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Computational Simulation of Localized Damage by Finite Element Remeshing
based on Bubble Packing Method

Soon Wan Chung1, Yoo Jin Choi1 and Seung Jo Kim1

Abstract: In this paper, an automatic finite element
remeshing algorithm based on the bubble packing
method is utilized for the purpose of numerical simu-
lations of localized damage, because fine meshes are
needed to represent the gradually concentrated damage.
The bubble packing method introduces two parameters
that easily control the remeshing criterion and the new
mesh size. The refined area is determined by a poste-
riori error estimation utilizing the value obtained from
Superconvergent Patch Recovery. The isotropic ductile
damage theory, founded on continuum damage mechan-
ics, is used for this damage analysis. It was successfully
shown in the numerical examples (upsetting and extru-
sion problems) that the remeshing algorithm generates
fine and regular meshes for the regions with distorted
meshes and that the damage is localized in the refined
zone.

keyword: Bubble packing method, Remeshing, Con-
tinuum damage mechanics, localization, metal forming.

Nomenclature:

FFF :deformation gradient tensor

RRR :rotation tensor

UUU :right stretch tensor

DDD :rate-of-deformation tensor

Ė̇ĖE , Ṗ̇ṖP :elastic and plastic strain rates

SSS :rotation free stress or Dienes stress

φ :free energy potential

ψ :dissipative potential

d :isotropic damage variable

B :damage strain energy density release rate

z :internal variable denoting hardening behavior

h :hardness variable
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ε∗ :equivalent strain recovered by SPR

ε̂ :equivalent strain calculated by FEM

η∗ :predicted relative error

η∗
max :maximum permissible relative error

‖eε‖ : L2norm of strain error

‖eε‖i,max :maximum permissible error in i-th element

rave :average of radii of three vertexes(bubbles) in can-
didate element for refinement

rnew :radius of bubble belonging to a refining circle

q :control factor for rnew

1 Introduction

As the distorted meshes increase due to large de-
formations, the approximation error in the nonlin-
ear problems also increases. Therefore, the adap-
tive refinement technique was implemented to prevent
any difficulties in convergence. This technique dis-
tributes the refined meshes around a singular point,
for h-refinement in elastic analysis [Zienkiewicz and
Zhu(1987)], and substitutes regular meshes for the dis-
torted meshes in large deformation problems, such as
metal forming.[Khoei and Lewis(1999), PavanaChand
and KrishnaKumar (1998), Yang and Heinstein and
Shih(1989)]Also, refined meshes are generated for shear
bands, which are narrow regions of intense plastic defor-
mation[Ortiz and Quigley(1991), Batra and Ko(1992)]
and the crack propagation direction is predicted by plac-
ing many fine meshes near the crack tip. [Potyondy and
Wawrzynek and Ingraffea(1995), Tradegard and Nilsson
and Ostlund(1998)]

The conventional adaptive mesh refinement consists of
three parts: the remeshing criterion, the automatic mesh
generation algorithm, and the transfer of state vari-
ables between the old and new meshes. The remesh-
ing criterion generally is the a posteriori error estima-
tion [Cheng(1998), Paulino and Menezes and Neto and
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Martha(1999)], based on the error norm of strain (or
stress), or the geometric distortion of elements. [Pa-
vanaChand and KrishnaKumar (1998)] The automatic
mesh generation algorithm consists of the node con-
nection method [Shimada and Gossard(1998), Lee and
Hobbs(1999)], which distributes and connects the nodes,
and the recursive domain decomposition method [Pe-
tersen and Rodrigues and Martins(2000)], which divides
the computational domain until the desired mesh size is
attained. The state variables computed at the integration
point are usually transferred from the old mesh to the new
mesh in three steps (old mesh Gauss point→old mesh
node→new mesh node→new mesh Gauss point).

In this study, the adaptive remeshing technique is applied
to ductile damage analysis. Ductile damage grows on a
largely deformed region, concentrates gradually and fi-
nally develops into crack formations. Not only can the
adaptive refinement diminish the error caused by the dis-
torted element but it can also show the damage local-
ization using the refined meshes.[Var and Owen (2001),
Svedberg and Runesson(2000), Min and Tworzydlo and
Xiques(1995)] The developed finite element code, for
damage analysis, includes geometric nonlinearity, ma-
terial nonlinearity and contact constraint with friction
conditions. Also, the isotropic damage rule based on
the theory of materials of type N [Kim and Kim and
Kim(1995)] was adopted to describe the damage process
of ductile material with large elasto-viscoplastic defor-
mations. An automatic mesh generation and remeshing
algorithm, based on the bubble packing method [Chung
and Kim(2002)], was developed to generate linear tri-
angular elements. This algorithm can easily control the
remeshing criterion and new mesh size through two pa-
rameters, maximum permissible relative error and con-
trol factor for refined mesh. The axisymmetric upsetting
process and the extrusion under plane strain condition
were chosen as numerical experiments to show the capa-
bilities of the adaptive remeshing algorithm in simulating
damage localization.

2 Isotropic Ductile Damage Theory

The damage theory in this study is based on contin-
uum damage mechanics (CDM). CDM (Lemaitre(1996),
Hatzigeorgiou and Beskos(2002)) can be separated into
two categories by the definition of the damage variable:
the isotropic damage theory and the anisotropic damage
theory. CDM can be applied to the following material

properties by the range of application: ductility of metal,
brittleness of concrete, fatigue and creep, etc. Recently,
the damage localization by CDM has been investigated
through many approaches such as a nonlocal model, a
gradient model (Peerlings and Borst and Brekelmans and
Geers(2002)) and a combined damage/plasticity model
without nonlocal terms(Chen and Hu and Chen(2000)).
This study utilized the isotropic damage theory for the
application of ductile materials, and the theory is com-
posed of kinematics and elasto-viscoplastic material rule.
The contact constraint in the boundaries was imple-
mented using the extended interior penalty method. [Kim
and Kim(1993)]

2.1 Kinematics

According to the polar decomposition theorem, a right
stretch tensor, UUU , and a rotation tensor, RRR, are obtained
from a gradient deformation tensor FFF(eq. (1)). Consid-
ering the deformation in the current rotation free con-
figuration, the right stretch tensor is additively decom-
posed into the elastic and plastic parts (eq. (2)) [Kim and
Chung(1998)].

FFF = RURURU (1)

UUU =UUUe +UUU p −III (2)

Using eq. (1) and (2), a rate-of-deformation tensor, DDD, is
derived into eq. (3) where U̇̇U̇UeUUU−1|sym and U̇̇U̇U pUUU−1|sym are
the elastic and plastic strain rate terms respectively.

DDD = LLLsym = RRR(U̇̇U̇UeUUU−1|sym +U̇̇U̇U pUUU−1|sym)RRRt (3)

RRRtDRDRDR = Ė̇ĖE + Ṗ̇ṖP (4)

The conjugate objective stress of elastic strain or the ro-
tation free stress, SSS, is calculated by transforming the
Cauchy stress, σσσ, using the rotation tensor.

SSS = RRRtσRσRσR (5)

2.2 Elasto-viscoplastic damage model

The elasto-viscoplastic rule is based on the theory of ma-
terials of type N, which consists of field equations and
the following two potentials.

1) Free energy potential

φ=
1
ρ0
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2) Dissipative potential
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Here, d and z are internal state variables which denote
damage state and hardening behavior respectively. And
B and h are the conjugate thermodynamic forces corre-
sponding to d and z. The variable B corresponds to the
strain energy density release rate in Lemaitre’s isotropic
damage model.[Lemaitre(1996)] The material constants
(C1,k) related with damage are determined by a simple
tension test; the material used in this research is Al 2024
and its material constants are shown in Tab. 1 [Kim
and Kim(1994)]. The final constitutive equations derived
from differentiating the potentials are

SSS =
ρ
ρ0

(1−d) [λ(trEEE) I +2µEEE)] , (6)

B = − ρ
2ρ0

[
λ(trEEE)2 +2µ(trEEE2)

]
, (7)

h =
ρ
ρ0

[h1 +(h0 −h1)expexpexp(−mz)] , (8)

Ṗ̇ṖP = D0
1

2h
√

J2

expexpexp

(
−βh2

J2

)
SSS
′
, (9)

ḋ = −C1B expexpexp

[(
1

1−d

)k
]

M(tr SSS), (10)

ż =
1
h

SSS
′
: Ṗ̇ṖP. (11)

Table 1 : Mechanical properties and material constants
of Al2024

Material constant Symbol Value 

Young’s modulus E GPa472.

Poisson’s ratio 320.

Yield strength Y MPa393  

Initial damage threshold 0D sec/. MPa710351

Hardening constant m 25  

Initial hardness constant 0h MPa1150  

Ultimate hardness constant 1h MPa1670

Damage magnification 

factor
1C

710271.

sec)/(Nmm2

Damage slope factor k  72.

3 Adaptive Refinement Algorithm

In order to perform the adaptive refinement procedure
for nonlinear Finite Element Analysis, additional algo-
rithms, such as error estimation, refinement criterion, au-
tomatic mesh generation and transfer of state variables,
were added (Fig. 1).

3.1 Automatic mesh generation

We utilized an automatic mesh generation algorithm
based the on bubble packing method (BPM), which
we had developed in a previous study [Chung and
Kim(2002)]. The BPM determines the optimal nodal
placements by finding the equilibrium positions using the
attractive/repulsive interbubble forces. BPM considers
the center of the bubble as the node and yields the nodal
positions compatible with the given bubble size function.
This method consists of the following steps.

(1st step) Packing of bubbles on the boundary line

After the information on bubble size and boundary such
as nodes, lines, etc. is read in the input data (Fig. 2(a)),
the bubbles are packed along the boundary lines connect-
ing nodes. (Fig. 2(b))

(2nd step) Packing of bubbles on the surface

The bubbles are packed along the lines between the cen-
ter of domain given in the input data and the vertexes.
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Finite Element Analysis

at (i) - th increment step

Error estimation

Refinement criterion
Is remeshing necessary?

Yes

Automatic mesh generation

Mapping of state variables
(stress, strain, displacement, et al)

No

i=i+1

i=i+1

Figure 1 : Flowchart of remeshing algorithm

Then, bubbles are inserted in between two nodes on those
different lines.(Fig. 2(c)) The nodes generated in a hol-
low domain such as a void are removed by the vertical
ray shooting algorithm [Mulmuley(1994)]. (Fig. 2(d))

(3rd step) Physically based dynamic simulations

To get rid of gaps or overlaps between bubbles in
the initial bubble placement, the bubble configuration
balanced with interbubble attractive/repulsive forces is
found. (Fig. 2(e)) The forces [Shimada and Gos-
sard(1998)] applied at boundary bubbles are projected to
the boundary line to constrain bubbles on the boundary.
Also, the following equation of motion of the i-th bubble
is integrated by the fourth-order Runge Kutta method.

miẍi +cixi = fi (12)

Next, triangular meshes are generated beginning at the
boundary using the Delaunay triangulation with advanc-
ing front concept [Du(1998)]. The recursive/adaptive
bubble population controls were used to obtain larger

(a)                                          (b) 

(c)                                          (d) 

(e)

Figure 2 : Procedure of node distribution based on
bubble packing method ((a) Nodes given in input data,
(b) Boundary line bubble packing, (c) Surface bubble
packing-1, (d) Surface bubble packing-2, (e) Bubble dis-
tribution after dynamic simulation)

amounts of regular triangle meshes. As the node num-
bers produced by automatic mesh generation are dis-
tributed randomly, the bandwidth minimization tech-
nique [Chung and Kim(2002)] is also incorporated for
the band solver, which is used to solve the resulting si-
multaneous linear equations. Since nodal placement and
connection in this algorithm starts at the boundary lines,
accurate updates of boundary information are important
while the boundary nodes are being added. A flowchart
of a series of algorithms is shown in Fig. 3.
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Input
Minimal geometric data,

Bubble size function,

Constants(m,c)

Boundary line packing

of bubbles

Surface packing of bubbles
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Is adaptive bubble

population control used?

Yes

(Recursive

bubble

control)

Bubble

Packing

Method

No

Bandwidth minimization

Mesh generation

completed!

Figure 3 : Flowchart of automatic mesh generation

3.2 Error estimation and Refinement criterion

Generally, refined meshes are generated around elements
with large errors. Therefore, a posteriori error calcula-
tion using the equivalent strain was utilized in this study.
The strain error using the recovered value is defined as

eε ≡ ε∗ − ε̂. (13)

Here, ε∗ is the recovered strain value obtained through
Superconvergent Patch Recovery (SPR) [Zienkiewicz
and Zhu(1992)] and ε̂ is the finite element solution. The
L2 norm of strain error and a predicted relative error η∗

can be written as

‖eε‖ =

√
m

∑
i=1

‖eε‖2
i =

√√√√ m

∑
i=1

∫
Ωi

(ε∗ − ε̂ )2
i dΩ, (14)

η∗ =

√
‖eε‖2

‖ε∗‖2 +‖eε‖2 . (15)

where m is the total number of elements. If the maximum
permissible relative error η∗

max is given, we can define the
maximum permissible error in any element i as

‖eε‖i ,max =
η∗

max√
m

(
‖ε∗‖2 +‖eε‖2

)1/2
. (16)

In this research, the relative error η∗ was calculated
at each incremental step and remeshing began when
η∗ reached η∗

max. The adaptive refinement takes effect
around elements with errors larger than ‖eε‖i,max. The
larger η∗

max becomes, the narrower the refined area be-
comes.

To identify the refined region based on the candidate ele-
ment for refinement, we propose a refining circle (Fig. 4),
which consists of a center, the centroid of the candidate
element for refinement and the radius (average diameter
of three bubbles). In other words, the bubble to be placed
within this refining circle will have a new bubble size in
the next automatic mesh generation. The radius of a bub-
ble in the refining circle is computed by

rnew =
(‖eε‖i ,max

‖eε‖i

)q

rave, (17)

where rave is the average radius of three vertexes and q is
the factor that controls the radius of a new bubble, r new.
The standard value of q is 1 and it is chosen as the user
wants. If q is larger than 1, then the reduction ratio of
bubble size becomes larger and smaller meshes are gen-
erated.

3.3 Transfer of data

When the regeneration of new mesh is completed, the
data (boundary condition, loading condition, state vari-
ables, etc.) should be precisely transferred to search for
the equilibrium position in the next incremental loading
step. The information at the boundary node is particu-
larly important in this algorithm, because the automatic
mesh generation is started at the boundary nodes and new
nodes may be inserted at the boundary lines for two cases
in the remeshing stage. One is that a new node is inserted
at the middle of the boundary line when the candidate
element for refinement is adjacent to the boundary line.
The other is that new nodes are inserted during boundary
line packing of bubbles, when the distance between two
nodes is greater than the sum of two bubble diameters
due to the large deformation.
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In the case when a new node is inserted at the bound-
ary line, the boundary and contact conditions of the new
node follow those of the nodes at both ends of the cor-
responding boundary line. State variables, such as strain
and damage, are calculated at Gauss points and trans-
ferred in three steps:

[1] Transformation of Gauss point values into nodal point
values in the old mesh by SPR

[2] Mapping between nodal point values in the old and
new meshes

: Search of an old element to which a new node belongs
+ Interpolation of old nodal point value using the area
coordinate

[3] Transformation of the nodal point values into Gauss
point values in the new mesh

: Use of an average of three nodal point values owing to
the 1-point Gauss quadrature rule

The nodal point values, such as displacement, are trans-
ferred in step 2.

4 Numerical Examples

Using the above algorithms, we analyzed the metal form-
ing problems, such as upsetting and extrusion, to simu-
late the damage localization.

Refining circle

Candidate element for refinement

2(r1+r2+r3)
3

r1

r3

r2

Figure 4 : Refining circle

4.1 Upsetting

A cross-section of the billet under die compression is
shown as a numerical model in Fig. 5. For this research,
only this cross-section, with a 16mm radius and 40mm
height, was considered, using axisymmetry.

Figure 5 : Boundary and loading conditions of upsetting

First, we tested Mesh-1 and Mesh-2 without using adap-
tive refinement. The meshes were generated with uni-
form bubble sizes of 4mm(Mesh-1) and 1mm(Mesh-2)
using BPM. The number of elements in Mesh-1 and
Mesh-2 are 100 and 1512 respectively. Fig. 6 and Fig. 7
show the shapes and damage distribution of the meshes
as the height of the billet is reduced for Mesh-1. The
amount of distorted meshes increases as the reduction
progresses. Especially, we could not produce a realis-
tic deformation corresponding with the die shape around
point (A). It can be seen that the damage distribution is
uneven and it is difficult to express the concentrated dam-
age using coarse meshes. The deformed shapes and dam-
age distributionof Mesh-2 are shown in Fig. 8 and Fig. 9.
The damage concentration in Mesh-2 can be seen more
clearly than that in Mesh-1, but the distorted mesh still
remains around point (A). These distorted meshes cause
relative errors to increase as the billet height is reduced.
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(a) 12.5%     (b) 25%        (c) 37.5%        (d) 50% 

Figure 6 : Deformed shapes of Mesh-1

          

(a) 12.5%                           (b) 25% 

           

(c) 37.5%                                  (d) 50%  

Figure 7 : Damage distribution of Mesh-1

Next, we tested Mesh-1 using adaptive refinement.
η∗

max = 7.5%and q = 1 were adopted as the refinement
criterion, and the error in equivalent strain is considered.
The remeshing process was carried out three times and
the meshes before and after remeshing and the error dis-
tribution before remeshing are displayed in Fig.10. The
mesh quality defined by equation (18) was calculated and
the averages of mesh qualities are also shown in Fig.10.

Q = 2
r
R

(18)

where r is the radius of the inscribed circle and R is the
radius of the circumscribed circle. Finer and regular tri-

angle meshes were substituted for the meshes with large
errors. Damage distributions in accordance with height
reduction are shown in Fig. 11, in which we can clearly
see the localized damage around point (A).

(a) 12.5%       (b) 25%        (c) 37.5%         (d) 50% 

Figure 8 : Deformed shapes of Mesh-2

          

(a) 12.5%                              (b) 25% 

          

(c) 37.5%                                 (d) 50% 

Figure 9 : Damage distribution of Mesh-2

Finally, we tested adaptive refinement again based on the
error using damage variable (ed = d∗ − d̂) instead of the
equivalent strain to make sure that the damage localiza-
tion was better simulated by the damage variable error.
η∗

max = 24% and q = 1 were used as the refinement cri-
terion because the damage error was globally larger than
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the strain error. Remeshing was completed three times
and the averages of mesh qualities are shown in Fig. 12.
The error distribution shown in Fig. 12 is similar to that
in Fig. 10 since damage increases where strain increases.

     

(a) 1st remeshing (1.6% height reduction) 

Number of elements after remeshing : 322, 8760.aveQ

     

(b) 2nd remeshing (19% height reduction) 

Number of elements after remeshing : 467, 8650.aveQ

     

(c) 3rd remeshing (42.5% height reduction) 

Number of elements after remeshing : 691, 8420.aveQ

Figure 10 : Finite element meshes before and after
remeshing (η∗

max
= 7.5% , q = 1) in upsetting (left : be-

fore remeshing, middle : error distribution, right : after
remeshing)

The damage distributions are shown in Fig. 13, and we
can clearly observe the damage localization at point (A).
However, the increase of damage is slower in compari-
son with when a strain error is used because the refined

          

(a) 13.6%                                (b) 25.2% 

          

(c) 37.1%                                  (d) 50.7%  

Figure 11 : Damage distribution for remeshing with
η∗

max = 7.5% , q = 1 in upsetting

meshes are generated directly in the regions with large
damage gradients.

The predicted relative errors (η∗) for four cases are
shown in Fig. 14. In the cases of Mesh-1 and Mesh-2,
the errors increase monotonically as the height reduction
increases. However, in the case with remeshing, as η∗

reaches η∗
max and remeshing begins, the error decreases.

Therefore, it can be concluded that adaptive refinement
decreases error and clarifies damage localization.

4.2 Extrusion

The second example is an extrusion problem. The sym-
metric upper half of the specimen and die shapes are
shown in Fig.15.

A uniform mesh (Mesh-3) with a bubble size of 5mm was
generated and utilized in the analysis without remeshing.
There were 1,112 elements and the deformed shapes are
shown in Fig. 16. The wrinkle that appeared around
point (B) during the initial compression loading still re-
mains during a subsequent extrusion process. The mesh
touching the corner of the die becomes more distorted
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(a) 1st remeshing (12.3% height reduction) 

Number of elements after remeshing : 338, 8470.aveQ

     

(b) 2nd remeshing (26.3% height reduction) 

Number of elements after remeshing : 626, 8240.aveQ

    

(c) 3rd remeshing (43.3% height reduction) 

Number of elements after remeshing : 803, 8230.aveQ

Figure 12 : Finite element meshes before and after
remeshing (η∗

max
= 24% , q = 1) in upsetting (left : be-

fore remeshing, middle : error distribution, right : after
remeshing)

as the contact area becomes wider. The distributed dam-
age variables are shown in Fig. 17. The damage around
point (B) grows fast even during the initial compression
loading and the regions touching the corners of the die
become more damaged than any of the other regions.

In order to carry out adaptive refinement, we took a mesh
with a bubble size of 10mm and 272 elements as the ini-
tial mesh. The equivalent strain error was calculated and
the refinement criterion was η∗

max = 10% and q = 1. Fig.
18 shows that the deformation was compatible with the

          

(a) 12.5%                                 (b) 25% 

(c) 37.5%                                (d) 50% 

Figure 13 : Damage distribution for remeshing with
η∗

max = 24% , q = 1 in upsetting

Figure 14 : Relative error vs. Height reduction

geometry of the die and the distorted meshes were re-
placed with fine and regular triangle meshes during the
four remeshing stages. When the initial mesh was used
in the analysis without remeshing, we could not obtain
the converged solution even at a 9% height reduction.
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Localized damages around the contact area and point
(B) are shown in Fig. 19. We established that dam-
age localization could be simulated better by fewer ele-
ments if remeshing technique was used. Furthermore, the
methodology used can be extended to the crack propaga-
tion problem [Zhang and Klein and Huang and Gao and
Wu(2002), Cocchetti and Maier and Shen(2002)], that is
to say, the mesh configuration will be redistributed along
the new crack surface by the remeshing technique.

Figure 15 : Geometric description of extrusion

          

(a) 20%                             (b) 40% 

(c) 60%                               (d) 64.6% 

Figure 16 : Deformed shapes of Mesh-3 in extrusion

5 Conclusion

In this paper, the adaptive remeshing technique was ap-
plied for the simulation of localized damage based on the
fact that the damage is concentrated at the severely de-
formed region. The developed adaptive refinement algo-
rithm, based on the bubble packing method, utilized two
parameters (η∗

max , q) to easily acquire the refined mesh.

     

(a) 20%                             (b) 40% 

  (c) 60% 

  (d) 64.6% 

Figure 17 : Damage distribution of Mesh-3 in extrusion

Localized damage was monitored in the refined meshes
for two metal forming problems. From the results, we
can conclude that adaptive refinement has a beneficial ef-
fect on numerical simulations of localized damage and
reduces error as well. Moreover, we can solve the prob-
lem of convergence arising from large deformations us-
ing a fewer amount of elements. We expect this research
will extend usage of adaptive refinement through BPM
to crack propagation and the strain localization studies in
the near future.
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