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Mesoscale Modeling of Dynamic Fracture of Ceramic Materials

Spandan Maiti1 and Philippe H. Geubelle1

Abstract: The dynamic propagation and branching of
a mode I crack in polycrystalline brittle materials like ce-
ramics are investigated numerically using a 2-D explicit
grain-based cohesive/volumetric finite element scheme.
The granular microstructure of the ceramics is taken into
account and the crack is restricted to propagate along the
grain boundaries. Special emphasis is placed on study-
ing the effect of grain size and cohesive parameters on
the crack branching instability.

keyword: dynamic fracture, crack branching, ceramic
material, grain, explicit cohesive/volumetric finite ele-
ment scheme.

1 Introduction

The long-standing issue of the stability of dynamically
propagating mode I cracks has been the subject of
renewed interest over the past decade [Fineberg and
Marder (1999)]. Experiments conducted on brittle
polymeric systems have repeatedly shown that, as
a crack accelerates and reaches a velocity equal to
approximately 30% of the Rayleigh wave speed CR, a
transition occurs from a relatively smooth and planar
crack propagation to a more unsteady motion that ulti-
mately leads to branching [Ravi-Chandar and Knauss
(1984); Fineberg, Gross, Marder and Swinney (1991,
1992)]. Associated with this transition are characteristic
features on the fracture surface, which evolves from
mirror-like appearance to mist and hackle formations.
The experimental investigation conducted by Fineberg
and co-workers has presented clear evidence of a direct
correlation between these periodic features on the frac-
ture surface and the oscillations in crack velocity. This
instability has been proposed to explain the gap between
theoretical predictions and experimental observations
of the terminal velocity of dynamically propagating
mode I cracks [Washabaugh and Knauss (1993)]. For
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a detailed review of existing theoretical and analyti-
cal work on the topic, see [Fineberg and Marder (1999)].

Due primarily to the geometrical complexity of the
problem, the non-planar motion of the crack and the
presence of micro-branches that ultimately lead to the
onset of macro-branching present some interesting
challenges in the numerical modeling of this instability.
Many investigations have relied on molecular dynamics
simulations [Abraham, Brodbeck, Rafey and Rudge
(1994); Holland and Marder (1998); Gumbsch, Zhou
and Holian (1997)]. Others have used various forms of
the finite element technique [Johnson (1992); Xu and
Needleman (1994)].

But the great majority of these experimental and an-
alytical studies have focused on amorphous brittle
materials without a microstructural length scale. Only
one experiment has been performed on soda-lime glass
[Gross, Fineberg, Marder, McCormick and Swinney
(1993)], which possesses a nearly crystalline order at
small length scales. The authors of this study noted
similar qualitative and quantitative fracture behavior
with non-crystalline systems.

The objective of this paper is to provide some insight
on the potential link between microstructural length
scale and mode I crack instability through a detailed
two-dimensional numerical investigation of the dynamic
fracture of granular brittle materials. The analysis is
performed at the continuum mesoscale level and relies
on a grain-based cohesive volumetric finite element
(CVFE) scheme, which accounts for the granular mi-
crostructure of polycrystalline materials while allowing
for the spontaneous initiation, propagation and possible
branching of intergranular cracks. A similar numerical
scheme was used by [Zavattieri and Espinosa (2001);
Zavattieri, Raghuram and Espinosa (2001)] to study
the failure associated with the compressive loading of



92 Copyright c© 2004 Tech Science Press CMES, vol.5, no.2, pp.91-101, 2004

ceramic systems. While the emphasis of these studies
was placed on the load-induced distributed damage in a
representative volume domain of the ceramic material,
the present work focuses on the stability of a single
intergranular crack under dynamic tensile loading.
Special emphasis is placed hereafter on the effects
on the crack propagation and branching behavior of
various parameters such as grain size and tensile to shear
strength ratio.

2 Numerical scheme

The key elements of the numerical scheme used in
this study are its ability to incorporate the granular
microstructure of the ceramic material, to simulate
the spontaneous initiation, propagation and possible
branching of intergranular cracks, and to account for
inertial effects.

To simulate the spontaneous dynamic motion of cracks,
we use a 2-D plane strain cohesive/volumetric finite ele-
ment (CVFE) scheme that has shown great success in the
simulation of various dynamic fracture events in brittle
media [Camacho and Ortiz (1996); Geubelle and Baylor
(1998); Needleman (1997); Bi, Li, Geubelle and Lam-
bros (2002)]. As its name indicates, the method is based
on the combination of conventional (volumetric) ele-
ments used to model the mechanical response of the ce-
ramic material, and interface (cohesive) elements intro-
duced to simulate the intergranular failure process [Chan-
dra and Shet (2004)]. Fig. 1 schematically illustrates the
CVFE concept. The volumetric elements used in the
present study are six-node triangular elements, with a
constitutive response described by a linear relation be-
tween the second Piola-Kirchhoff stress tensor SSS and
the Lagrangian strain tensor EEE [Geubelle and Baylor
(1998)]. A nonlinear kinematic description is used here
to allow for possible large rotations associated with the
fracture event. In this study, the constitutive response of
each grain is assumed to be linear and isotropic, i.e.,

Si j = λEmmδi j +2µEi j, (1)

where λ and µ denote the two Lamé constants.

The cohesive elements placed along the grain boundaries
are characterized by a bi-linear rate-independent failure
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Figure 1 : Schematic of the grain-based CVFE scheme,
showing three grains discretized with 6-node volumet-
ric elements and linked with 6-node cohesive elements
placed along their boundary. The cohesive elements are
shown in their deformed configuration: they initially
have no thickness and adjacent nodes are superposed.

law relating the displacement jump vector (∆∆∆) to the co-
hesive traction vector (TTT ) acting across the cohesive sur-
faces Γc:

Tn =
s

1− s
∆n

∆nc

σmax

sinit
, Tt =

s
1− s

∆t

∆tc

τmax

sinit
, (2)

where the subscripts n and t denote normal and tangen-
tial components, respectively, σmax and τmax are the ten-
sile and shear failure strengths, while ∆nc and ∆tc are the
critical opening and shear displacement jumps. The evo-
lution of the damage process is quantified by the mono-
tonically decreasing damage parameter s defined as

s = min(smin, 〈1−‖∆̃∆∆‖〉), (3)

where ∆̃∆∆ denotes the normalized displacement jump vec-
tor

∆̃∆∆ =
{

∆̃n

∆̃t

}
=

{
∆n/∆nc

∆t/∆tc

}
, (4)

and

〈a〉 = a if a > 0

= 0 otherwise.

As the grain boundary fails, the value of s gradually de-
creases from an initial value sinit close to unity (0.98 in
this study) to zero, point at which complete failure is
achieved. The coupling between normal and tangential
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failure in mixed-mode situations is captured by defining
s in terms of the L2-norm of the normalized displacement
jump vector ∆̃∆∆, as indicated by Eq. 3 and illustrated in
Fig. 2.
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Figure 2 : Cohesive failure model: variation of the
normal (a) and tangential (b) components of the cohe-
sive traction vector TTT with respect to the normal (∆n)
and shear (∆t ) crack opening displacements, showing the
coupling between tensile and shear failure.

The appearance of the previously achieved minimum
value smin in the definition of the damage parameter s
prevents the cohesive surfaces from healing in the event
unloading takes place during the cohesive failure process.
To prevent overlapping of adjacent grains, the damage
parameter s is kept to its initial value s init close to unity
when the normal displacement jump ∆n becomes nega-
tive. As illustrated in Fig. 2a, this approach results in
very high repulsive normal traction along the contact-
ing surfaces. This simple explicit contact enforcement
scheme is appropriate for the present study dedicated to
predominantly mode I failure due to the relatively limited

contact between newly created fracture surfaces and very
small relative motion between neighboring grains.

Figure 3 : Cohesive/volumetric finite element mesh for a
typical fracture specimen used in this study. The average
grain size is approximately 120 µm. The mesh is com-
posed of 1127 grains, 132,074 nodes, 48,931 volumetric
elements and 15,982 cohesive elements. The inset shows
the actual mesh underlying the granular microstructure.

To generate the granular microstructure, a two-step
discretization process is adopted. The grains are first
created through a Voronoi tessellation of the ceramic
specimen, leading to a relatively uniform size distri-
bution. The grains are then discretized with 6-node
triangular elements by Delaunay triangulation and
6-node cohesive elements are inserted along the grain
boundaries. A typical mesh is presented in Fig. 3,
with the cohesive elements shown in their undeformed
configuration.

The finite element implementation is based on the fol-
lowing form of the principle of virtual work

∫
Ω

SSS : δEEE dΩ+
∫

Ω
ρüuu ·δuuu dΩ

−
∫

Γex

TTT ex ·δuuu dΓ−
∫

Γc

TTT ·δ∆∆∆ dΓc = 0, (5)

where δuuu is the virtual displacement field, δEEE denotes
the corresponding virtual Lagrangian strains, δ∆∆∆ is the
virtual displacement jump vector acting along the grain
boundaries, TTT ex corresponds to the externally applied
traction vector and a superposed dot denotes derivative
with respect to time. The four terms entering Eq. 5 re-
spectively correspond to the virtual work done by the in-
ternal stresses, the inertial forces, the externally applied
tractions and the cohesive tractions. Since the capture
of the dynamic fracture process requires very small time
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steps, an explicit central difference time stepping scheme
is used in this investigation, with the time step size ∆t
chosen as approximately 5% of the limiting (Courant)
value.

3 Problem description

The model fracture problem solved in the present study
is shown schematically in Fig. 4. It consists of a pre-
notched rectangular specimen subjected to a vertical ve-
locity V imposed symmetrically along the entire left
boundary of the domain. The imposed velocity is in-
creased linearly with time during the first 0.1 µs of the
simulation, and is kept constant after that. The remain-
der of the specimen boundary is traction-free.

V

2.5 mm
0.5 mm

0.4 mm

5.5 mm

Figure 4 : The geometry and boundary conditions of the
test specimen.

The properties describing the constitutive response of
the volumetric elements are those of alumina: Young’s
modulus E = 400 GPa, Poisson’s ratio ν = 0.27 and
density ρ = 3800 kg/m3. The corresponding values
of the dilatational (Cd), shear (Cs) and Rayleigh (CR)
wave speeds are 11,469 m/s, 6438 m/s and 5987 m/s,
respectively.

As mentioned in the previous section, four parameters
describe the failure response of the material: the tensile
strength σmax, the shear strength τmax, the critical nor-
mal opening displacement ∆nc and the critical tangential
opening displacement ∆tc. The latter two parameters can
be expressed in terms of the mode I and mode II fracture
toughnesses

GIc =
1
2

σmax∆nc, GIIc =
1
2

τmax∆tc. (6)

In the work presented hereafter, GIc and GIIc are taken to
be 69.5 J/m2. Unless specified otherwise, the cohesive
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Figure 5 : Granular discretization and corresponding
grain size distribution for a specimen with a 125 µm (top)
and a 70 µm (bottom) average grain size.

properties in the normal and tangential directions are
taken to be the same. In the majority of the simulations
presented in the next section, the normal cohesive
strength σmax is chosen as 1% of the Young’s modulus,
i.e., 4 GPa.

To determine the effect of the microstructural length
scale on the stability of the dynamic mode I crack, simu-
lations are performed on fracture specimens with average
grain sizes of 70, 100, 125 and 150 µm. Fig. 5 presents
the granular discretization of the fracture specimen and
the corresponding grain size distribution for the 70 and
125 µm average grain size cases.

To conclude this section, it is worth pointing out that the
introduction of a microstructural length scale (i.e., the
grain size) separating the cohesive surfaces eliminates
issues associated with the convergence of the CVFE
scheme [Falk, Needleman and Rice (2001)]. To illus-
trate the convergence of the grain-based CVFE scheme,
we present in Fig. 6 the evolution of the total and ap-
parent crack lengths (defined below) for three CVFE
discretizations of a fracture specimen with an average
grain size of 150 µm. The specimen geometry, mate-
rial properties and boundary conditions are the same as
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Figure 6 : Evolution of apparent and total lengths for
three different meshes with equal number of grains but
different number of cohesive elements.

those described earlier in this section (Fig. 4) and the ap-
plied velocity is chosen as 5 m/s. Meshes 1, 2 and 3
in Fig. 6 respectively denote discretizations with 8, 10
and 12 six-node cohesive elements introduced along the
smallest grain edge present in the domain, respectively
leading, for this particular case, to 10,272, 12,572 and
14,902 cohesive elements. As indicated in Fig. 6, the
three meshes yield almost identical crack length results,
except for the evolution of the total crack length as the
crack approaches the right boundary, where the coarser
mesh predicts a slightly higher total crack length than the
two finer meshes. In the remainder of this paper, the co-
hesive element size is chosen as 10% of the smallest grain
edge in the domain.

4 Results

In our discussion of the results presented hereafter, a dis-
tinction is made repeatedly between apparent and total
crack lengths. The apparent crack length aapp is de-
fined as the length of the crack projected on the initial
crack plane. It corresponds to the crack length that would
be measured experimentally without taking into account
the waviness of the crack path created by the granu-
lar microstructure and the possible presence of micro-
branches. These two important effects are however cap-
tured by the total crack length atot , which is defined as
the aggregate of all completely failed cohesive surfaces
(i.e., those for which the damage parameter s defined in
Eq. 3 has reached a zero value).

4.1 Analysis of the crack path

We start by discussing the characteristics of the path of a
non branching mode I crack. The chosen illustrative ex-
ample is that of a fracture specimen with an average grain
size of 70 µm and subjected to an imposed velocity V =
5 m/s. The trace of the resulting crack path is shown
in Fig. 7(a). In this particular case, almost no micro-
branches are detected and the main inter-granular crack
propagates through the fracture specimen following an
undulated path. The spatial period of these undulations
is of the order of 1 mm. These oscillations lead to an in-
creasing difference between the evolution of the apparent
and total crack lengths, as shown in Fig. 7(b).
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Figure 7 : Crack path (a) and evolution of apparent and
total crack lengths (b) for a fracture specimen with an
average grain size of 70 µm subjected to an imposed ve-
locity V = 5 m/s. The crack length are measured from
the tip of the notch.

Both curves follow a similar trend: after a delay asso-
ciated with the loading wave propagation and the crack
initiation, the crack quickly accelerates and then slows
down as the crack length increases. It is interesting to
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Figure 8 : Evolution of the apparent crack velocity ȧ app

(normalized by the Rayleigh wave speed CR) for the frac-
ture problem presented in Fig. 7, showing the oscillatory
nature of the crack motion.

note that the curves are not smooth but present localized
oscillations that are not associated with the sampling
rate (crack length data are recorded every 1.3×10−11 s,
approximately) or with the spatial discretization (as
indicated by a convergence study). The non-smooth
character of the crack length history is clearly an
indication of the localized instability of the crack as it
propagates rapidly along the grain boundaries.

This instability is also apparent from the evolution of
the apparent crack velocity ȧapp shown in Fig. 8. The
average apparent crack velocity jumps almost instanta-
neously to about 50% of the Rayleigh wave speed. Note
that the oscillations in ȧ app are not numerical artifacts
associated with the differentiation of the a app vs. time
curve: the crack velocity values have been obtained using
a smoothing algorithm involving a 1000-sampling point
window around the time of observation. The velocity
transients are due to the discrete nature of the microstruc-
ture as the crack propagates from one grain boundary to
the next. As indicated in Fig. 8, substantial oscillations
take place around the average value of 0.5 CR, reach-
ing repeatedly maximum velocities approaching 0.75 CR.

As indicated in Fig. 7(b), the undulated nature of the
crack motion leads to an increasing gap between appar-
ent and total crack lengths. However, as illustrated in
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Figure 9 : Total to apparent crack length ratio vs. ap-
parent crack length for the fracture problem presented in
Fig. 7.

Fig. 9, after a short transient phase, the ratio between
aapp and atot remains almost constant during the prop-
agation event. Its computed value is approximately 1.2,
which is about 10% higher than the value of 1.1 obtained
by [Holm (1998)] for various granular microstructures
using graph algorithms and a fracture energy minimiza-
tion scheme. This difference seems therefore to be at-
tributed to the inertial effects linked to the very rapid
motion of the inter-granular crack, whose dynamic in-
stability leads it to deviate from the “quasi-static” mini-
mum energy path. The ability of the crack tip to absorb
increased amount of energy after instability sets in was
also noted by [Fineberg and Marder (1999)].

4.2 Branching instability

To investigate the branching instability of the mode I
crack, we perform a series of simulations on a fracture
specimen with an average grain size of 125 µm subjected
to various values of the applied velocity V . The objective
here is to determine the critical value Vc of the applied
velocity that leads to the onset of macroscopic branching
of the crack.

The evolution of the apparent crack length aapp is
presented in Fig. 10 for various values of the applied ve-
locity V . As expected, the time of initiation increases as
V decreases. Furthermore, for low values of V , the crack
propagates in a very unsteady fashion through multiple
propagation and arrest events. It is interesting to note
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Figure 10 : Apparent crack length versus time for differ-
ent applied velocities V imposed on a fracture specimen
with a 125 µm average grain size.

that the propagation speed between two arrest events
is always between 15 and 25% of the Rayleigh wave
speed CR. This is consistent with the existence of a finite
minimum crack speed observed elsewhere [Takahasi,
Matsushige and Sakurada (1984); Marder and Gross
(1995)].

As the applied velocity value reaches 5 m/s, the aver-
age apparent crack velocity approaches 0.5 CR. However,
when V is further increased, the crack appears to slow
down, as indicated by the curves corresponding to V = 6
m/s and V = 7 m/s in Fig. 10. This apparent inconsis-
tency is associated with the branching of the crack that,
for this specimen, takes place as V reaches the critical
value Vc = 5.3 m/s. The transition leading to the branch-
ing instability is illustrated in Fig. 11, which presents the
crack path for an applied loading velocity just below and
at the critical branching value Vc.

Fig. 11(a) clearly illustrates the appearance of an
unsuccessful micro-branching attempt of the mode I
crack. As indicated in the same figure, the crack path
undulations appear to increase as the crack approaches
the branching stability limit, leading to a higher total to
apparent crack length ratio (see below). Once the applied
loading velocity exceeds its critical value, the crack
path bifurcates into two almost symmetric branches at
an angle of approximately 60◦ (Fig. 11(b)). Although
the specimen size does not allow for a detailed study

(a)

(b)
Figure 11 : Crack branching in a fracture specimen with
a 125 µm average grain size: crack path obtained for an
imposed velocity V just below (a) (V = 5.29 m/s) and at
(b) (V = 5.3 m/s) the critical branching value Vc.

of the individual crack branches, their respective paths
appear to have an oscillatory nature similar to that of the
original main crack.

Before providing more details on the branching process,
it is important to investigate the effect of the grain
distribution on the transition behavior. To that effect,
a series of simulations have been performed on the
same fracture specimen, but using various granular
microstructures with the same average grain size of
125 µm. The obtained values of the critical loading
velocity Vc all fall within a relatively broad range of
6.10 ± 0.8 m/s, providing some statistical bounds on
the value of Vc. This result is to be expected since
dynamic mode I crack propagation is a highly unstable
phenomenon; its macroscopic features are thus strongly
correlated with the microstructure of the specimen. But
a closer look at the local apparent crack velocity at the
point of branching reveals that it is always approximately
50% of the Rayleigh wave speed.

To shed more light on the branching transition process,
the evolution of the apparent and total crack lengths for a
specimen for which Vc = 5.30 m/s is presented in Fig. 12
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Figure 12 : Evolution of the total and apparent crack
lengths for a fracture specimen with an average grain size
of 125 µm, for which the critical loading velocity is ap-
proximately 5.30 m/s.

for two values of the applied velocity V : just below V c (V
= 5.29 m/s) and just at Vc (V = 5.30 m/s). It is observed
that, up to the onset of bifurcation, which takes place
approximately at time t = 0.45 µs, the apparent and total
crack length curves are almost identical for these two
loading cases. However, immediately after branching,
the curves diverge leading, as expected, to a reduction of
the apparent crack velocity and an increase in the total
crack speed.

The transition between single and multiple crack propa-
gation can be further analyzed by combining the various
curves shown in Fig. 10 in a plot of the total to appar-
ent crack length ratio vs. the apparent crack velocity
(Fig. 13). As indicated in Section 4.1, for low values of
the apparent crack velocity (between 0.15 and 0.4 CR),
this ratio takes the constant value of approximately 1.2.
However, as the crack speed approaches 0.5 CR, the
crack path undergoes increased undulations that lead to
an increased value of the atot/aapp ratio, which ranges
between 1.2 and 1.5. Once the branching point has been
reached and the cracks deflect from their original paths,
the crack velocity apparently decreases (actually, the
concept of apparent crack velocity does not make much
sense beyond the branching point) and, at the same time,
atot/aapp ratio increases, as indicated in Fig. 13.

Finally, we present in Fig. 14 the various energy com-
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Figure 13 : Total to apparent crack length ratio vs. ap-
parent crack velocity ȧapp, showing the three phases of
the dynamic fracture process.

ponents for the two dynamic fracture problems shown in
Fig. 12. Energy conservation in the system suggests that

ET = EK +EU +EF , (7)

where ET is the energy externally introduced in the spec-
imen, EK is the total kinetic energy, EU is the strain en-
ergy and EF denotes the energy dissipated in the fracture
process defined as

EF =
∫ t

0
Ėcohdτ−Ucoh,

where Ėcoh is the rate of total energy stored in the cohe-
sive layer given by

Ėcoh =
∫

Γc

Ti∆̇idΓc.

Ucoh is the recoverable strain energy stored in the cohe-
sive elements. It is expressed as

Ucoh =
1
2

∫
Γc

Ti∆idΓc.

As apparent in Fig. 14, the branching process is accom-
panied by an increase of the fracture energy EF at the
expense of the strain and kinetic energies.

4.3 Effect of grain size and cohesive parameters

To study the effect of grain size on the crack branch-
ing process, the dynamic failure of four specimens with
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Figure 14 : Evolution of various energy components for
the two fracture problems shown in Fig. 12. ET , EF , EK

and EU respectively denote the external, fracture, kinetic
and strain energies. The solid curves correspond to the
case V = 5.29 m/s, and the dashed curves to the case V =
5.30 m/s.

different grain sizes has been simulated using the same
specimen geometry, material properties and boundary
conditions as those used in the previous sections. We ob-
tained the following values of the critical value Vc of the
applied velocity: Vc = 6.6, 5.4, 7.0 and 6.2 m/s for speci-
mens with average grain sizes equal to 150, 125, 100 and
70 µm, respectively. The evolution of the apparent crack
length aapp corresponding to applied velocities V just be-
low (by about 0.1 m/s) these critical valuesVc is shown in
Fig. 15 for these four specimens, together with an indica-
tion of where the branching point would be for V = Vc.
Note that the propagation behavior of the cracks for vari-
ous average grain sizes are different, especially the curve
for the grain size of 125 µm, which shows multiple ar-
rest events. As illustrated earlier in Fig. 10, this behavior
is characteristic of lower values of the applied velocity
V . But it is interesting to note that all curves seem to
have the same slope at the point of branching, indicating
that the grain size does not appear to affect the critical
crack speed (approximately 0.5 CR) at which this insta-
bility takes place. Since crack branching is intrinsically
an unstable phenomenon, the location of the branching
points is quite random, however, and cannot be directly
correlated with the grain size.

We conclude this study by examining the effect of the co-
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Figure 15 : Evolution of the apparent crack length for
fracture specimen with different average grain sizes. In
each case, the applied velocity value V is chosen just be-
low (within 0.1 m/s) the critical value Vc beyond which
branching takes place. The space and time locations of
the branching points that would be obtained for a slightly
higher applied velocity (V = Vc) are also indicated.

hesive parameters on the crack branching process, and, in
particular, on the effect of the tensile to shear strength ra-
tio η = σmax/τmax. The mode I and II fracture toughness
values are kept constant (GIc = GIIc = 69.5 J/m2), and so
is the shear strength τmax = 4 GPa. The tensile to shear
strength ratio η is varied from 0.25 to 1.25, i.e., σmax is
varied between 1 and 5 GPa. Since the failure mode is
predominantly tensile, η is expected to play an impor-
tant role in the branching process. This is illustrated in
Fig. 16, which presents the variation of Vc with respect
to η for the case of a fracture specimen with an average
grain size of 125 µm. As the tensile to shear strength
ratio increases, the value of the applied velocity leading
to branching increases as well, since increased loading is
needed to drive the crack to a sufficiently high velocity
to initiate crack branching.

However, while η has a clear effect on Vc, it does not
seem to affect the value of the crack speed at which
branching takes place, as indicated in Fig. 17, which
presents the evolution of the apparent crack length for
the same set of η values. As was the case for Fig. 15, the
applied velocity is chosen just below the critical value
Vc, and the symbols correspond to the locations of the
branching that would take place for a slightly higher
value of V . In all cases, the slope of the curve at the
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Figure 16 : Effect of the tensile to shear strength ratio η
= σmax/τmax on the critical applied velocity Vc.

branching point yields a velocity of approximately 3000
m/s, i.e., 0.5 CR. This indicates that, while the cohesive
parameter η affects the critical value of the applied
“external” loading V , instability is still governed by the
same “local” quantity, i.e., the same critical value of the
crack tip speed.

5 Conclusion

We have presented a numerical study of dynamic crack
propagation and branching in granular brittle systems.
The analysis has been performed with the aid of an
explicit grain-based cohesive/volumetric finite element
scheme able to capture both the spontaneous motion of
one or more intergranular cracks and inertial effects. Re-
sults indicate that the dynamic crack waviness is only
slightly larger than its quasi-static counterpart, but in-
creases more substantially as the crack speed approaches
the critical value (found to be approximately equal to
0.5 CR) leading to crack branching. The onset of branch-
ing instability does not appear to be much affected by the
size and distribution of the grains.
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Figure 17 : Effect of the tensile to shear strength ratio
η on the evolution of the apparent crack length for the
fracture specimen with an average grain size of 125 µm.
In each case, the applied velocity value V is chosen just
below the critical value Vc. The symbols denote the loca-
tions of the branching points that would be obtained for
a slightly higher applied velocity (V = Vc).
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