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Multi-Inclusion Unit Cell Studies of Reinforcement Stresses and Particle Failure in
Discontinuously Reinforced Ductile Matrix Composites

H.J. Böhm1, W. Han1,2 and A. Eckschlager1,3

Abstract: Three-dimensional periodic micromechani-
cal models are used for studying the mechanical behav-
ior of discontinuously reinforced ductile matrix compos-
ites. The models are based on unit cells that contain a
number of randomly positioned and, where applicable,
randomly oriented spherical, spheroidal or cylindrical re-
inforcements. The Finite Element method is used to re-
solve the microscale stress and strain fields and to predict
the homogenized responses under overall uniaxial tensile
loading in the elastic and elastoplastic regimes. Period-
icity boundary conditions are employed in the analyses.
The main emphasis of the contribution is put on study-
ing the microscale stresses in the reinforcements, which
are evaluated in terms of both phase averages and “in-
clusion averages”. The dependence of the inclusion av-
eraged stresses on the fiber orientation is discussed for
composites reinforced by randomly oriented short fibers,
good agreement being found between unit cell and mean
field models. For the case of spherical reinforcements the
stresses in the particles are used to trigger brittle cleavage
via a Weibull fracture criterion. The probabilistic algo-
rithm can be used to model consecutive particle fracture
in particle reinforced ductile matrix composites.

keyword: Continuum micromechanics, unit cells,
MMCs, particle cleavage.

1 Introduction

Discontinuously reinforced ductile matrix composites,
such as particle and short fiber reinforced metal matrix
composites (MMCs), are materials of considerable tech-
nological importance. They aim at combining desirable
properties of a metallic matrix, especially its ductility,
and of the reinforcements, such as high stiffness, hard-
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ness and abrasion resistance. Consequently, the mechan-
ical behavior of ductile matrix composites differs from
that of monolithic metals in several important aspects and
has been the subject of considerable research interest for
the past 25 years.

A natural starting point for modeling the mechanical be-
havior of composites consists in explicitly accounting for
their heterogeneity at a length scale where matrix and re-
inforcements are clearly distinguishable, which is called
the microscale in the following. This philosophy forms
the basis of continuum micromechanics of materials, a
research field in which two main modeling strategies
have been developed since the 1960s. One of them em-
ploys homogeneous comparison materials and statistical
information on the microscale geometry of the composite
to obtain estimates for and bounds on the overall thermo-
mechanical responses of elastic and inelastic composites.
The most important approaches of this type are mean
field and Hashin–Shtrikman-type variational theories; a
recent overview of such methods was given by Ponte
Castañeda and Suquet (1998). Alternatively, simplified
“model composites” may be studied, which in most cases
take the form of periodic phase arrangements described
via appropriate unit cells that are analyzed at a high level
of detail by numerical engineering methods. The latter
group of “discrete microstructure” models are the main
tool used in the present work.

An improved understanding of the thermomechanical be-
havior of composites reinforced by aligned short fibers
has been the aim of considerable research efforts, studies
based on axisymmetric cell models, see e.g. Christman,
Needleman, and Suresh (1989) and Tvergaard (1990), on
three-dimensional single-fiber unit cells, see e.g. Levy
and Papazian (1990), and on three-dimensional multi-
fiber unit cells, see Ingber and Papathanasiou (1997) and
Gusev, Lusti, and Hine (2002), having been published. In
contrast, only a small number of discrete microstructure
models have been reported that address composites rein-
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forced by nonaligned short fibers. Planar Finite Element
based models were developed by Courage and Schreurs
(1992), a three-dimensional description of alternatingly
tilted fibers was proposed by Sørensen, Suresh, Tver-
gaard, and Needleman (1995), and multi-fiber unit cells
in combination with the Boundary Element method were
reported by a number of groups, among them Baner-
jee and Henry (1992), and Ingber, Womble, and Mondy
(1992). Like a recent Finite Element study of nonaligned
short fiber reinforced composites by Lusti, Hine, and Gu-
sev (2002) the latter models were restricted to elastic con-
stituent behavior and low fiber volume fractions. Three-
dimensional unit cell models of ductile matrix compos-
ites with randomly oriented fibers at nondilute volume
fractions, compare Böhm, Eckschlager, and Han (2002),
are a very recent development.

With regard to particle reinforced composites, a large
body of literature involving discrete microstructure mod-
els has been reported since the 1970s. Published unit
cell studies have involved widely differing levels of ge-
ometrical complexity, ranging from square arrays of
spheres, see e.g. Agarwal and Broutman (1974), and
different types of axisymmetric models, see e.g. Agar-
wal, Panizza, and Broutman (1971) and Weissenbek,
Böhm, and Rammerstorfer (1994), to periodic arrange-
ments of cells containing a considerable number of ran-
domly positioned inhomogeneities. The latter approach
was first employed with two-dimensional unit cell mod-
els, which have reached an impressive level of develop-
ment, compare e.g. Lee, Moorthy, and Ghosh (1999).
Three-dimensional multi-particle unit cell models have
been extended from studying the elastic response of par-
ticle reinforced composites, see e.g. Gusev (1997), to re-
search concentrating on the elastoplastic behavior of duc-
tile matrix composites, see Böhm, Eckschlager, and Han
(1999) and Segurado, LLorca, and González (2002). Re-
cent studies by Böhm and Han (2001) as well as Shen and
Lissenden (2002) showed that three-dimensional models
of the above type are much better suited to describing
particle reinforced composites than are planar models.

On the microscale, damage and failure of ductile ma-
trix composites can be attributed to three mechanisms,
viz. ductile failure of the matrix, decohesion of the in-
terface between reinforcements and matrix, and brittle
cleavage of the reinforcements. The relative importance
of these three damage modes varies widely among dif-
ferent composites and depends to a large extent on the

material behavior of the constituents and on the size of
the reinforcements. Various modeling approaches have
been reported for studying each of the above microscopic
damage modes and there is continuing intensive research
interest in these problems. For the brittle failure of dis-
continuous reinforcements embedded in a ductile matrix,
which is of special relevance for the present study, pub-
lished models have involved pre-cracked particles, see
e.g. Bao (1992), cohesive surface descriptions of cracks
progressing through a reinforcement, see e.g. Tvergaard
(1993), “element death” algorithms for crack growth,
see e.g. Mishnaevsky, Lippmann, and Schmauder (2001),
and models based on “instantaneous” cleavage of parti-
cles along predefined fracture planes triggered by deter-
ministic (Rankine-type) or statistical (Weibull-type) cri-
teria, see e.g. Pandorf (2000). In most simulations parti-
cle cleavage was assumed to take place at some symme-
try plane of the model geometry, among the exceptions
being some multi-inclusion unit cell models employing
planar phase arrangements, such as those of Ghosh and
Moorthy (1998) or Berns, Melander, Weichert, Asnafi,
Broeckmann, and Gross-Weege (1998), as well as two-
dimensional embedded cell models for studying macro-
cracks in particle reinforced materials as reported by
Mishnaevsky, Lippmann, and Schmauder (2001).

The present contribution focuses on the use of three-
dimensional multi-inclusion unit cell models for study-
ing two issues that are of considerable interest in under-
standing the mechanical behavior of discontinuously re-
inforced materials. One of them is the dependence on the
fiber orientation of the stress fields in randomly oriented
reinforcing fibers, and the other involves the modeling of
the accumulation of microscale damage due to the con-
secutive brittle cleavage of spherical particles embedded
in a ductile matrix.

2 Modeling Considerations

In the simplest case the modeling of the mechanical be-
havior of composite materials by multi-inclusion unit
cells requires three main steps: the generation and mesh-
ing of appropriate phase arrangements, the evaluation of
the microscale stresses and strains in the unit cell, and
the processing of the results in terms of the overall (ho-
mogenized) material behavior or appropriate graphical
representations and/or numerical descriptors of the mi-
crofields.

For the present study the particle or fiber positions within
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each unit cell were generated via a Random Sequential
Adsorption algorithm, in which a new randomly posi-
tioned (and, where applicable, randomly oriented) rein-
forcement is retained if it maintains a user selected min-
imum distance to all previously accepted inclusions and
is rejected otherwise. In addition, periodicity of the ar-
rangement of the reinforcements within the unit cells was
enforced, as is evident in fig.1. This method is suitable
for generating statistically uniform arrangements of par-
ticles and fibers at low to moderate volume fractions. At
higher reinforcement volume fraction geometrical frus-
tration tends to set in due to a dearth of suitable un-
occupied volumes for positioning additional inclusions.
For such geometries more sophisticated methods must be
used, which may be based, for example, on Monte Carlo
procedures as reported by Gusev, Hine, and Ward (2000),
on simulated annealing algorithms as introduced by Rin-
toul and Torquato (1997), or on genetic algorithms, com-
pare Zeman and Šejnoha (2001).

The present study employs unit cells that contain some 15
randomly positioned identical spheres for modeling par-
ticle reinforced composites (PRCs) or 15 randomly po-
sitioned and oriented identical spheroidal or cylindrical
fibers for describing random short fiber reinforced com-
posites (RSFRCs). For the latter type of microgeometries
phase arrangements were generated such that spheroidal
or cylindrical fibers can occupy the same positions and
have the same orientations in order to allow a direct as-
sessment of fiber shape effects. Representatives of the
above three types of periodic unit cells are depicted in
fig.1.

The unit cells were meshed with 10-node tetrahe-
dral elements using the preprocessor PATRAN V.8.5
(MacNeal–Schwendler Corp., Los Angeles, CA), com-
patible meshes at opposite faces of the unit cells being
enforced. Typical element counts were of the order of
100000. Due to difficulties in meshing certain geometri-
cal details it was found to be necessary to reject config-
urations containing reinforcements that very closely ap-
proach cell boundaries or fibers that intersect cell faces at
very small angles. The elastic singularities that may oc-
cur at the sharp edges of cylindrical fibers were not fully
resolved, auxiliary axisymmetric models being used to
check that the mesh sizes were sufficiently fine for ac-
counting for the edges’ influence on the averages of the
microscale stresses and strains.

The elastic and elastoplastic responses of the unit cells

Figure 1 : Periodic unit cells containing 15 spherical par-
ticles (top), 15 randomly oriented spheroidal fibers (cen-
ter), and 15 randomly oriented cylindrical fibers (bottom)
at a volume fraction of ξ=0.15.
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under uniaxial tensile loading were evaluated with the
commercial Finite Element program ABAQUS/Standard
V.5.8 (Hibbitt, Karlsson and Sorensen Inc., Pawtucket,
RI), geometrically nonlinear analyses being employed.
The periodicity boundary conditions were enforced via
multi-point constraints that link the displacement vectors
u of the i-th pair of nodes that lie on opposite faces of a
unit cell via relations of the type

u(r i,2) = u(r i,1)+∆u12 . (1)

Here r i,1 and r i,2 stand for the coordinate vectors of the
pair of nodes and ∆u12 describes the difference in dis-
placement between the two opposite faces, 1 and 2, as
obtained from the displacements of appropriately posi-
tioned “master nodes”.

Such periodicity boundary conditions can be used with
both displacement and load controlled analyses and they
provide unique estimates for the overall mechanical be-
havior of the underlying phase arrangements that lie be-
tween the lower and upper bounds which can be obtained
with homogeneous stress and strain boundary conditions,
respectively, see e.g. Suquet (1987). Specially developed
algorithms described in section 3.2 were used for model-
ing the brittle cleavage of reinforcing particles.

It may be noted at this point that higher computational
efficiency may be reached in unit cell studies by us-
ing Finite Element codes that are specifically geared to
micromechanical analyses, see e.g. Ghosh and Moorthy
(1998) or Zohdi and Wriggers (2001), although there
may be a price to be paid in terms of geometrical flexibil-
ity. Furthermore, other numerical engineering methods
may be employed to advantage in discrete microstruc-
ture models of inhomogeneous materials, studies using
the Boundary Element method (as mentioned in section
1), Fast Fourier Transforms, compare Michel, Moulinec,
and Suquet (2000), equivalent inclusion methods, com-
pare Fond, Riccardi, Schirrer, and Montheillet (2001),
and spring networks, compare Ostoja-Starzewski (1998),
having been reported.

The evaluation of the results obtained from three-
dimensional multi-inclusion unit cells has proven rather
complex. Visualization of the microscale stress and
strain fields can take the form of color coded fringes on
the unit cell’s surface, on the reinforcements’ surfaces,
and on planar sections through the unit cells as used
e.g. in Böhm, Eckschlager, and Han (2002), or of iso-
surfaces within the unit cell. Neither of these approaches

reliably provides “intuitive” representations of the mi-
crofields, especially of those in the matrix.

Alternatively, numerical descriptors may be used for as-
sessing the microfields. The simplest of them are phase
averages of the microscale stresses and strains, which
have the advantage of allowing direct comparisons with
results from mean field methods. ABAQUS provides op-
tions for accessing the volume corresponding to each in-
tegration point, so that the phase average of some func-
tion f can be approximated as

f =
1

V ( j)

∫
V ( j)

f (r)dV ≈ 1

V ( j)

N( j)

∑
l=1

flVl . (2)

Here, fl and Vl are the function value and the integration
weight (in terms of an integration point volume), respec-
tively, associated with the l-th integration point within a
given phase ( j), which contains N ( j) integration points
and has a phase volume V ( j). Equation (2) can easily be
extended to evaluating higher statistical moments of f .

Phase averages and the corresponding phase-level stan-
dard deviations, however, are not particularly sensitive
instruments for probing arrangement specific variations
in the distributions of the microscale stresses and strains.
For composites with matrix–inclusion topology, consid-
erably more detailed information can be extracted by
evaluating the averages and standard deviations of the
microfields within individual reinforcements, which can
be obtained by interpreting N ( j) and V ( j) in eqn. (2) as
pertaining to single particle or fiber rather than to the
collective of all reinforcements. This concept of “inclu-
sion averages” plays an important role in the discussion
of the stresses present in randomly oriented short fibers
given in section 3.1 and is closely related to the evalua-
tion of Weibull fracture probabilities at the particle level
employed in section 3.2.

The use of multi-inclusion unit cells immediately gives
rise to the question of how many reinforcements are re-
quired for describing the mechanical behavior of a given
composite with satisfactory realism and accuracy, the op-
timum case being a unit cell that is a proper reference
volume element as defined e.g. by Hashin (1983). For
the special case of statistically isotropic elastic compos-
ites reinforced by spherical particles Drugan and Willis
(1996) provided estimates that correlate the error in the
overall elastic moduli with the linear dimensions of (non-
periodic) evaluation volumes. Excellent agreement with
their results, which imply that reasonable predictions for
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the homogenized elastic behavior of such materials can
be obtained from rather small unit cells, has been re-
ported by Gusev (1997), Michel, Moulinec, and Suquet
(1999), Segurado and LLorca (2002), Böhm and Han
(2001), as well as Han, Eckschlager, and Böhm (2001).
The latter two studies also showed that unit cells con-
taining some 15 to 20 spherical particles give predictions
for the elastic phase averaged microstresses that closely
approach mean field results.

No comparable considerations are available for more
general phase arrangements (such as nonaligned fibers)
or for inelastic composites, although the “windowing
methods” discussed by Jiang, Ostoja-Starzewski, and Ja-
siuk (2000) in principle allow to assess how closely a
given configuration approaches a proper reference vol-
ume element. Segurado, LLorca, and González (2002)
recently reported good agreement between the elasto-
plastic uniaxial tensile response of a unit cell containing
some 30 randomly positioned spherical particles and re-
sults of the modified secant scheme of Suquet (1995).
There are, however, strong indications that for elasto-
plastic matrix behavior much larger unit cells may be re-
quired than for elastic response, see e.g. Böhm and Han
(2001) and Jiang, Ostoja-Starzewski, and Jasiuk (2000),
especially in the case of matrix materials showing weak
or no strain hardening. This is thought to be due to the
inhomogeneous distribution of the plastic strains in the
matrix, which effectively lead to the formation of inho-
mogeneous regions that become considerably larger than
typical particle distances with increasing plastic strains.

3 Discussion of results

All results given in the present contribution refer to the
same combination of constituents, SiC reinforcements in
an Al2618-T4 matrix, for which damage by reinforce-
ment fracture plays an important role, compare LLorca,
Martı́n, Ruiz, and Elices (1993). The elastoplastic ma-
terial behavior of the aluminum matrix was described
by J2-plasticity, isotropic hardening following a modi-
fied Ludwik hardening law being used. A linear elastic
description was employed for the SiC reinforcements and
a perfectly strong interface between reinforcements and
matrix was prescribed. The material parameters used for
the constituents are listed in table 1, where E stands for
the Young’s modulus, ν for the Poisson ratio, σy,0 for the
initial yield stress, h for the hardening parameter, n for
the hardening exponent, and σf for the tensile strength

of the fibers and particles. All unit cells correspond to a
nominal reinforcement volume fraction of ξ=0.15.

3.1 Composites reinforced by randomly oriented short
fibers

The results presented in this section refer to damage free
MMCs consisting of an Al2618-T4 matrix reinforced by
SiC particles or by randomly oriented SiC fibers of aspect
ratio a=5.0. For the material parameters used, compare
table 1, the critical fiber aspect ratio ac = σf/2τ(m)

y evalu-
ates as approximately 4, so that the above reinforcements
can be viewed as fully fledged short fibers.

3.1.1 Elastic response

Table 2 lists a number of analytical and numerical pre-
dictions for the homogenized Young’s modulus E ∗ and
Poisson ratio ν∗ of SiC/Al composites reinforced by
15 vol.% of spherical particles or randomly oriented
short fibers. The Hashin–Shtrikman bounds (Hashin
and Shtrikman (1962), denoted as HSB) hold for any
overall isotropic two-phase material and thus are ap-
plicable to both types of composites considered here.
The three-point bounds (PRC/3PB) for materials rein-
forced by non-interpenetrating spheres of identical size,
compare Torquato (1991), and estimates obtained with
the generalized self consistent scheme (PRC/GSCS) of
Christensen and Lo (1979) can be directly compared
to the results from unit cells containing randomly posi-
tioned spherical particles (PRC/sp). For the MMCs rein-
forced by randomly oriented short fibers, Mori–Tanaka
estimates (RSFRC/MTM) evaluated according to Ben-
veniste (1987) are listed in addition to unit cell predic-
tions for spheroidal (RSFRC/sph) and cylindrical (RS-
FRC/cyl) fibers. The unit cell results given in this and the
subsequent tables are ensemble averages obtained from a
number of runs.

All unit cell predictions for E ∗ can be seen to lie within
the Hashin–Shtrikman bounds and to be fairly close to
the lower bound, which is to be expected for materi-
als consisting of stiffer inhomogeneities embedded in a
softer matrix, compare Torquato (1991). The results ob-
tained for spherical particles, (PRC/sp), also fulfill the
appropriate three-point bounds. Composites reinforced
by randomly oriented short fibers can be seen to show a
small but noticeable increase in the overall Young’s mod-
ulus compared to materials reinforced by spherical parti-
cles even at the moderate elastic contrast of 6.43.
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Table 1 : Material parameters used for the elastoplastic Al2618–T4 matrix (modified Ludwik hardening law) and
the elastic SiC reinforcements.

E ν σy,0 h n σf

[GPa] [ ] [MPa] [MPa] [ ] [GPa]

Al2618 70 0.30 184 722.7 0.49 —
SiC 450 0.17 — — — 1.0

Table 2 : Analytical and numerical predictions for the
overall elastic moduli of isotropic particle and short fiber
(a=5.0) reinforced SiC/Al2618 MMCs (ξ=0.15).

E∗ ν∗

[GPa] [ ]

HSB 87.6–106.1 0.246–0.305

PRC/3PB 87.9–89.2 0.283–0.287
PRC/GSCS 87.8 0.286
PRC/sp 87.9 0.286

RSFRC/MTM 89.8 0.285
RSFRC/sph 89.4 0.285
RSFRC/cyl 90.0 0.284

In order to allow some assessment of the microfields, pre-
dictions for the phase averages of the von Mises equiv-
alent stress σeqv and of the mean stress σm in matrix
(m) and reinforcements (r) are listed in table 3 for uni-
axial tensile loading. The stresses are normalized with
respect to the applied load, so that they can be inter-
preted in terms of phase concentration factors. For the
unit cell results the phase-level standard deviations are
also given. There is surprisingly little difference in both
the phase averages and the standard deviations of the ma-
trix stresses obtained for composites reinforced by parti-
cles and by random short fibers, with only a very small
reduction of the stress level in the matrix being evident
for the latter case. In contrast, the phase averages of the
equivalent stresses in the fibers are significantly higher
than those in the particles, a smaller effect being present
for the mean stresses.

Table 3 also shows clearly that the phase-level standard
deviations of σ(r)

eqv and σ(r)
m are much higher for the ran-

dom fiber composite, which must be a consequence of
stronger inter-inclusion and/or intra-inclusion stress fluc-

Table 3 : Analytical and numerical predictions for
the phase averaged normalized elastic microstresses in
SiC/Al2618 MMCs (ξ=0.15) reinforced by particles and
randomly oriented short fibers (a=5.0) under uniaxial
tensile loading.

σ(m)
eqv σ(m)

m σ(r)
eqv σ(r)

m

[ ] [ ] [ ] [ ]

PRC/MTM 0.89 0.31 1.62 0.44
PRC/GSCS 0.89 0.31 1.64 0.44
PRC/sp 0.90 0.31 1.69 0.44

±0.16 ±0.11 ±0.20 ±0.08

RSFRC/MTM 0.86 0.31 1.78 0.49
RSFRC/sph 0.89 0.31 1.86 0.48

±0.16 ±0.09 ±0.46 ±0.26
RSFRC/cyl 0.88 0.31 1.92 0.49

±0.15 ±0.09 ±0.52 ±0.29

tuations in the fibers compared to the spherical particles.
Further light can be shed on this issue by evaluating the
inclusion averages of the microstresses together with the
corresponding standard deviations, i.e. by studying the
microfields in individual fibers or particles. The inclu-
sion averages of the equivalent stress in the particles were
found to range between approximately 85% and 125% of
the phase average, whereas for both types of short fiber
reinforcement considered here the range is 75% to 180%.
The corresponding values for the mean stress are 75% to
140% (PRC) and 35% to 230% (RSFRC). As expected,
the variation of the averaged microstresses between indi-
vidual reinforcements thus tends to be significantly larger
in overall isotropic composites containing randomly ori-
ented short fibers than in materials reinforced by parti-
cles.

The above assessment indicates that it may be worth-
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while to adapt mean field theories (which generally are
effective in capturing aspect ratio effects) for extracting
information on microfields in dependence on the orien-
tation of reinforcements. This can, in fact, be achieved
by interpreting the central equation in the formulation
of the Mori–Tanaka method due to Benveniste (1987) in
terms of the average stresses in fibers of a given orienta-
tion (i.e. the equivalent of inclusion averages) rather than
phase averages. The (nondilute) Mori-Tanaka stress con-
centration tensor for fibers having some given orienta-

tion, B
(r) �
MT , is then given by

B
(r) �
MT = B

(r) �
dil B

(m)
MT , (3)

where B
(m)
MT stands for the phase averaged Mori–Tanaka

matrix stress concentration tensor and B
(r) �
dil denotes the

dilute stress concentration tensor transformed from the
fiber coordinate system to the global coordinate system.
The orientation dependent average stress tensors in the
fibers can then be extracted as

σ(r) � = B
(r) �
MT σ , (4)

for any applied macroscopic stress field σ. For more de-
tailed discussions of the approach see Duschlbauer, Pet-
termann, and Böhm (2003).

The evaluation of B
(r) �
dil is straightforward and B

(m)
MT

can be obtained from “multi-phase” Mori–Tanaka meth-
ods that were developed for describing composites with
nonaligned reinforcements e.g. by Dunn, Ledbetter,
Heyliger, and Choi (1996), by Pettermann, Böhm, and
Rammerstorfer (1997), and by Mlekusch (1998). While
being easy to handle and capable of producing useful
results for many applications such multi-phase Mori–
Tanaka models are of an ad-hoc nature and can give rise
to non-symmetric “elastic tensors” under certain condi-
tions, compare e.g. Benveniste (1990), Ferrari (1991),
and Schjødt-Thomsen and Pyrz (2001). This is due to
the fact that Mori–Tanaka methods are intrinsically based
on aligned ellipsoidal arrangements of inhomogeneities,
see Ponte Castañeda and Willis (1995). It was noted
by Schjødt-Thomsen and Pyrz (2001), however, that the
above difficulties do not occur for two-phase materials
with a randomly oriented fibrous reinforcement phase.

For composites reinforced by randomly oriented fibers
subjected to uniaxial tensile loading the stresses in the
individual fibers obtained via eqn. (4) can be plotted as

functions of the angle subtended between a given fiber
and the applied load. Figures 2 and 3 show such diagrams
for the von Mises equivalent stress and the mean stress,
respectively, predicted for the fibers in SiC/Al MMCs.
In both figures, the unit cell results are presented, on the
one hand, in the form of inclusion averages (UC/INCL)
for a number of individual fibers (solid circles), the stan-
dard deviations of the stress distributionswithin the fibers
being indicated by error bars, which directly indicate
the magnitude of the intra-fiber stress fluctuations. On
the other hand, the phase averages of the stresses in the
reinforcements and the corresponding phase-wise stan-
dard deviations are given as horizontal lines designated
as “UC/PH mean” and “UC/PH stdv”, respectively. The
Mori–Tanaka results for the angular dependence of the
stress measures evaluated from eqn. (4) are shown as
bold dotted lines marked as MTM. Unit cell predictions
pertaining to spheroidal fibers (top) and cylindrical fibers
(bottom) are displayed in both figures; the Mori–Tanaka
results, of course, pertain to spheroids in both cases.

Very satisfactory agreement between numerical and an-
alytical predictions for the angular variation of the in-
clusion averages is evident for both deviatoric and mean
stresses, especially for the spheroidal fibers. This
strongly supports the validity of both the unit cell and the
mean field results in view of the very different approxi-
mations involved in the two approaches. As in the case
of spherical particles, unit cells containing a rather low
number of randomly oriented fibers evidently give useful
results for the overall and local elastic responses.

The main contributions to inter-fiber stress fluctuations
can be seen to be due to the fiber orientation. Neverthe-
less, noticeable differences are evident in the averages of
the stresses acting in individual fibers that subtend simi-
lar angles to the applied load, i.e. fiber–fiber interactions
also contribute to inter-fiber fluctuations. A compari-
son of figs. 2 and 3 shows that the reinforcement shape
plays only a limited role in determining the average fiber
stresses in the elastic range (compare also Hill’s mod-
ification theorem as discussed e.g. by Huet, Navi, and
Roelfstra (1991)). In contrast, the intra-fiber fluctuations
of the microstresses are much more marked for cylindri-
cal than for spheroidal fibers, even when both occupy the
same position and have the same orientation. Despite the
fairly low reinforcement volume fraction and elastic con-
trast of the composite studied here, the microfields in the
fibers do not even approach the classical result for di-
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Figure 2 : Normalized equivalent stresses in the fibers
as functions of the angle between the fibers and an ap-
plied uniaxial load σ in the elastic range; results comprise
unit cell predictions for a SiC/Al2618 MMC reinforced
by randomly oriented spheroidal (top) or cylindrical (bot-
tom) fibers (a=5.0, ξ=0.15) and Mori–Tanaka mean field
estimates (MTM).

lute composites due to Eshelby (1957), which states that
intra-inclusion stress and strain fluctuations are zero for
non-interacting ellipsoidal reinforcements.

Elevated stress levels are evident for fibers that are ori-
ented at small angles with respect to the uniaxial load.
In such fibers both the equivalent and the mean stresses
markedly exceed both the corresponding phase averages
and the even lower phase averages predicted for parti-
cle reinforced composites, compare table 3. This clearly
shows the validity of a claim made earlier, viz. that
phase averages and phase-wise standard deviations pro-
vide only very limited information on the microfields in
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Figure 3 : Normalized mean stresses in the fibers as
functions of the angle between the fibers and an applied
uniaxial load σ in the elastic range; results comprise unit
cell predictions for a SiC/Al2618 MMC reinforced by
randomly oriented spheroidal (top) or cylindrical (bot-
tom) fibers (a=5.0, ξ=0.15) and Mori–Tanaka mean field
estimates (MTM).

nonaligned non-spherical reinforcements — they obvi-
ously cannot account for a situations where essentially
a limited percentage of the reinforcements carry a large
fraction of the applied load.

3.1.2 Elastoplastic response

For studying the behavior of MMCs reinforced by ran-
domly oriented short fibers in the elastoplastic regime
uniaxial tensile loading up to an applied stress of σ = 450
MPa, which corresponds to approximately 2.45 times the

initial yield stress of the matrix, σ(m)
y,0 , was simulated. At
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this load level the matrix can be viewed as having yielded
throughout the composite.

Unit cell predictions for the phase averages of the accu-
mulated equivalent plastic strain ε (m)

eqv,pl and the von Mises
stress σeqv in the matrix are listed in table 4 together with
results for the equivalent and mean stresses in the rein-
forcements. In analogy to table 3 reinforcements in the
form of randomly positioned spheres and of randomly
positioned and oriented short fibers of spheroidal and
cylindrical shape and aspect ratio a=5.0 are compared.
Again all stresses are normalized to the applied stress.

Table 4 : Numerical predictions for the phase averaged
normalized elastoplastic microstresses and microstrains
in SiC/Al2618 MMCs (ξ=0.15, σ=2.45σ(m)

y,0) reinforced
by particles and randomly oriented short fibers (a=5.0)
under uniaxial tensile loading.

ε(m)
eqv,pl σ(m)

eqv σ(r)
eqv σ(r)

m

[×10−2] [ ] [ ] [ ]

PRC/sp 12.8 0.99 2.38 0.28
±4.4 ±0.09 ±0.63 ±0.28

RSFRC/sph 10.5 0.93 3.32 0.32
±4.5 ±0.10 ±1.29 ±0.74

RSFRC/cyl 8.4 0.88 3.50 0.30
±3.8 ±0.10 ±1.73 ±1.00

The accumulated plastic strain in the matrix is predicted
to be highest for materials reinforced by spherical par-
ticles and about 35% lower for composites reinforced
by randomly oriented cylinders, with the behavior of
arrangement RSFRC/sph (randomly oriented spheroids)
occupying an intermediate position. This allows the con-
clusion that for a given constituent behavior and for a
given phase volume fraction randomly oriented fibers
tend to give rise to noticeably stronger overall strain hard-
ening compared to spherical particles in MMCs (it is in-
teresting to note that preliminary studies by the authors
have indicated that randomly oriented cube-shaped par-
ticles induce an increase in hardening nearly comparable
to that caused by randomly oriented fibers). The phase
averaged equivalent stresses in the reinforcements are
predicted to be approximately 50% higher in the fiber
reinforced materials, and the phase-level standard devi-
ations of both equivalent and mean stresses are much

higher than in the sphere filled composite.

Figure 4 displays the predicted orientational variation of
the normalized von Mises equivalent stress in the rein-
forcements for both spheroidal and cylindrical fibers, and
fig. 5 presents analogous data for the mean stress. As in
figs. 2 and 3 the average stresses in individual fibers are
marked by solid circles, the standard deviations of the
corresponding stress distributions are represented by er-
ror bars, and the phase averages and phase-level standard
deviations are indicated by horizontal lines.
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Figure 4 : Normalized equivalent stresses in the fibers
as functions of the angle between the fibers and an ap-
plied uniaxial load σ in the fully yielded regime; re-
sults comprise unit cell predictions for an elastoplas-
tic SiC/Al2618 MMC reinforced by randomly oriented
spheroidal (top) or cylindrical (bottom) fibers (a=5.0,
ξ=0.15, σ=2.45σ(m)

y,0).

Compared to the predictions for the elastic range, see
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Figure 5 : Normalized mean stresses in the fibers as
functions of the angle between the fibers and an ap-
plied uniaxial load σ in the fully yielded regime; re-
sults comprise unit cell predictions for an elastoplas-
tic SiC/Al2618 MMC reinforced by randomly oriented
spheroidal (top) or cylindrical (bottom) fibers (a=5.0,
ξ=0.15, σ=2.45σ(m)

y,0).

figs. 2 and 3, the average stress concentration factors of
the fibers are much higher, especially for those nearly
aligned with the loading direction. There is a marked
tendency for fibers oriented at angles of more than 60◦

with respect to the loading direction to show compres-
sive mean stresses. In contrast to the elastic case, fig. 3,
the fiber shape can be seen to have a marked influence
on the average reinforcement stresses, more pronounced
inter-fiber variations being predicted for both deviatoric
and mean stresses in the cylindrical fibers compared to
the spheroidal ones. The intra-fiber fluctuations of the

stresses in individual fibers, especially in those subtend-
ing small angles to the loading direction, are predicted
to be substantial for ellipsoidal reinforcements and very
high indeed for cylindrical ones.

The main limitation of the present unit cell approach
for modeling the mechanical responses of discontinu-
ously reinforced composites are its high computational
costs when nonlinear behaviors are studied. This con-
stitutes a considerable practical obstacle against using
unit cells containing high number of fibers or particles
and against evaluating a considerable number of differ-
ent unit cells describing statistically equivalent phase ar-
rangements, both of which are clearly desirable for im-
proving the statistical significance of the results. Finally,
it is worth mentioning that both the unit cell approach
and the extended Mori–Tanaka method are not limited to
the uniaxial loading of randomly oriented fibers, but can
be used for any fiber orientation distribution function and
for any applied load.

3.2 Particle fracture in composites reinforced by
spherical particles

Whereas in section 3.1 three-dimensional multi-inclusion
unit cells were used for describing the mechanical behav-
ior of damage-free discontinuously reinforced compos-
ites, periodic phase arrangements are now employed for
studying a specific damage mode in particle reinforced
MMCs, viz. brittle cleavage of the particles. Microscale
damage by void nucleation in the matrix or by interfacial
decohesion is not accounted for in the model, which is
aimed solely at studying particle cracking.

Broadly speaking, there are two strategies for modeling
the fracture of particles in MMCs within the framework
of continuum micromechanics. One of them determin-
istically describes the initiation and growth of cracks on
the basis of the local stress distributions in the reinforce-
ments, e.g. by employing cohesive zone models, which
can be used to follow the progress of cracks in brittle me-
dia as well as at the interfaces between elastic and duc-
tile materials, see e.g. Li and Siegmund (2004). Alterna-
tively, the cleavage of particles can be treated as a statis-
tical phenomenon, e.g. by using a probabilistic weakest-
link failure criterion such as Weibull-type fracture prob-
abilities that operate at the particle level to trigger crack-
ing along suitably fracture surfaces. Within the present
context the main advantage of cohesive zone models lies
in their capability for following irregular crack paths,
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see e.g. Maiti and Geubelle (2004), whereas the main
strength of Weibull-based fracture simulations is their in-
trinsic sensitivity to the absolute size of the reinforce-
ments, with larger particles being more liable to fail than
smaller ones as is typically observed in experiments. Dis-
crete microgeometry analyses using either of the above
modeling strategies have been reported in the literature,
all of which involved simple phase arrangement or were
restricted to planar and axisymmetric microgeometries.

Wallin, Saario, and Törrönen (1987) compared different
models for the fracture of brittle particles embedded in a
ductile matrix and concluded that weakest-link theories
typically give valid predictions for the fraction of bro-
ken particles in terms of the particle size and the matrix
flow stress. A drawback of using such approaches for
modeling the fracture of particles in MMCs is that ap-
propriate populations of flaws have not been identified in
typical particles. Simple Weibull-based models also do
not correctly predict the dependence of the rate of parti-
cle cracking in MMCs on particle size and volume frac-
tion obtained from acoustic emission experiments, com-
pare Mummery, Derby, and Scruby (1993). Accordingly,
for studying the brittle failure of particles embedded in
a ductile matrix Weibull-based fracture models are best
viewed as phenomenological approaches.

Weibull-type concepts have been used by a number of
authors for modeling the fracture of particulate reinforce-
ments in MMCs in micromechanical studies employing
mean field methods, see e.g. Fitoussi, Bourgeois, Guo,
and Baptiste (1995), unit cell models, see e.g. Pandorf
(2000) or Ghosh and Moorthy (1998), as well as multi-
scale approaches, see e.g. Maire, Wilkinson, Embury,
and Fougères (1997) and González and LLorca (2000).
In most of these models the fracture probabilities were
used as Rankine-type criteria, i.e. brittle failure was as-
sumed to take place once the fracture probability in a
given particle reached some critical level. In the fol-
lowing, a three-dimensional and fully probabilistic rein-
forcement fracture model for particle reinforced MMCs
is proposed.

Because the original approach of Weibull (1951) was for-
mulated for brittle materials subjected to homogeneous
uniaxial stress fields, it must be modified to account for
the fact that at the relevant volume fractions some mul-
tiaxiality and variability of the stress is always present
within the particles in MMCs. A simple two-parameter
Weibull-type model for such conditions gives the fracture

probability Pk of the k-th particle within a unit cell as

Pk = 1−exp

[
− 1

V0

∫
Vk :σ1(r)>0

(
σ1(r)

σf

)m

dV

]
, (5)

where σ1(r) stands for the distribution of the maximum
principal stress within the particle as obtained by the mi-
cromechanical analysis, Vk : σ1(r) > 0 denotes the region
of particle k for which this maximum principal stress is
tensile, V0 is a reference volume that was set equal to
the particles’ volume for the present study, and m and σ f

are the Weibull modulus and the characteristic strength
of the particles, respectively. Equation (5) can be ex-
pected to give reasonable results provided the stresses
in the particles show only limited multiaxiality, there is
no marked variation of the the orientation of the prin-
cipal stress axes within individual reinforcements, and
the inter-particle stress fluctuations are not excessive.
The volume integrals were evaluated via eqn. (2) and
the Weibull modulus was selected as m=3 for all anal-
yses, which is within the range quoted by LLorca and
González (1998). Under such conditions, inter-particle
stress fluctuations tend to lead to considerable variations
between the fracture probabilities of individual particles,
compare Han, Eckschlager, and Böhm (2001).

The fracture probabilities P i
k of all particles in the unit

cell were computed following each load increment in the
course of displacement controlled nonlinear Finite Ele-
ment analyses. Following Pandorf (2000), the probabil-
ity of failure due to the changes in the stress distributions
occurring during increment i within the k-th particle was
then evaluated as

∆Pi
k = max(0,Pi

k −Pmax,i−1
k ) . (6)

Here Pmax,i−1
k stands for the maximum value of Pk at-

tained during the previous i−1 load steps (note that stress
redistribution effects may lead to decreases in the Pk of
some particles even as the applied load grows, compare
Eckschlager, Böhm, and Han (2002)). For nonzero val-
ues of ∆Pi

k a random number was drawn to decide if the
increased fracture probability led to failure of the parti-
cle. In the case of a positive answer a nodal release tech-
nique was employed to split the particle into two parts
along a predefined fracture surface, which was taken to
pass through the particle center and to be oriented nor-
mally to the macroscopic uniaxial stress. The algorithm
was implemented via ABAQUS user subroutines; for de-
tails see Eckschlager (2002).



16 Copyright c© 2004 Tech Science Press CMES, vol.5, no.1, pp.5-20, 2004

The choice of an “instant particle cleavage” model was
made for reasons of compatibility with the Weibull con-
cept. The assumption that the orientation of the frac-
ture surfaces is normal to the macroscopic applied stress
agrees well with experimental observations of failed par-
ticles, see e.g. Mawsouf (2000). The use of fracture sur-
faces that pass through the inclusion center also appears
plausible for spherical reinforcements. The restriction of
the present model effort to brittle failure of the particles
implicitly introduces an additional assumption, viz. that
cracks cannot progress from reinforcements into the ma-
trix or into the interface. This simplification clearly is un-
realistic for most actual composites, but was introduced
on purpose in order to facilitate the development of algo-
rithms and to allow to study particle cracking in isolation.

Figure 6 shows two deformed states of a 15-particle unit
cell obtained by the Weibull-based node release algo-
rithm introduced above, in which two and five particles,
respectively, have fractured. Whereas the fractured parti-
cles are somewhat difficult to identify at the overall strain
of ε=0.017 (top), some of the cracks have opened widely
at the strain of ε=0.144 (bottom). The stress vs. strain
diagram obtained from the same simulation run is dis-
played in fig. 7, the two deformation states depicted in
fig. 6 being marked as A and B.

An inspection of fig. 7 shows some features worth dis-
cussing. The first two particles can be seen to have failed
at relatively low overall stresses, a behavior that is well
known from actual ductile matrix composites, and the
failure events are fairly unevenly distributed with respect
to both macroscopic stresses and strains. The magnitudes
of the reductions in the homogenized stress associated
with the individual cleavage events are quite high, which
is a direct consequence of using a unit cell model with
a fairly low number of particles (it may be observed that
the failure of one of the 15 particles in the cell corre-
sponds to the simultaneous failure of 6.7% of all particles
in the periodic model composite).

Repeating a simulation run with the same unit cell sub-
jected to the same loading conditions in general will lead
to different particle failure sequences and different over-
all stresses at which the failure of a given particle occurs.
As an example, fig. 8 shows as thin solid lines three stress
vs. strain diagrams obtained with the same unit cell and
for the same loading conditions. In contrast to the soft-
est σ–ε-response present (which corresponds to fig. 7)
the other two show a rather late onset of particle fracture.

1

3

2

1

3

2

ε=0.144

ε=0.017

Figure 6 : Deformed configurations of a unit cell for
a particle reinforced MMC (ξ=0.15) subjected to uniax-
ial loading in 2-direction predicted by the Weibull-based
particle fracture model; results for macroscopic strains of
ε=0.017 (2 fractured particles, top) and ε=0.144 (5 frac-
tured particles, bottom) are shown.

Such sets of results are best evaluated in terms of their
ensemble averaged behavior, which is given in fig. 8 as a
bold solid line.
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Figure 7 : Stress vs. strain diagram predicted by a unit
cell model for a particle reinforced MMC (ξ=0.15) in-
corporating particle cracking; the states corresponding to
the configurations shown in fig. 6 are marked as A and B.
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Figure 8 : Stress vs. strain diagrams obtained from three
runs using the same unit cell model for a particle re-
inforced MMC (ξ=0.15) incorporating particle cracking
(thin lines); the averaged behavior is shown as a bold
solid line.

The present multi-particle unit cell model incorporat-
ing particle fracture can handle simulations of multiple
consecutive failure of spherical particles on the basis
of the realistic stress partitioning provided by a three-
dimensional microgeometry. It can be directly used to
explore effects of absolute particle size by either chang-

ing the size of the unit cell or by modifying the reference
volume V0 in eqn. (5) as well as effects of particle vol-
ume fraction and of relative particle size, both of which
require the generation of appropriate unit cells.

Considerable work would be required for extending the
present model to irregularly shaped particles, for which
additional criteria may have to be introduced to define the
positions of cracks within each particle, for example on
the basis of the local stress fields as proposed by Ghosh
and Moorthy (1998). Similar considerations hold for
modeling the brittle failure in fiber-like reinforcements,
in which multiple cracks may also appear.

4 Conclusions

Three-dimensional multi-inclusion unit cell models were
developed and applied successfully for investigating the
thermomechanical behavior of ductile matrix compos-
ites reinforced by randomly positioned spherical parti-
cles or by randomly oriented fibers. In the case of
damage-free composites reinforced with randomly ori-
ented fibers excellent agreement with a Mori–Tanaka
method was shown in terms of the dependence of the re-
inforcement microstresses on the fiber orientation. Qual-
itative differences in the influence of the reinforcement
shape on these microstresses were identified between
the elastic and fully yielded regimes. For composites
subject to brittle failure of the reinforcing particles the
Weibull-based probabilistic modeling of consecutive par-
ticle cleavage in three-dimensional multi-inclusion unit
cells was achieved.

Future developments will, on the one hand, aim at unit
cells that contain a higher number of appropriately posi-
tioned reinforcements, and further reinforcement shapes
will be studied. On the other hand, it is planned to extend
the models to account for ductile damage of the matrix as
well as for decohesion of the interface between reinforce-
ment and matrix.
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Ponte Castãneda, P.; Willis, J. (1995): The effect of
spatial distributionon the effective behavior of composite
materials and cracked media. J. Mech. Phys. Sol., vol.
43, pp. 1919–1951.

Rintoul, M.; Torquato, S. (1997): Reconstruction of
the structure of dispersions. J. Colloid Interf. Sci., vol.
186, pp. 467–476.

Schjødt-Thomsen, J.; Pyrz, R.(2001): The Mori–
Tanaka stiffness tensor: Diagonal symmetry, complex fi-
bre orientations and non-dilute volume fractions. Mech.
Mater., vol. 33, pp. 531–544.

Segurado, J.; LLorca, J. (2002): A numerical ap-
proximation to the elastic properties of sphere-reinforced
composites. J. Mech. Phys. Sol., vol. 50, pp. 2107–2121.

Segurado, J.; LLorca, J.; Gonźalez, C.(2002): On the
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