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Homogenization Analysis for Particulate Composite Materials using the Boundary
Element Method
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Abstract: A method to obtain the effective mechanical
properties of particulate composite materials is presented
in this paper. The methodology is based on the bound-
ary element method (BEM) coupled with analytical so-
lutions for ellipsoidal inclusions such as Eshelby’s ten-
sor. There is no numerical integration for the surfaces or
the domains of distributed particles, and, therefore, pro-
posed technique is very efficient. Homogenization anal-
ysis based on representative volume element (RVE) is
carried out considering a unit cell containing many par-
ticles (up to 1000). By using a conventional BEM ap-
proach (i.e., multi-region BEM), it would be extremely
difficult to analyze such a large RVE, since the problem
size would become unacceptably large. Some numerical
solutions are presented and the accuracy of present ap-
proach is discussed in this paper.

keyword: Boundary element method (BEM), Ho-
mogenization method, Representative volume element
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1 Introduction

So far, a number of applications of homogenization anal-
yses have been presented. Homogenization method can
be used as an analytical engine to connect the results
of unit cell analysis for the microstructure of heteroge-
neous materials and the macroscopic mechanical prop-
erties. For example, macroscopic elastic moduli of het-
erogeneous materials can be evaluated by the homoge-
nization method (Guedes & Kikuchi (1990); Kalamkarov
(1992); Hollister & Kikuchi (1994)). Effective me-
chanical behaviors of composites materials whose ma-
terial constituents undergo material and geometric non-
linear behavior can be determined by the homogeniza-
tion analyses (Okada, Fukui, Kumazawa & Maruyama
(1998); Wu & Ohno (1999); Ohno, Wu & Matsuda
(2000); Ohno, Matsuda & Wu (2001); Ohono, Okumura
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& Noguchi (2002); Takano, Ohnishi, Zako & Nishiyabu
(2000); Takano, Ohnishi, Zako & Nishiyabu (2001);
Higa & Tomita (2000)) and also the effective mechani-
cal properties of structural components can be evaluated
(Okada, Fujitani, Fukui & Kumazawa (2001); Takano,
Zako & Kikuchi (1995)). Analysis/design for smart
material/structure can be done by the homogenization
method (Silva, Nishiwaki, Fonseca & Kikuchi (1999)).
The homogenization method is quite versatile and has ap-
plied to many types of problems and is considered to be
a very important member among the methods of multi-
scale analysis such as S-version FEM (Fish (1992); Fish
& Guttal (1996)). As a latest development in the con-
text, Raghavan & Ghosh (2004) presented an adaptive
strategy that can vary computational resolution for criti-
cal and non-critical regions.

So far, the most of homogenization analyses have been
carried out using the finite element method (FEM). As a
numerical method, the boundary element method (BEM)
should be able to be used for the homogenization analy-
ses. However, only a few homogenization analyses have
been presented in literature (Shibuya & Wang (1994);
Kaminski (1999); Proch´azka (2001); Okada, Fukui &
Kumazawa (2000, 2001a, 2002)). Therefore, the advan-
tages and disadvantages of BEM in the analyses of ho-
mogenization method have not fully been explored. The
authors’ previous papers have presented some results of
homogenization analyses using BEM. Two different for-
mulations have been presented for the homogenization
analyses based on BEM (single-region BEM with vol-
ume integral terms to represent the difference between
the matrix material and other material constituents and
multi-region BEM (Okada, Fukui & Kumazawa (2001a,
2002))).

On the other hand, particulate composite materials as de-
picted inFigure 1 contain second phase particles which
are distributed randomly or regularly in matrix mate-
rial (see Ashby (1993) for a comprehensive review of
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composite materials). The overall mechanical properties
are improved compared with monotonic materials (i.e.,
higher value of elastic modulus, etc.). To evaluate the ef-
fective mechanical properties of particulate composites,
representative volume element (RVE) approaches based
on FEM have often been used. RVE approaches include
the homogenization method. In many cases, only one or
several particles are typically distributed in an RVE (for
example, Wienecke, Brockenbrough & Romanko (1995);
Higa & Tomita (2000)), or two dimensional idealization
is adopted (Terada, Hori, Kyoya & Kikuchi (2000)). For
the problems in which the particles distribute randomly
in a three dimensional space, we need to assume the dis-
tribution of a number of particles in an RVE. Carrying
out such analysis by assuming tens and hundreds of ran-
domly distributed particles in an RVE would be trouble-
some not only in carrying out the computation itself but
also in generating its input data. Though image based
finite element method (Hollister & Kikuchi (1992), Ter-
ada, Miura & Kikuchi. (1997)) or Vronoi cell finite ele-
ment method (Moorthy & Ghosh (1998) and Lee Moor-
thy & Ghosh (1999)) may be used to simplify the pro-
cesses of model generation, the problems associated with
the problem size still remain.

Figure 1 : Particulate composite material composed of
matrix and embedded particles

In present research, we propose a homogenization analy-
sis methodology by using the boundary element method
(BEM) for particulate composite material (Figure 1).
BEM was invented in the late 60thby the pioneers (Rizzo
(1967); Cruse (1969)) and has evolved over the years ex-
panding its capabilities from linear to nonlinear analy-
ses (Banerjee & Cathie (1980); Banerjee & Reveendra
(1987), Chandra & Mukherjee (1983, 1986); Okada, Ra-
jiyah & Atluri (1988, 1989); Okada & Atluri (1994)).

Also, a fundamental development to obtain weakly sin-
gular traction and displacement boundary integral equa-
tions was recently presented by Han & Atluri (2003).
Incorporating the outcomes of such a methodology with
those of present work may lead to very useful results. In
the authors’ previous papers (Okada, Fukui & Kumazawa
(2001a, 2002)), the formulations and some numerical re-
sults of the homogenization analyses using BEM were
presented. We found that the accuracy of analysis was
unexpectedly good for coarse discretizations for the outer
boundary of RVE domain and for volume/interface of the
particle. With this in our mind, we further simplify the
numerical method by using analytical solutions for parti-
cles and drastically reduce the amount of numerical com-
putations. To this end, we assume the shapes of the dis-
tributed particles to be ellipsoidal and utilize available
analytical solutions for ellipsoidal inclusions such as Es-
helby’s solutions (Eshelby (1957); Mura (1982)).

On the other hand works in similar lines of thoughtcan be
found in literature. Nishioka and Kato (1998) and Kato
and Nishioka (2000) has presented a numerical method
using analytical solutions for embedded cracks and the
problems of microcracked solid were analyzed. A num-
ber of microcracks were assumed to exist in the analysis
domain. Banerjee & Henry (1992) presented a formu-
lation of BEM for the analysis of fiber reinforced com-
posites, in which the integrals of surface of fibers were
reduced to one dimensional line integral. Essential idea
that integrals are somehow simplified is quite similar to
that in present work.

In this paper, we first present the formulations of ho-
mogenization analysis using BEM and then its extension
to the analysis of particulate composite materials is dis-
cussed. We present some numerical solutions for the
variations of effective elastic moduli of composite and
internal stress distributions. It is shown that analyses for
a unit cell containing 1000 particles can be carried out by
present BEM approach.

2 Integral equations for homogenization method for
particulate composite material

2.1 Preliminary

Some general remarks on the formulations of homoge-
nization method are discussed by following Kalamkarov
(1992). It is noted that there are many other key literature
in the subject such as Bensoussan, Lions & Papanicolaou
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(1978). Global structure is assumed to be composed of
periodic microstructures as shown inFigure 2. The size
ε of unit cell is considered to be very small compared
with that of the global structure. The displacementsu i

are expressed in terms of global coordinatesxi and local
coordinatesyi. And they are related through the sizeε of
unit cell,:

yi = xi
/

ε+ci (1)

The displacementsui are expressed by an asymptotic ex-
pansion.

ui (x,y)
= uo

i (x,y)+εu1
i (x,y)+ε2u2

i (x,y)++ε3u3
i (x,y) · · ·

(2)

Equation formulations governing the deformations of
solid at local and global level are derived in a limiting
sense that the sizeε of unit cell is infinitesimally small
(i.e.,ε → 0).

Figure 2 : A heterogeneous material having periodic mi-
crostructure

The structure is composed of matrix and embedded sec-
ondary phase materials as illustrated for a unit cell inFig-
ure 3. As shown inFigure 3, the secondary phase ma-
terials are embedded in the unit cell and, therefore, the
elastic constantsEi jk� are expressed as functions of local
coordinatesyi.

Ei jk� = EM
i jk�

(
yi ∈ Y −[Y ∗1+Y ∗2+Y ∗3+ · · ·+Y ∗N])

Ei jk� = E∗1
i jk�

(
yi ∈ Y ∗1) , Ei jk� = E∗2

i jk�

(
yi ∈ Y ∗2) ,

Ei jk� = E∗3
i jk�

(
yi ∈ Y ∗3) , · · · , Ei jk� = E∗N

i jk�

(
yi ∈ Y ∗N)

(3)

Figure 3 : Heterogeneous material composed of matrix
and embedded second phase materials

whereY ∗I (I = 1,2,3, · · · ,N) represents the domain of
the I-th secondary phase material. In this paper, we as-
sume that matrix material is elastic and is homogeneous
and isotropic. The secondary phase materials are elastic
and homogeneous within a material phase but need not
be isotropic.

The stresses are expressed by Hooke’s law. The equation
of equilibrium (linear momentum balance law) are to be
satisfied in the solid. They are written to be:

σi j = Ei jk�
∂uk

∂x�
(4)

∂σi j

∂xi
+b j = 0 (5)

wherebi are the body force per unit volume.

The derivatives of the displacementsui are written to be:

∂ui

∂x j

=
∂uo

i (x,y)
∂x j

+ε
∂u1

i (x,y)
∂x j

+ε2 ∂u2
i (x,y)
∂x j

+ε3 ∂u3
i (x,y)
∂x j

+ · · ·+ 1
ε

∂uo
i (x,y)
∂y j

+
∂u1

i (x,y)
∂y j

+ε
∂u2

i (x,y)
∂y j

+ε2 ∂u3
i (x,y)
∂y j

+ · · · (6)
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We then use Eq. 6 in Eqs. 4 and 5 and we arrive at:

∂
∂xi

[
Ei jk�

(
∂uo

k

∂x�
+

∂u1
k

∂y�

)]
+

∂
∂yi

[
Ei jk�

(
∂u1

k

∂x�
+

∂u2
k

∂y�

)]
+ε(· · ·)+b j

+
1
ε

{
∂

∂xi

[
Ei jk�

∂uo
k

∂y�

]
+

∂
∂yi

[
Ei jk�

(
∂uo

k

∂x�
+

∂u1
k

∂y�

)]}

+
1
ε2

∂
∂yi

[
Ei jk�

∂uo
k

∂y�

]
= 0 (7)

In Eq. 7, the terms are organized according to the orders
of ε. In order for Eq. 7 to be unconditionally bounded in
the limit ε → 0, the coefficients of 1

/
ε and 1

/
ε2 need to

be zero. Therefore, we write:

∂
∂xi

[
Ei jk�

∂uo
k

∂y�

]
+

∂
∂yi

[
Ei jk�

(
∂uo

k

∂x�
+

∂u1
k

∂y�

)]
= 0

∂
∂yi

[
Ei jk�

∂uo
k

∂y�

]
= 0 (8)

For the second of Eq. 8 to be satisfied, we poseuo
i to

be the functions of global coordinatesx i only and they
represent the deformation of global structure in the limit
ε → 0. Thus, we write:

uo
i = uo

i (x) (9)

∂
∂yi

[
Ei jk�

(
∂uo

k

∂x�
+

∂u1
k

∂y�

)]
= 0 (10)

Eq. 10 is the governing equation for the analysis of unit
cell. Assumingu1

i to be periodic functions about they i

coordinates and neglecting higher order terms, we can
arrive at governing equation for global analysis, as (see
Kalamkarov (1992) for further details):

∂
∂xi

[
1
|Y |
∫

Y
Ei jk�

(
∂uo

k

∂x�
+

∂u1
k

∂y�

)
dY

]
+b j = 0 (11)

Here,Y and|Y | the region of unit cell and its volume in
theyi coordinate system.

For a specified macroscopic deformation mode

(∂uo
j

/
∂xk), a unit cell analysis can be carried out

and the displacementsu1
i can be obtained. u1

i are

expressed in terms of∂uo
j

/
∂xk and functionsFi jk (y), as:

u1
i = Fi jk (y)

∂uo
j

∂xk
(12)

Thus, from Eq. 11, effective elastic moduli can be given
to be:

EH
i jk� =

1
|Y |
∫

Y

[
Ei jk� +

1
2

Ei jmn

(
∂Fmk�

∂yn
+

∂Fm�k

∂yn

)]
dY

(13)

2.2 Integral equations for unit cell analysis in homog-
enization method

Here a formulation of homogenization method based
on the single-region BEM (Okada, Fukui & Kumazawa
(2001a, 2002)) is briefly described. A method of
weighted residuals is used and the weak form of the gov-
erning equation is written for the region of unit cell, as:

∫
Y

{
∂

∂yi

[
Ei jk�

(
∂uo

k

∂x�
+

∂u1
k

∂y�

)]}
wj dY = 0 (14)

wherewj are the weighting functions and are the func-
tions of local coordinatesyi. We then apply Gauss di-
vergence theorem and integrate Eq. 14 by parts, and we
have:

0 =
∫

∂Y
t jw jd(∂Y )−

∫
Y

Ei jk�
∂

∂y�

(
ym

∂uo
k

∂xm
+u1

k

)
∂wj

∂yi
dY

(15)

ti are the tractions at the boundary of unit cell and are
defined by:

t j = niEi jk�

(
∂uo

k

∂x�
+

∂u1
k

∂y�

)
(16)

In deriving Eq. 15, we assume that traction equilibrium
between different material constituents is satisfied. Eq.
15 is integrated by parts once more, and we obtain:

0 =
∫

∂Y
t jw j d(∂Y )−

∫
Y

EM
i jk�

∂
∂y�

(
ym

∂uo
k

∂xm
+u1

k

)
∂wj

∂yi
dY

−
N

∑
I=1

∫
Y ∗I

(
E ∗I

i jk�−EM
i jk�

)(∂uo
k

∂x�
+

∂u1
k

∂y�

)
∂wj

∂yi
dY ∗I (17)

Then we choose the weighting functionsw i to be Kelvin
solution (Banerjee (1981), Kane (1994)) and an integral
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equation for displacementsu1
i is obtained.

Cpqu1
q (ξm)

=
∫

∂Y
t ju

∗
jpd(∂Y )−

∫
∂Y

u1
kt∗kpd(∂Y )

−Cpqûo
q (ξm) −

∫
∂Y

ûo
kt∗kpd(∂Y )

−
N

∑
I=1

∫
Y ∗I

(
E∗I

i jk�−EM
i jk�

) ∂ûk

∂y�

∂u∗jp
∂yi

dY ∗I (18)

Here, the components of displacement like vectors ˆuo
i and

ûi are defined by:

ûo
i = y j

∂uo
i

∂x j
, ûi = y j

∂uo
i

∂x j
+u1

i and ∂ûi
∂y j

= ∂uo
i

∂x j
+ ∂u1

i
∂y j

(19)

ConstantsCpq are determined depending on the location
of the source pointξm. When the source pointξm is at the
interior of domainY , Cpq = δpq (δpq is the Kronecker’s
delta) and whenξm is at the smooth boundary of the do-
mainCpq = δpq

/
2.

An expression for the displacement gradients is obtained
by differentiating both the sides of Eq. 18 with respect to
the coordinates of the source pointξ m. Whenξm is at the
interior of regionY ∗J, integral equation for the displace-
ment gradients can be written to be:

∂ûp (ξm)
∂ξq

=
∫

∂Y
t j

∂u∗jp
∂ξq

d(∂Y )−
∫

∂Y

∂t∗kp

∂ξq
ûkd(∂Y )

−
N

∑
I=1

∫
Y ∗I

(
E∗I

i jk�−EM
i jk�

) ∂ûk

∂y�

∂2u∗jp
∂ξq∂yi

dY ∗I

−gpqi j
(
E∗J

i jk�−EM
i jk�

) ∂ûk (ξm)
∂y�

(ξm ∈ Y ∗J) (20)

Here the last term in the right hand side is called
“free term” or “jump term” which arises due to the
Cauchy principal value integral type singularity in the

kernel function∂2u∗jp
/

∂ξq∂yi (see Banerjee & Butter-

field (1981); Kane (1994); Okada Rajiyah & Atluri
(1989)).

By discretizing the boundary of unit cell by the bound-
ary elements and the interior ofY ∗I (I = 1,2,3, · · · ,N) by
volume cells as shown inFigure 4, boundary element
analysis for unit cell can be carried out (Okada, Fukui

Figure 4 : Discretizations for the boundary of the unit
cell and the interior of particles for single-region BEM
formulation

& Kumazawa (2001a, 2002)). In the analysis the dis-
placementsu1

i are to be determined for a specified macro-
scopic deformation mode∂uo

i

/
∂x j. Therefore, in Eq. 18,

term associated with ˆuo
i

(
= y j∂uo

i

/
∂x j
)

is regarded as the
forcing term.

2.3 Integral equations for the homogenization analy-
sis of particulate composite material

In many micromechanics analyses, the particles and the
distributions of strains within a particle are assumed to
be ellipsoidal in their shapes and are uniform (see Mura
(1982)). In present BEM formulation, we also adopt the
assumptions of ellipsoidal inclusions (particles) and uni-
formly distributed strains. By adopting such assump-
tions, the volume integral terms in the integral Eqs. 18
and 20 can be simplified using available analytical ex-
pressions. The integrations are carried out based on the
boundary elements and by the analytical solutions for el-
lipsoidal inclusions. By adopting the assumptions of uni-
form distributions of stresses and strains in each particle,
the results of computation would be less accurate when
the volume fraction of particles is large. In subsequent
section, this issue is discussed with a simple numerical
example.

We first define initial strain-like terms
ˆ̂εI

i j (I = 1,2,3, · · · ,N) in the particles, as:

ˆ̂εI
i j = CM

i jmn

(
E∗I

mnk�−EM
mnk�

) ∂ûI
k

∂y�

= CM
i jmn

(
E∗I

mnk�−EM
mnk�

)
ε̂I

k� (21)

where ∂ûI
k

∂y�
and ε̂I

k� are the displacement gradients and
strains in theI-th particle, and they take constant values
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within the particle. Thus, the volume integral terms are
written to be:

N

∑
I=1

∫
Y ∗I

(
E∗I

i jk�−EM
i jk�

) ∂ûk

∂y�

∂u∗j
∂yi

dY ∗I

=
N

∑
I=1

ˆ̂εI
k�

∫
Y ∗I

EM
i jk�

∂u∗jp
∂yi

dY ∗I (22)

It is found that the expression in the right hand side of Eq.
22 is nothing but the Green’s function formula, which
appears in the derivations for Eshelby’s solution (see Es-
helby (1957) and Mura (1982)). Following Mura (1982),

analytical expressions for the integral
∫

Y ∗I EM
i jk�

∂u∗j
∂yi

dY ∗I is
obtained and we denote:

ΛI
pk� =

∫
Y ∗I

EM
i jk�

∂u∗jp
∂yi

dY ∗I (23)

When the source pointξm is outside the domainY ∗I of
theI-th particle, the expressions inΛ I

k� involve the Carl-
son’s elliptic integrals of first and third kind and look
somewhat troublesome. However, by use of mathemat-
ical subroutine libraries to evaluate the elliptic integrals
(see Press, Teukolsky, Vetterling & Flannery (1996), for
example),ΛI

pk� can be computed without any difficulties.
The computation forΛI

pk� is much faster than carrying

out numerical integral for
∫

Y ∗I EM
i jk�

∂u∗j p

∂yi
dY ∗I . When the

source pointξm is at the interior ofY ∗I, ΛI
pk� are ex-

pressed by a linear functions of the coordinate values of
ξm.

Thus, Eq. 18 can be rewritten to be:

Cpqu1
q (ξm) =

∫
∂Y

t ju∗jpd(∂Y )−
∫

∂Y
u1

kt∗kpd(∂Y )

−
∫

∂Y
ûo

k t∗kpd(∂Y ) −Cpqûo
q (ξm)−

N

∑
I=1

ΛI
pk�

ˆ̂εI
k� (24)

To evaluate the displacement gradients we differentiate
both the sides of Eq. 24 with respect to the locationξ m

of the source point.

∂ûp (ξm)
∂ξq

=
∫

∂Y
t j

∂u∗jp
∂ξq

d(∂Y )−
∫

∂Y

∂t∗kp

∂ξq
ûkd(∂Y )

−
N

∑
I=1

∂ΛI
pk�

∂ξq

ˆ̂εI
k� (25)

Strainsε̂pq which are the symmetric parts of∂ûp
/

∂ξq are
expressed by:

ε̂pq (ξm) =
1
2

∫
∂Y

t j

(∂u∗jp
∂ξq

+
∂u∗jq
∂ξp

)
d(∂Y )

− 1
2

∫
∂Y

(
∂t∗kp

∂ξq
+

∂t∗kq

∂ξp

)
ûkd(∂Y )

−
N

∑
I=1

1
2

(
∂ΛI

pmn

∂ξq
+

∂ΛI
qmn

∂ξp

)
ˆ̂εI

mn (26)

When the source pointξm is at the interior of theJ-th par-
ticle, Eshelby’s tensorSJ

pqmn for theJ-th particle appears
from the last term in the right hand side of Eq. 26.

ε̂pq (ξm) =
1
2

∫
∂Y

t j

(∂u∗jp
∂ξq

+
∂u∗jq
∂ξp

)
d(∂Y )

− 1
2

∫
∂Y

(
∂t∗kp

∂ξq
+

∂t∗kq

∂ξp

)
ûkd(∂Y )

−
N

∑
I=1
I �=J

1
2

(
∂ΛI

pmn

∂ξq
+

∂ΛI
qmn

∂ξp

)
ˆ̂εI

mn −SJ
pqmn

ˆ̂εI
mn (27)

In Eqs. 25∼27, the volume integral terms in Eqs. 18 and
20 are replaced by analytical expressions.

Figure 5 : Discretization for the boundary of the unit cell
and the distributed particles

Discretizations for the boundary of unit cell and the dis-
tributed second phase particles are schematically illus-
trated inFigure 5. There is no volume cell to evaluate
the domain integral. Only the shapes (lengths of three
axes of ellipsoids) and the orientations of the axes are to
be specified.
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3 Numerical implementations for the unit cell anal-
ysis

In this section, the procedures of BEM analysis for the
unit cell are discussed. However, the numerical evalu-
ations of boundary integral terms are discussed briefly,
since they are well known to the date (see, Banerjee &
Butterfield (1981); Kane (1994), and other references are
cited therein). We concentrate in some issues, which
are particular of homogenization analysis. The periodic
boundary conditions and iterative algorithm to obtain the
solutions are discussed.

3.1 Boundary discretization for BEM unit cell analy-
sis

The boundary of the unit cell is discretized by boundary
elements. A three dimensional cubic or brick shaped unit
cell is considered. The method of collocation is adopted
to generate the system matrix by letting each boundary
node be the source point one by one. Linear quadrilat-
eral boundary element is adopted and 10 by 10 Gaussian
quadrature is adopted. Although it is known that lower
order Gaussian quadrature may be used for certain cases,
we adopted the quadrature rule to assure the accuracy of
integrals. Cauchy principal value type integrals are eval-
uated indirectly considering the rigid body translations
and rotations. To represent discontinuities in tractions at
corners of the unit cell, we adopt the method of double
nodes, in which two or three nodes share the same loca-
tion but have displacements and tractions independently
(seeFigure 5 for the discretizations). Hence, one can
generate a system matrix equation from Eq. 24, which
looks like:

[G]
{

u1}= [H]{t}− [G]{ûo}+[Q]{ε̂} (28)

where
{

u1
}

, {uo}, {t} are{ε̂} the column vectors con-
sisting of the nodal values ofu1

i , uo
i andti, and the strains

ε̂I
i j (I = 1,2,3, · · · ,N) in the particles, respectively. In Eq.

28, we regard{uo} and{ε̂} to be the vectors of knowns,
and

{
u1
}

and{t} to be those of unknowns except for a
few components in

{
u1
}

. Matrices[G], [H] and[Q] arise
from the integrals in Eq. 24.

A matrix equation to evaluate the strains in the particles
can be obtained from Eq. 27 and it can be shown, as:

{ε̂} =
[
G ′]{û}+

[
H ′]{t}+

[
Q ′]{ε̂} (29)

where{û} represents the displacement-like quantities ˆu i

at boundary nodes. Matrices[G ′], [H ′] and [Q ′] arise
from the integrals in Eq. 27.

3.2 Periodic boundary conditions and system matrix
to be solved

In a homogenization analysis, the deformation of unit
cell must be periodic. We enforce the periodic bound-
ary conditionssuch that the displacements are continuous
and traction reciprocity is satisfied between the neighbor-
ing unit cells. In a unit cell, the deformations have to be
the same between the boundary planes which are facing
each other, as shown inFigure 6. The traction reciprocity
is enforced by letting the tractions on the paring planes
be equal to each other but their signs are opposite. Thus,
for a set of paring boundary nodes A and B inFigure 7
(a), we can write:

(
u1

i

)A
=
(
u1

i

)B
,
[(

u1
i

)a
=
(
u1

i

)b
]

and (ti)
A +(ti)

B = 0
[
(ti)

a +(ti)
b = 0

]
(30)

where()A ∼ ()J and()a ∼ ()q denote the quantities at the
nodes A∼ M and a∼ q in Figure 7. In Figure 7 (b), the
faces of the cubical unit cell inFigure 7 (a) are opened
for an illustrative purpose.

Figure 6 : Deformation of faces of unit cell under the
assumption of periodic deformation

Unlike the case of FEM, in present BEM approach, we
enforce the continuities of displacements and tractions in
a continuing plane also. For example, displacements and
tractions at nodesk andl in Figure 7 (b) have to be the
same. Therefore, we also enforce conditions:

(
u1

i

)k
=
(
u1

i

)l
and (ti)

k = (ti)
l (31)

However, nodesk andm in Figure 7 (b) share the same
coordinates after the faces are assembled to be a cube,
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Figure 7 : A schematic illustration for how the periodic
boundary conditions for the displacements and tractions
are enforced

their nodal displacements and tractions are independent
from each other due to the double node concept. Sim-
ilarly, nodesn, o and p in Figure 7 (b) have the same
location but their nodal quantities are independent from
each other. We need to suppress the rigid body transla-
tion mode and constrain the displacements of a node at
one of the eight convex points (nodes). Due to the condi-
tions of Eqs. 30 and 31, all the nodes at the convex points
must equal zero. Therefore, the displacements of nodes
at points F∼M in Figure 7 equal zero.

(
u1

i

)C
=
(
u1

i

)D
=
(
u1

i

)E
=
(
u1

i

)F
=
(
u1

i

)G

=
(
u1

i

)H
=
(
u1

i

)I
=
(
u1

i

)J
= 0 (32)

By posing the conditions of Eqs. 30∼32 and appropri-
ately rearrange the system matrices in Eq. 28, we can
collect the unknown components of

{
u1
}

and{t} in the
left hand side. One can write:

[A]{U}= − [G]{ûo}+[Q]{ε̂} (33)

where{U} is consisting of unknown displacements and
tractions at the boundary of unit cell. After the conditions
Eqs. 30∼32 are enforced, the system matrix[A] is no
longer a square matrix. Number of simultaneous linear
equations included in Eq. 33 is larger than the order of
{U}. The reason is as follows. For example, there are 24
(= 8×3) equations generated by taking the eight convex

points to be the source points. However, we have no de-
gree of freedoms related to their displacements because
all of them are constrained. By enforcing the condition of
the second of Eq. 31, we only have 9 (3×3) independent
traction components at those eight nodes. Therefore, the
total number of unknown variables related to those nodes
is 9 whereas we have 24 equations. Therefore, the sys-
tem matrix[A] in Eq. 33 is no longer a square matrix.
To solve for unknown vector{U} we use the least square
method and we modify the system matrix, as:

[A]T [A]{U} = − [A]T [G]{ûo}+[A]T [Q]{ε̂} (34)

3.3 Solution procedures

The same iterative procedures which are used in Okada,
Fukui & Kumazawa (2001a, 2002) are used in present
study. The outlines are briefly presented here. Ini-
tial strain iterative procedure, using Eqs. 29 and 33, is
adopted to obtain the equilibrium of the unit cell. The ini-
tial strain iteration method has often been adopted to ana-
lyze elastoplastic problems (see Okada, Rajiyah & Atluri
(1988); Okada & Atluri, 1994; Chandra & Mukherjee
(1983, 1986)). The procedures of initial strain iteration
are summarized as follows.

1. All the displacement gradients or strains of second
phase particles in Eq. 33, are set to be zero, as the
initial value [all the elements of{ ε̂} in Eq. 29 are
set to be zero].

2. Eq. 33 is solved for{U}, and
{

u1
}

and {t} are
obtained.

3. Strains are evaluated by using Eq. 29, or by the in-
tegral Eq. 27.

4. If the norm of change of the strains quantities were
small enough,

∣∣∣{ε̂}Current−{ε̂}Previous
∣∣∣/∣∣∣{ε̂}Previous

∣∣∣< Tol. (35)

the iteration is judged to converge.{ ε̂}Current stands
for the strains after updated in current iteration step and

{ε̂}Previousare those before updated.Tol. is a small
positive number set by the analyst. In present research
Tol. is set to be 0.0001. Otherwise, the analysis is re-
peated from the step 2 above.
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It should be noted here that when the elastic moduli (i.e.,
Young’s modulus) of the second phase particles is larger
than that of matrix, the above procedures suffer from a
convergence problem. That is because the strains (dis-
placement gradients) in the second phase particles be-
come much smaller than those in matrix material. We
have overcome this problem by slightly modifying the
initial strain iteration algorithm. When the elastic con-
stants for the second phase particles are larger than those
for matrix, the strains are updated by:

{ε̂}Current

=
1

(FACT)

[
{ε̂}−{ε̂}Previous

]
+{ε̂}Previous

(FACT) =
Max

(
E∗I
)

EM (36)

where {ε̂} represents the strains evaluated in the
current iteration step by using Eq. 29 or 27.
E∗I (I = 1,2,3, · · · ,N) and EM are the Young’s moduli
for the second phase particles and matrix materials.

3.4 Effective (homogenized) stresses and elastic mod-
uli

Effective elastic moduli are expressed in Eq. 14 in a
general form. When the single-region BEM with vol-
ume cells is used for the homogenization analysis, the
effective stressesσo

i j due to the macroscopic deformation
mode∂uo

k

/
∂x� are expressed by (see Okada, Fukui & Ku-

mazawa (2001a, 2002)):

σ o
i j =

[
EM

i jk� +
1
|Y |

N

∑
I=1

∫
Y∗I

(
E ∗I

i jk�−EM
i jk�

)
dY ∗I

+
1
|Y |

N

∑
I=1

∫
Y∗I

(
E ∗I

i jmn −EM
i jmn

) ∂Fmk�

∂yn
dY ∗I

]
∂uo

k

∂x�
(37)

Eq. 36 was derived from Eq. 14 by applying Gauss diver-
gence theorem appropriately. The effective elastic mod-
uli are expressed to be:

E H
i jk� = E M

i jk� +
1
|Y |

N

∑
I=1

∫
Y∗I

(
E∗I

i jk�−EM
i jk�

)
dY ∗I

+
1

2|Y |
N

∑
I=1

∫
Y∗I

(
E∗I

i jmn −EM
i jmn

)(∂Fmk�

∂yn
+

∂Fm�k

∂yn

)
dY ∗I

(38)

It is noted thatFik� are determined as the values ofu1
i by

letting each component of∂uo
i

∂x j
be one and all the others

be zero (e.g.,∂uo
1

∂x1
= 1 and∂uo

2
∂x1

= ∂uo
3

∂x1
= ∂uo

2
∂x1

= ∂uo
2

∂x2
= ∂uo

2
∂x3

=
∂uo

3
∂x1

= ∂uo
3

∂x2
= ∂uo

3
∂x3

= 0, etc.) in the unit cell analysis.

In present BEM approach, the effective stressesσo
i j can

be evaluated in a similar manner.

σo
i j =

1
|Y |

[
EM

i jk� +
N

∑
I=1

V I (E∗I
i jmn −EM

i jmn

)
R∗I

mnk�

]
∂uo

k

∂x�

(39)

Effective elastic moduli are expressed, as:

EH
i jk�

=
1
|Y |
[
EM

i jk� +
1
2

N

∑
I=1

V ∗I (E∗I
i jmn −EM

i jmn

)(
R∗I

mnk� +R∗I
mn�k

)]

(40)

whereR∗I
i jk� are the characteristic functions expressing the

strains in theI-th particle, as:

ε̂I
i j = R∗I

i jk�
∂uo

k

∂x�
(41)

R∗I
i jk�are computed in the same way asFi jk� are evaluated.

4 Numerical results

4.1 One particle problem

First, a simple problem is solved to compare the results
of present BEM formulation with those of multi-region
BEM (Okada, Fukui & Kumazawa (2001a, 2002)) cal-
culations. A spherical particle located at the center of
the unit cell is assumed, as shown inFigure 8. The size
and elastic modulus of the particle are varied and the ac-
curacy of present formulation is discussed. Matrix and
the particle are isotropic and the Poisson’s ratios for both
the materials are assumed to be 0.3. 36 (6 by 6) linear
quadrilateral boundary elements are placed on each face
of the cube. There are a total of 216 boundary elements
on the outer faces of the unit cell.

Analysis models for present BEM and for the multi-
domain BEM analyses are shown inFigures 9 and10.
It is noted that when present formulation is used only
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Figure 8 : One particle problem to compare the results
of present method and those of multi-region BEM

Figure 9 : Boundary discretization and a particle for the
one particle model which is solved by present BEM ap-
proach

the location and the size of spherical particle are speci-
fied and there is no volume discretization. The particle
is shown by an illustration. For the multi-region BEM
analysis, we need to discretize the interface between the
particle and matrix by boundary elements. We have 216
linear quadrilateral interface elements. The ratio of the
radiusrp of particle and the size�ε of unit cell are set to
be 0.25, 0.30, 0.35, 0.40 and 0.45 and their correspond-
ing volume fraction of the particle are 6.55%, 11.31%,
17.96%, 26.80% and 38.17%. The ratioE ∗/EM of the
Young’s moduli of the particles and matrix are varied
from 0.01 to 100. The case ofE∗/EM = 0.01 represents
a case where the particle is so soft that this case almost
represents the problem of a spherical void. In the case of
E∗/EM = 100, the particle is so stiff that this case almost
represents the case of spherical rigid particle.

We first present the variations of effective elastic con-

Figure 10 : Boundary and interface discretizations for
the one particle problem which is solved by multi-region
BEM approach

Figure 11 : The variations of effective elastic constants
(E H

1111,E H
1122andE H

1212) with respect to that of the ratio
E ∗/EM of Young’s moduli for the caser p/�ε = 0.25

stants (EH
1111,E

H
1122 andEH

1212) with respect to the change
of the ratioE∗/EM are presented forrp

/
�ε being 0.25,

0.35 and 0.45. InFigures 11, 12 and13. The results ob-
tained by present method and by the multi-region BEM
formulation are indicated by “Particle-BE” and “Multi-
BE”, respectively. It is seen that the value ofr p

/
�ε

is equal or less than 0.35 (volume fraction is equal to
or less than 17.96%), the results of present and multi-
region BEM formulations are in a perfect match. How-
ever, for the case ofrp

/
�ε being 0.45 (volume frac-

tion is 38.17%), the results of present formulation differ
from those of multi-region BEM. The discrepancies may
be caused by the assumption of uniformly distributed
stresses and strains within a particle. The distance be-
tween the boundary of the unit cell and the particle be-
comes so small that the assumption breaks down. Then,
some comparisons are made on the variations of effec-
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Figure 12 : Variations of effective elastic constants
(E H

1111,E H
1122andE H

1212) with respect to that of the ratio
E ∗/EM of Young’s moduli for the caser p/�ε = 0.35

Figure 13 : Variations of effective elastic constants
(E H

1111,E H
1122andE H

1212) with respect to that of the ratio
E ∗/EM of Young’s moduli for the caser p/�ε = 0.45

tive moduli with respect to the that of the volume frac-
tion of the particle. InFigures 14 and15, the variations
are plotted for the cases ofE ∗/EM being equal 0.01 and
100. The results of both the methods (present and multi-
region BEM) are almost identical to each other when the
volume fraction is equal or less than 0.268. However, es-
pecially for E∗/EM = 100, large discrepancies between
the results are seen. Therefore, it can be said that present
method can serve reasonably accurate solutions when the
volume fraction of the particles is smaller than 26%.

The distributions of stress are presented for the case
rp
/
�ε = 0.35 withE ∗/EM = 0.01 andE∗/EM = 100. A

two dimensional finite element-like mesh is generated in
the cross section of the unit cell. The plane of visual-
ization includes the center of the spherical particle and it
is perpendicular to thex3 axis. The distributions ofσ11

under macroscopic deformation mode∂uo
1

/
x1 = 1 are vi-

Figure 14 : Variations of effective elastic constants
(E H

1111,E H
1122andE H

1212) with respect to the ratior p/�ε
of the radius of particle and the size of unit cell for
E ∗/EM = 0.01

Figure 15 : Variations of effective elastic constants
(E H

1111,E H
1122andE H

1212) with respect to the ratior p/�ε
of the radius of particle and the size of unit cell for
E ∗/EM = 100

sualized. It is noted here that the case withE ∗/EM =
0.01 (shown inFigure 16 (a)) almost corresponds to
the case of spherical void.E ∗/EM = 100 (Figure 16
(b)) indicates that there is an almost rigid inclusion. For
E∗/EM = 0.01, it is seen fromFigure 16 (a) that stress
σ11 is almost zero inside the particle and at both the sides
of particle the stress in matrix is almost zero (the value is
slightly negative, but its magnitude is very small). There
is no unacceptable jump in stress value at the interface.
Also, we find stress concentration in matrix at the top and
bottom of the particle. FromFigure 16 (b), the stressσ11

inside of the particle is significantly larger than average
stress in matrix. At the top and bottom of the particle,
the stress is almost zero. For both the cases, we do not
find any unacceptable stress jump at the interface and the
distributions of stress are as expected.
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Figure 16 : Distributions of stressσ11 normalized byEM

for macroscopic deformation mode∂uo
1/∂x1 = 1 in the

cross section of the unit cell. (a)E ∗/EM = 0.01 and
(b) E ∗/EM = 100

Figure 17 : (a) 27, (b) 125 and (c) 1000 particle model

4.2 Randomly distributed particles

The problems of randomly distributed spherical particles
are considered in this section. Three models are analyzed
as shown inFigure 17 (a), (b) and(c). The volume frac-
tions of the particles are 12% for 27 particle model, 15%
for 125 particle model and 15% for 1000 particle model.
To distribute the particles, we adopted Sobol’ sequence
(Press, Teukolsky, Vetterling & Flannery (1996)), which
is a method to evenly distribute points in a multi dimen-
sional space. The sizes of the particles are determined
such that the radius of a particle is set to be a fraction of
distance to the center of the nearest particle. The frac-
tion is adjusted so that the volume fraction becomes the
specified value. For the case of 27 particle problem, the
highest possible volume fraction we could set was about
13%. When the value of volume fraction which is larger
than 13% is specified, some particles overlap each other.

For a class of problems in which the particles randomly
distribute in the unit cell, it is extremely difficult to obtain
solutions by using the finite element method or by the
boundary element method. And there is no exact solution
to compare with. We take the solutions of self-consistent
method and Eshelby’s method (see, Mura (1982)) as our
references.

The results are presented inFigures 18 (a), (b) and(c).
The effective Young’s modulus are plotted for the varia-
tion of the ratioE ∗/EM of Young’s moduli of particles
and matrix. The trends of the results which are obtained
by present BEM approach are very similar to those of the
reference solutions. Therefore, the solutions of present
BEM approach are proven to be reliable.

Stress distributions in the cross section of the unit cell
(125 particle model) are presented inFigure 19. Two
dimensional finite element-like mesh is generated in the
cross section and then the distributions of stress are
drawn. InFigure 19 (a), the distributions of stressσ11

for E∗/EM = 0.01 and∂uo
1

/
∂x1 = 1 (and all the others

are zero) iny2 = 5 plane, is shown. InFigure 20 (b), the
distribution ofσ11 is plotted forE ∗/EM = 100. It is seen
that the stress distributions in matrix is very complex,
and, especially for the case ofE∗/EM = 0.01, stress con-
centrations at the sides of the particles (voids) are found.
In Figure 19 (b), the particles are found to have a large
magnitude of stress.

5 Conclusions

A new BEM formulation for the analysis of particulate
composite materials is presented in this paper. Present
formulation can analyze the problems of unit cell which
contain a number of distributed particles. The number
of distributed particles, which are demonstrated in this
paper, is up to 1000. By using BEM in a traditional
way (i.e., multi-region BEM) for the analyses of hetero-
geneous materials, such a huge RVE would extremely
be difficult to deal with. In present approach, there are
a certain level of simplification such as the uniformly
distributed stresses and strains in each particle, is intro-
duced. The effective properties obtained by present ap-
proach are accurate when the volume fraction of the par-
ticles is less than about 25%.

The results presented in this paper are rather simple
cases. For example, with present formulation, one may
analyze the problems of stress induced phase transforma-
tion (see Okada, Fukui & Kumazawa (2001b)). Macro-
scopic stress-strain curve may be obtained based on the
evolution of microstructure. In the authors’ forthcoming
paper, we apply present BEM approach to such nonlinear
problems.
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(a) 27 particle model

(b) 125 particle model

(c) 1000 particle model
Figure 18 : The variations of effective Young’s modulus
calculated by (a) 27, (b) 125 and (c) 1000 particle model
with respect to the variation of the ratioE ∗/E M

Figure 19 : The distribution of stressσ11 for E ∗/E M =
0.01 and∂uo

1/∂x1 (and all the others are zero) iny 2 = 5
plane
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