) is uti-
lized for steady-state computations of turbulent cavitat-
ing flows. One of the key features of this method is to
reformulate the pressure correction equation to exhibit a
convective-diffusive nature. Here we summarize some
key computational issues by focusing on the flux terms
in the continuity equation, which can be decomposed as
follows:

ρ�u = (ρ∗+ρ′)(�u∗+�u′)
= ρ∗�u∗ +ρ∗�u′+ρ′�u∗ +ρ′�u′ (12)

where the starred variables represent the predicted values
and primed variables represent the correction terms. The
substitution of the flux terms in the discretized continuity
equation leads to the following convective-diffusive type
pressure correction equation.

− ∇ d · (ρ∗D∇ dP′)+ ∇ d · (Cρ�u
∗P′)

= −∇ d · (ρ∗�u∗)+ ∇ d · (CρP′
pD∇ dP′) (13)

ρ′
p = CρP ′

p (14)

The relative importance of the first and second terms in
Eq.(10) depends on the local Mach number (Shyy 1994).
For low Mach number flows, only first term prevails; for
high Mach number flows, the second term dominates.
The fourth term is a nonlinear second-order term and can
be either neglected or included in the source term for sta-
bility in early iterations. In the present algorithm, the fol-
lowing relation between density and pressure correction
is taken as suggested in Senocak and Shyy (2002a)

ρ′
p = C(1−αl)pP ′

p (15)

where C is an arbitrary constant which does not affect the
final converged solution due to the pressure correction
nature.

For unsteady flow computations, PISO algorithm is used.
In this algorithm the system of discretized equations are
solved through predictor and corrector steps without the
need for iteration. In the following we summarize the
basic steps of the algorithm. A detailed description of

the algorithm for turbulent cavitating flow computations
is documented in Senocak (2002).

In the predictor step the discretized momentum equations
are solved implicitly using the old time pressure to obtain
an intermediate velocity field. A backward Euler scheme
is used for the discretization of the time derivative term

�u∗p = H[�u∗]p −Dp(∇ dPn−1)p +
(ρ�u)n−1

δt
(16)

The intermediate velocity field does not satisfy continu-
ity and needs to be corrected using the continuity equa-
tion as a constraint. In the first corrector step, a new ve-
locity field, �u∗∗ and pressure field P∗are expected. The
following convective-diffusive type pressure correction
equation is solved in the first corrector step.

CρP ′
p

δt
Vp −∆[ρn−1D(∇ dP ′) ·�nSc f ]p +∆[CρP ′U∗]p

= −∆[ρn−1U∗]p (17)

In the second corrector step the following convective –
diffusive type pressure correction equation is solved to
satisfy the mass conservation.

CρP′′
p

δt
Vp−∆[ρ∗D(∇ dP′′) ·�nSc f ]p +∆[CρP′′U∗∗]p

= −∆[ρ∗U∗∗]p −∆[ρ∗H[�u∗∗−�u∗] ·�nSc f ]p (18)

Then, through solving the above predictor and correction
steps coupled with the cavitation and turbulence model
equations the solution procedure for turbulent cavitating
flow computations is accomplished.

For unsteady cavitating flow computations, the pressure-
density coupling scheme becomes important. Senocak
(2002) have discussed the issue by studying unsteady
cavitation in convergent-divergent nozzles. We adopt the
following scheme as suggested by Senocak (2002).

Cρ = (
∂ρ
∂P

)s =
1
c2 ≈ (

∆ρ
∆P

)ξ =
|ρi+1−ρi−1|
|Pi+1−Pi−1| (19)

For further details of the numerical method adopted in
this study the reader is referred to Senocak and Shyy
(2002a) and Senocak (2002).

4 Results and discussions

As documented in Wang (1999), Figure 1 shows the ge-
ometry and the main configurations of the valve. A key
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component is the needle, used to control the flow rate.
A cylindrical seal supports the needle. There are six
struts supporting the cylinder, which are called splitters.
The gear is used to control the needle position moving
through the X-axis.

Figure 1 : Geometry of the valve. (1) Splitter; (2) Cylin-
der; (3) Plunger; (4) Needle; (5) Needle seal overlay; (6)
Seal seat inlay; (7) Stroke; (8) Ventilation duct; (9) Gear

Figure 2 illustrates the computational domain in selected
planes according to the geometry. A multi-block struc-
tured curvilinear grid is adopted to facilitate the com-
putation. Figure 2-a shows the configuration on the X-
Y plane, and Figure 2-b from the Y-Z plan. Figure 2-
c shows the planes location, and Figure 2-d shows the
boundary conditions in the computations. Here, the split-
ter thickness is neglected and its shape is considered
to be rectangular. The Reynolds number is 5×105and
the cavitation number is 0.9, with the density ratio be-
tween the liquid phase and vapor phase ρ l

/
ρv being

1000. Both time dependent and steady state computa-
tions are conducted with a valve opening of 33%, using
non-dimensional equations. For the time dependent case,
the steady single-phase turbulent flow, without consider-
ing cavitation, is computed and the solution is adopted
as the initial condition for the unsteady cavitating turbu-
lent flow. The results and discussion are presented in the
following.

Figure 3 shows the density distributions for the steady
case. The cavities on the splitter plane and the middle
plane are slightly different in size. Figure 4 shows how
the cavity shape and location vary with time growing. In
5, four instantaneous solutions are selected.

For time dependent computations, the cavity fluctuates
quasi-periodically. At the non-dimensional time t ∗ = 0.4,
the cavity is the biggest with smallest density, see Figure
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Figure 2 : Computational domains and boundary condi-
tions
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Figure 3 : Density contour lines of the steady state so-
lution. The mixture of vapor and liquid inside the outer
line forms the cavity.

4-a. With time growing, the size reduces to the smallest,
as Figure 4-b & Figure 4-c at time t∗ = 0.6 and t∗ = 0.8,
respectively. Then after one cycle it reaches the maxi-
mum again, as shown in Figure 4-d at t ∗ = 1.2. Both
steady and unsteady results exhibit the cavity at the nee-
dle tip, as depicted in Figure 3 & Figure 4. The steady
case corresponds to a single instantaneous result in the
time dependent solution (Figure 3-b and Figure 4-c). The
time dependent results are qualitatively consistent with
experiment in size and shape, as illustrated in Figure 4-a
(or Figure 4-d) and Figure 4-e. Unfortunately, there is in-
sufficient experimental information to ascertain the time
dependent characteristics in detail.

In the experiments it has been observed that the cavities
incept, grow, then detach from the needle tip and trans-
port to the downstream periodically, as clearly shown
in Figure 4-e the cavitation aspects around the nee-
dle. However, as already discussed in Senocak (2002)
for unsteady cavitation in convergent-divergent nozzles,
with the current combination of turbulence and cavita-
tion models, the detachment of the cavity is not captured,
possibly due to the representation of the turbulence via a
scalar eddy viscosity.

To further demonstrate the cavity-induced quasi-periodic
characteristics of the flow field, 5 highlights the time evo-
lutions at selected locations. 5-a shows the locations of
the points selected. The pressure is at the middle points,
and the density is near the bottom boundary, just one
point away from it. From 5-b, at the places far away
from the cavity, A, B and D, the density is constant since
only the liquid phase exists there, and is quasi-periodic
inside the cavity at Point C. On the other hand, as shown
in 5-c, pressure oscillates in the whole domain except on
the outlet plane, where the flow condition is fixed.

Figure 6 presents the flow structure on the middle plane.
For the steady case, the flow fields of both single phase
(without invoking the cavitation model in the course of
computation) and cavitating flows are almost identical, as
shown in Figure 6-a. It indicates that in the present case,
the incipient level cavitation dynamics does not exhibit
substantial influence on the overall flow pattern. For the
time dependent case, at difference time instants, Figure
6-b t∗ = 0.4 and t∗ = 0.8, the flow field around the nee-
dle remains largely the same. The comparison between
the steady and unsteady case points out that there does
not exist very much difference in the flow pattern. As ex-
pected, there are two recirculating zones: one behind the
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Figure 4 : Middle section density contours at different time instants. The mixture of vapor and liquid inside the
outer line forms the cavity.
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Figure 5 : Time evolution at different locations

needle and the other one downstream around the splitter
region, which locates about at x=3.4∼4.2. Comparing
with the experimental observation (Figure 6-c is the cav-
itating flow structures behind the needle, and Figure 6-d
is the cavitating flow structures in the splitter region), the
present results are in general agreement.

5 Conclusions

In the current study, unified pressure-based algorithms
have been used to simulate the turbulent cavitating flow
in a hollow-jet valve. Both steady state and time de-
pendent solutions exhibit qualitatively comparable flow
patterns and cavity sizes. The time dependency of the
flow field is demonstrated by the auto-oscillations of the
cavity, formed at the needle tip of the hollow-jet valve.
The upstream and downstream pressures oscillate quasi-
periodically in response to cavity oscillations. Two recir-
culating zones are observed; one behind the needle and
the other at the splitter region. These numerical results
agree quantitatively with the experimental results. Ob-
serving the steady state and time dependent solutions, it
appears that for the present geometry and flow regime,
the incipient level cavitation dynamics does not exhibit
substantial influence on the overall flow pattern.

The work presented here will be further extended to ac-
count for fluid dynamics and rotordynamics interactions.
Such models will require coupling between fluid dynam-
ics and structural dynamics (see, e.g., Kamakoti et al.
2002), including possibly boundary movement (Shyy et
al. 1996). Once this level of model is developed, we will
attain much improved capability to conduct design opti-
mization of fluid machinery, which will further advance
the state-of-the arts (Levin and Shyy 2001, Papila et al.
2002, Shyy et al. 2001) in this general area.

Acknowledgement: The present study has been sup-
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