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Homogenization Analysisfor Particulate Composite Materialsusing the Boundary
Element M ethod

Hiroshi Okada?, Yasuyoshi Fukui! and Noriyoshi Kumazawa®

Abstract: A method to obtain the effective mechanica® Noguchi (2002); Takano, Ohnishi, Zako & Nishiyabu
properties of particulate composite materials is presen{@@00); Takano, Ohnishi, Zako & Nishiyabu (2001);
in this paper. The methodology is based on the boundiga & Tomita (2000)) and also the effective mechani-
ary element method (BEM) coupled with analytical saal properties of structural components can be evaluated
lutions for ellipsoidal inclusions such as Eshelby’s terfOkada, Fujitani, Fukui & Kumazawa (2001); Takano,
sor. There is no numerical integration for the surfacesfako & Kikuchi (1995)). Analysis/design for smart
the domains of distributed particles, and, therefore, pnmraterial/structure can be done by the homogenization
posed technique is very efficient. Homogenization anahethod (Silva, Nishiwaki, Fonseca & Kikuchi (1999)).
ysis based on representative volume element (RVE)Tise homogenization method is quite versatile and has ap-
carried out considering a unit cell containing many paplied to many types of problems and is considered to be
ticles (up to 1000). By using a conventional BEM apa very important member among the methods of multi-
proach (i.e., multi-region BEM), it would be extremelcale analysis such as S-version FEM (Fish (1992); Fish
difficult to analyze such a large RVE, since the proble& Guttal (1996)). As a latest development in the con-
size would become unacceptably large. Some numeritesdt, Raghavan & Ghosh (2004) presented an adaptive
solutions are presented and the accuracy of present stpategy that can vary computational resolution for criti-
proach is discussed in this paper. cal and non-critical regions.

So far, the most of homogenization analyses have been

keyword: Boundary element method (BEM), Hoarried out using the finite element method (FEM). As a

mogenlza_tlon.met_hod, .Representat,lve volume elem?\ﬂtmerical method, the boundary element method (BEM)

(RVE), Ellipsoidal inclusion, Eshelby’s tensor. should be able to be used for the homogenization analy-
ses. However, only a few homogenization analyses have

1 Introduction been presented in literature (Shibuya & Wang (1994);

— o aminski (1999); Procazka (2001); Okada, Fukui &

So far, a number of applications of homogenization angj-
O umazawa (2000, 2001a, 2002)). Therefore, the advan-
yses have been presented. Homogenization method can . :
) . tages and disadvantages of BEM in the analyses of ho-
be used as an analytical engine to connect the resu o
. : ; mogenization method have not fully been explored. The
of unit cell analysis for the microstructure of heteroge-

: . . authors’ previous papers have presented some results of
neous materials and the macroscopic mechanical pr

. : : . Bmogenlzatlon analyses using BEM. Two different for-
erties. For example, macroscopic elastic moduli of het-", o

. mulations have been presented for the homogenization
erogeneous materials can be evaluated by the homoge

nization method (Guedes & Kikuchi (1990); Kalamkarov alyges based on BEM (single region BEM with vol
. . ) : ) ume integral terms to represent the difference between
(1992); Hollister & Kikuchi (1994)). Effective me- . . . .
: : : . the matrix material and other material constituents and
chanical behaviors of composites materials whose ma-

) : . . multi-region BEM (Okada, Fukui & Kumazawa (2001a,
terial constituents undergo material and geometric nof:

linear behavior can be determined by the homogeniz%)-oz)))' _ _ .
tion analyses (Okada, Fukui, Kumazawa & Maruyan%n the other hand, particulate composite materials as de-
(1998); Wu & Ohno (1999); Ohno, Wu & MatsuddPicted inFigure 1 contain second phase particles which

(2000); Ohno, Matsuda & Wu (2001); Ohono, Okumur@'® distributed randomly or regularly in matrix mate-
rial (see Ashby (1993) for a comprehensive review of
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composite materials). The overall mechanical propertidkso, a fundamental development to obtain weakly sin-
are improved compared with monotonic materials (i.eular traction and displacement boundary integral equa-
higher value of elastic modulus, etc.). To evaluate the ¢ibns was recently presented by Han & Atluri (2003).
fective mechanical properties of particulate compositéscorporating the outcomes of such a methodology with
representative volume element (RVE) approaches batiwmke of present work may lead to very useful results. In
on FEM have often been used. RVE approaches inclute authors’ previous papers (Okada, Fukui & Kumazawa
the homogenization method. In many cases, only one(@001a, 2002)), the formulations and some numerical re-
several particles are typically distributed in an RVE (faults of the homogenization analyses using BEM were
example, Wienecke, Brockenbrough & Romanko (199%)esented. We found that the accuracy of analysis was
Higa & Tomita (2000)), or two dimensional idealizatiorunexpectedly good for coarse discretizations for the outer
is adopted (Terada, Hori, Kyoya & Kikuchi (2000)). Foboundary of RVE domain and for volume/interface of the
the problems in which the particles distribute randomiyarticle. With this in our mind, we further simplify the

in a three dimensional space, we need to assume the dignerical method by using analytical solutions for parti-
tribution of a number of particles in an RVE. Carryingles and drastically reduce the amount of numerical com-
out such analysis by assuming tens and hundreds of rpotations. To this end, we assume the shapes of the dis-
domly distributed particles in an RVE would be troubletributed particles to be ellipsoidal and utilize available
some not only in carrying out the computation itself buanalytical solutions for ellipsoidal inclusions such as Es-
also in generating its input data. Though image baskdlby’s solutions (Eshelby (1957); Mura (1982)).

finite element method (Hollister & Kikuchi (1992), Ter-gn the other hand works in similar lines of thought can be
ada, Miura & Kikuchi. (1997)) or Vronoi cell finite ele-found in literature. Nishioka and Kato (1998) and Kato
ment method (Moorthy & Ghosh (1998) and Lee Moognq Nishioka (2000) has presented a numerical method
thy & Ghosh (1999)) may be used to simplify the progsing analytical solutions for embedded cracks and the
cesses of model generation, the problems associated ‘fé%’blems of microcracked solid were analyzed. A num-
the problem size still remain. ber of microcracks were assumed to exist in the analysis
domain. Banerjee & Henry (1992) presented a formu-
lation of BEM for the analysis of fiber reinforced com-
posites, in which the integrals of surface of fibers were
reduced to one dimensional line integral. Essential idea
that integrals are somehow simplified is quite similar to
that in present work.

In this paper, we first present the formulations of ho-
mogenization analysis using BEM and then its extension
= to the analysis of particulate composite materials is dis-
Distibuted Particles  cussed. We present some numerical solutions for the

variations of effective elastic moduli of composite and
Figure 1 : Particulate composite material composed #ternal stress distributions. It is shown that analyses for
matrix and embedded particles a unit cell containing 1000 particles can be carried out by
present BEM approach.

In present research, we propose a homogenization analy-

sis methodology by using the boundary element methéd !ntegral equationsfor homogenization method for
(BEM) for particulate composite materiaFigure 1). particulate composite material

BEM was invented in the late 60thby the pioneers (Rizzg1 Preliminary

(1967); Cruse (1969)) and has evolved over the years ex-

panding its capabilities from linear to nonlinear analyome general remarks on the formulations of homoge-
ses (Banerjee & Cathie (1980); Banerjee & Reveendriaation method are discussed by following Kalamkarov
(1987), Chandra & Mukherjee (1983, 1986); Okada, R@992). Itis noted that there are many other key literature
jiyah & Atluri (1988, 1989); Okada & Atluri (1994)). in the subject such as Bensoussan, Lions & Papanicolaou
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(1978). Global structure is assumed to be composed c*

periodic microstructures as shownkigure 2. The size

¢ of unit cell is considered to be very small compared
with that of the global structure. The displacemeunts
are expressed in terms of global coordinateand local
coordinatey;. And they are related through the sizef

Secondary phase -
materials

unit cell,:

Yi =X /e+G 1)

The displacements are expressed by an asymptotic ex- =55 Matrix material a.:'-.':':-

pansion. FRLARLLY e T
Figure 3 : Heterogeneous material composed of matrix

Ui (X,Y) and embedded second phase materials

= U? (X7 y) + sui:L (X7 y) + szuiz (X7 y) + +83ui3 (X7 y) e

Equation formulations governing the deformations (%’ﬁ
solid at local and global level are derived in a Iimitin%
sense that the sizeof unit cell is infinitesimally small

2)

hereY*' (I =1,2,3,---,N) represents the domain of
el-th secondary phase material. In this paper, we as-
ume that matrix material is elastic and is homogeneous
and isotropic. The secondary phase materials are elastic

(ie.e—0). and homogeneous within a material phase but need not
be isotropic.
—T T .
A2 === The stresses are expressed by Hooke’s law. The equation
f}'{ = ":I": =22 \ of equilibrium (linear momentum balance law) are to be
o ot 3 ot a0 satisfied in the solid. They are written to be:
T ] B I I I I .
Poa o 51 1 B ] X1 1 ) V. <D P
Uk
2] 2] 2] =2]=2]=2]=2 2 O = E iy X 4
\\!:e' -‘nl_} -:?‘.' ’ 1] 'JkéaxZ ( )
o X
1 0, y1
X3  Material having periodic microstrucure Unit cell
: 99 4 b0 5)
Figure2: A heterogeneous material having periodic migx; 1=
crostructure

whereb; are the body force per unit volume.

The structure is composed of matrix and embedded Seyg, jerivatives of the displacementsare written to be:
ondary phase materials as illustrated for a unit cefigr

ure 3. As shown inFigure 3, the secondary phase ma-
terials are embedded in the unit cell and, therefore, ﬂe
elastic constants;jx, are expressed as functions of loc8K;

coordinatey;. _ouP(x,y) +€auil (X,y) +€Zauiz (X,y) +€35Ui3 (X,Y)
M %1 %2 %3 N aXJ aXJ aXJ aXJ
Eijk =Ele (i€ Y—[Y+Y*+Y 4. 4¥*N]) ) ) )
%1 *1 %2 %2 1aui (X7y) aui (X7y) Saui (X7y)
EiiW:Eijké (inY )aEijké:Eijkg (yieY ), +---+E By, + 3y, + 3,
Eije =Effie M €Y®), -, Eije =Ejfly (i eY™) L 20 Y) L (6)
(3) 6yj



138 Copyright(© 2004 Tech Science Press CMES, vol.5, no.2, pp.135-149, 2004

We then use Eqg. 6 in Egs. 4 and 5 and we arrive at:  Thus, from Eg. 11, effective elastic moduli can be given

0 ouy 0 0 0 0 tobe:
uw  aul ut  ou?
o [ e <6x@ aye )] oy |\ ax oy Gl 1 OFmk  OFmuk
+€("')+b] Eijké_m/Y[Eijké‘FEEijmn(—ayn + ayn )]dY
1(0 oup 0 o aul (13)
o | oy [ (5 7))}
+£2i[ ”kﬁauo] —0 (7) 22 InFegr_aI equationsfor unit cell analysisin homog-
€2y, oyy enization method

In Eq. 7, the terms are organized according to the ordéfsre a formulation of homogenization method based
of €. In order for Eq. 7 to be unconditionally bounded ion the single-region BEM (Okada, Fukui & Kumazawa
the limite — 0, the coefficients of 1e and 1/e? need to (2001a, 2002)) is briefly described. A method of
be zero. Therefore, we write: weighted residuals is used and the weak form of the gov-

0 _ aue i _ aue auk Y erning equation is written for the region of unit cell, as:
% ”"fay ay |-\ ax, Ty,

0 ouy du
a ou? /{—[Eijké< +—k>]}Wde—0 (14)
v [Eljké 3y ] 0 (8) Jy Loy ox,  9yy

For the second of Eq 8 to be Satisﬁed, we pogeo Wherer are the Welghtlng functions and are the func-
be the functions of global coordinatesonly and they tions of local coordinateg;. We then apply Gauss di-
represent the deformation of global structure in the lim{rgence theorem and integrate Eq. 14 by parts, and we

€ — 0. Thus, we write: have:
U = up (x) 9) oue ow;

0= tWJ (aY) /E”k[ay <yma +u ) ayll dy
0 e oup % 0 (10) (15)
ay |\ ax "oy )] T

are the tractions at the boundary of unit cell and are

Eq. 10is the governlng equation for the analysis of un&t fined by:

cell. Assumingu! to be periodic functions about thg
coordinates and neglecting higher order terms, we can e o
arrive at governing equation for global analysis, as (Sge- niE i (i n ﬂ) (16)

Kalamkarov (1992) for further details): ox; 0y

01 ou? ou} . , I

— —/ Eijke —K 4 2K ) gy +bj=0 (11) Inderiving Eq. 15, we assume that traction equilibrium
M ox; Oy between different material constituents is satisfied. Eq.

Here,Y and|Y| the region of unit cell and its volume in1> is integrated by parts once more, and we obtain:

they; coordinate system. 5 . o

For a specified macroscopic deformation mod&/ tjw; d(aY) — /Elhj/lkéa (ymﬁ+ )adeY
(auo/axk) a unit cell analysis can be carried out aﬁ Ul o !
and the displacements! can be obtained. u! are - Zl . (ke — EMfie <6x|2+ 6y:> ay,J dy*  (17)
expressed in terms GU?/axk and functiong=jx (y),

ous Then we choose the weighting functionsto be Kelvin

ut = Fijk(y) % (12) solution (Banerjee (1981), Kane (1994)) and an integral
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equation for displacements is obtained. Boundary & Volume Discretization
1 Volume cells
Cpalig (€m) S
N Lo I: Boundary
:/ tjuj,d (aY) —/ Uictipd (aY) element
oY oY & nodes
- Ot - Doubl
- CquS (Em) - /BY ugtkpd (6Y) * n(;lcjlesat
N ~ ¢ a corner pt.
_ (E.*.l —_EM ) %%dy*l (18) . o .
I; o \IKETEIKE Gy By Figure 4 : Discretizations for the boundary of the unit

cell and the interior of particles for single-region BEM

Here, the components of displacement like veaiSrarid formulation

G; are defined by:

ou?

oup ou? oG ow° | aub (19) & Kumazawa (2001a, 2002)). In the analysis the dis-
an ’

~ 1 ;

U=y & +u and oy, — ox T oy placements are to be determined for a specified macro-
scopic deformation mod@uf’/axj. Therefore, in Eq. 18,

Constant€, are determined depending on the locatidierm associated with®{= y;ou? /dx; ) is regarded as the

of the source poirg,,. When the source poidt; is at the forcing term.

interior of domainY, Cpq = dpq (dpq is the Kronecker’s

delta) and whe®, is at the smooth boundary of the do2.3 Integral equations for the homogenization analy-

mMainCpq = 3pq /2. sisof particulate composite material

An e.xpress.ior) for the displgcement gradier_lts is Obtainﬁ*pmany micromechanics analyses, the particles and the
by differentiating both the sides of Eq. 18 with respect iy tions of strains within a particle are assumed to

the coordinates of*tJhe_z source pokiy. Whengp is at the 1, ellipsoidal in their shapes and are uniform (see Mura
interior of _reg|onY , mteg_ral equation for the dlsplace-(lggz)). In present BEM formulation, we also adopt the
ment gradients can be written to be: assumptions of ellipsoidal inclusions (particles) and uni-
formly distributed strains. By adopting such assump-

219
U~ =Y;j

00 (&m) tions, the volume integral terms in the integral Egs. 18
9%q . and 20 can be simplified using available analytical ex-
_ tj%d(a )_/ %Okd(aY) pressions. The integrations are carried out based on the

a  0&q ay 0&q boundary elements and by the analytical solutions for el-
N y v+ 00k aZU]fp " lipsoidal inclusions. By adopting the assumptions of uni-
- ZL/YI (Efje — Eijke) 3y, 0E40yi form distributions of stresses and strains in each particle,
1= . e the results of computation would be less accurate when
— i (Ei*ijé _ Ei’\j/lké) &Jgi(im)(zm e y*J) (20) the yolume_ fraction_ of _particles isllarge.. In subsequ_ent
ye section, this issue is discussed with a simple numerical
example.

Here the last term in the right hand side is calle\gv first defi initial train-lik ¢
“free term” or “jump term” which arises due to th&le Irs efine Initial -~ strain-iike erms
(1=1,2,3,---,N) in the particles, as:

Cauchy principal value integral type singularity in théii
kernel functionazu]-‘p/aiqayi (see Banerjee & Butter-

2 aq|
field (1981); Kane (1994); Okada Rajiyah & Atludj = Cliim (Eqmic — Efnice) a_y';
(1989)). e
= Cimn (Emnke — Ennke) Eke (21)

By discretizing the boundary of unit cell by the bound-
ary elements and the interiorsf' (I = 1,2,3,---,N) by

A aGL A . .
volume cells as shown ifigure 4, boundary element where e and g, are the displacement gradients and
analysis for unit cell can be carried out (Okada, Fukstrains in thd -th particle, and they take constant values
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within the particle. Thus, the volume integral terms a®trainsé,q which are the symmetric parts i, /084 are

written to be: expressed by:
Z / auk ouj o] ou; au]-‘q diay
e Ijkf Ijkf ay ay Em 2/ <aEq aEp) ( )
ouj o, oty
_ S / M Zip gyl 22) _} %
Z ¢ . Bk gy, %, o, azp Gid (3Y)
. . . . . N 1 a/\Ipmn a/\Iqmn 2|
Itis found that the expression in the right hand side of Eq. - Zl— 3 + 3 €m (26)
22 is nothing but the Green’s function formula, which l & &p

appears in the derivations for Eshelby’s solution (see Es-
helby (1957) and Mura (1982)). Following l\gura (1982)when the source poify, is at the interior of thé-th par-
analytical expressions for the integrgh E,Jk[ ayJ dy*!'is ticle, Eshelby’s tensoSqurm for the J-th particle appears

obtained and we denote: from the last term in the right hand side of Eq. 26.
Al y 7/ EMk[au,deﬂ (23) g 1 ) au]-‘p au]-‘q d(ay
;T 1 — — H R [
P a 6y SDQ( m) Z/BY J (azq + aEp> ( )
o , I 1 oty, ot
When the source poird, is outside the domail*' of -z ML L Gkd (AY)
thel-th particle, the expressions m{(é involve the Carl- 08 0%p

son’s elliptic integrals of first and third kind and look N N N
1 pmn gqmn A
somewhat troublesome. However, by use of mathemat—) 5 + €m S;])qrm (27)
) O o 2\ 0 0
ical subroutine libraries to evaluate the elliptic integrals 1=1
(see Press, Teukolsky, Vetterling & Flannery (1996), for '#J
example)/\'pM can be computed without any difficulties.
The computation fov’\'pké is much faster than carryingin Egs. 25-27, the volume integral terms in Egs. 18 and

out numerical integral forf,. EI,\JAk[a;JIp dy*'. When the 20 are replaced by analytical expressions.

source poin€py is at the interior ofy*!, Al,, are ex-

. : [ .
pressed by a linear functions of the coordinate values o Hothdasy Discrstiaticn

Em- w F\
Thus, Eg. 18 can be rewritten to be: O O O . 1
:Boundary T

eleme -+

CpqUig (Em) tjul,d(aY) tod (9Y) 2 OQ srvies
u - jUj - u : Double +

(8] q( m /BY Mjp /6 k'kp " o t*,*

a corner pt.

Lengths of axes and
orientations are speci

_ /a 0, (0Y) —Cpgl§ (Em) - prkf@kf (24)
Figure5: Discretization for the boundary of the unit cell

To evaluate the displacement gradients we differenti&tgd the distributed particles

both the sides of Eq. 24 with respect to the locatign

of the source point. . o . .
P Discretizations for the boundary of unit cell and the dis-

30, (8 ) 6 6t tributed second phase particles are schematically illus-
g il 6 Jpd(aY) / 3 —PG,d(aY) trated inFigure 5. There is no volume cell to evaluate
& Eq ov 0q the domain integral. Only the shapes (lengths of three
pkﬁ axes of ellipsoids) and the orientations of the axes are to
— Zl (25) .
0&q be specified.
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3 Numerical implementationsfor the unit cell anal- where{l} represents the displacement-like quantities ~
ysis at boundary nodes. Matricé&’], [H'] and [Q’] arise

, . _ from the integrals in Eq. 27.
In this section, the procedures of BEM analysis for the

unit cell are discussed. However, the numerical evalgl2 Periodic boundary conditions and system matrix
ations of boundary integral terms are discussed briefly, to be solved

since they are well known to the date (see, Banerjee & o ) ) )
Butterfield (1981); Kane (1994), and other references afe@ homogenization analysis, the deformation of unit
cited therein). We concentrate in some issues, which| Must be periodic. We enforce the periodic bound-
are particular of homogenization analysis. The periodY conditions such that the displacements are continuous

boundary conditions and iterative algorithm to obtain tHfid tractionreciprocity is satisfied between the neighbor-
solutions are discussed. ing unit cells. In a unit cell, the deformations have to be

the same between the boundary planes which are facing
each other, as shownltigure 6. The traction reciprocity

is enforced by letting the tractions on the paring planes
be equal to each other but their signs are opposite. Thus,
The boundary of the unit cell is discretized by boundafgr a set of paring boundary nodes A and BFirgure 7
elements. A three dimensional cubic or brick shaped uf@, we can write:

cell is considered. The method of collocation is adopted A B a b

to generate the system matrix by letting each bounddy) = (u')", [(U.l) = (u!) }

node be the source point one by one. Linear quadrilat- A 5 a b

eral boundary element is adopted and 10 by 10 Gaussian and (t)"+(t)" =0 [(ti) +(4)" = 0} (30)
guadrature is adopted. Although it is known that lower

order Gaussian quadrature may be used for certain camre()A ~ ()J and()? ~ ()q denote the quantities at the
we adopted the quadrature rule to assure the accuracyigdes A~ M and a~ q in Figure 7. In Figure 7 (b), the
integrals. Cauchy principal value type integrals are evéces of the cubical unit cell iRigure 7 (a) are opened
uated indirectly considering the rigid body translation®r an illustrative purpose.

and rotations. To represent discontinuities in tractions at

corners of the unit cell, we adopt the method of double

: . H
nodes, in which two or three nodes share the same loc ‘- G 3 G
tion but have displacements and tractions independentg E
(seeFigure 5 for the discretizations). Hence, one can N =
generate a system matrix equation from Eq. 24, whic C Periodic def. c
looks like: of faces D
,etc
A B

A B

3.1 Boundary discretization for BEM unit cell analy-
Sis

[Gl{u} = [H]{t} — [G]{a°} + [Q]{&} (28) Figure 6 : Deformation of faces of unit cell under the
assumption of periodic deformation

where{u'}, {u°}, {t} are{€} the column vectors con-

sisting of the nodal values of!, u® andt;, and the strains Unlike the case of FEM, in present BEM approach, we
| o . . . 1 1
g;(1=1,23, K N) in the particles, respectively. In EQgnforce the continuities of displacements and tractions in
28, Welregaro[u } and{&} to be the vectors of knowns, continuing plane also. For example, displacements and
and{u'} and{t} to be those of unknowns except for g5 cions at nodek and! in Figure 7 (b) have to be the

few components ifu' }. Matrices|G], [H] and[Q] arise ¢4 Therefore, we also enforce conditions:
from the integrals in Eq. 24.

A matrix equation to evaluate the strains in the particle{sil)k = (uil)I and (t)¢ = (t))' (31)

can be obtained from Eg. 27 and it can be shown, as:
However, node& andmin Figure 7 (b) share the same
{8} = [G'] {0} + [H'] {t}+ [Q] {&} (29) coordinates after the faces are assembled to be a cube,
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s H points to be the source points. However, we have no de-
gree of freedoms related to their displacements because
J all of them are constrained. By enforcing the condition of
; d ' the second of Eq. 31, we only have 9(3) independent
| H traction components at those eight nodes. Therefore, the
[ ! o total number of unknown variables related to those nodes
iy S am is 9 whereas we have 24 equations. Therefore, the sys-
i 4 b tem matrix[A] in Eq. 33 is no longer a square matrix.
% . To solve for unknown vectofU } we use the least square

@ — D H  method and we modify the system matrix, as:

“p T A" [AI{U} =~ [T [GI{0°} + [A]" [QI{&} (34)

Ae

®) 3.3 Solution procedures

Figure 7 : A schematic illustration for how the periodicThe same iterative procedures which are used in Okada,
boundary conditions for the displacements and tractiopgkui & Kumazawa (2001a, 2002) are used in present
are enforced study. The outlines are briefly presented here. Ini-
tial strain iterative procedure, using Eqgs. 29 and 33, is
adopted to obtain the equilibrium of the unit cell. The ini-
their nodal displacements and tractions are independgaitstrain iteration method has often been adopted to ana-
from each other due to the double node concept. Silyze elastoplastic problems (see Okada, Rajiyah & Atluri
ilarly, nodesn, o and p in Figure 7 (b) have the same (1988); Okada & Atluri, 1994; Chandra & Mukherjee
location but their nodal quantities are independent fro(@983, 1986)). The procedures of initial strain iteration
each other. We need to suppress the rigid body transiee summarized as follows.
tion mode and constrain the displacements of a node at
one of the eight convex points (nodes). Due to the condil. All the displacement gradients or strains of second
tions of Egs. 30 and 31, all the nodes at the convex points Phase particles in Eq. 33, are set to be zero, as the
must equal zero. Therefore, the displacements of nodes initial value [all the elements of€} in Eq. 29 are

at points M in Figure 7 equal zero. set to be zero].
c D £ F G 2. Eg. 33 is solved fo{U}, and {u'} and {t} are
(u)” = (ul)” = (u) " = (u)" = (u) obtained.
= ()" =) = ()’ =0 (32)

3. Strains are evaluated by using Eq. 29, or by the in-

N _ tegral Eq. 27.
By posing the conditions of Eqs. 3@2 and appropri-

ately rearrange the system matrices in Eq. 28, we caf. If the norm of change of the strains quantities were
collect the unknown components §ti* } and{t} in the small enough,
left hand side. One can write:

[Al{U} = —[G]{0°} +[Q] {€} (33) (g)Current_ {é}PreviouT/

{é}PreViOUT <Tol. (35)

where{U} is consisting of unknown displacements and
tractions at the boundary of unit cell. After the condition€ iteration is judged to converge{ €} stands
Egs. 30-32 are enforced, the system matfi is no for the strains after updated in current iteration step and
longer a square matrix. Number of simultaneous Iineﬁﬁ'}PreV'OUSare those before updated.ol. is a small
equations included in Eq. 33 is larger than the order pbsitive number set by the analyst. In present research
{U}. Thereason is as follows. For example, there are 2dl. is set to be 0.0001. Otherwise, the analysis is re-
(= 8x 3) equations generated by taking the eight convgeated from the step 2 above.

Current
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It should be noted here that when the elastic moduli (i.4t js noted thaty, are determined as the valuesuﬁfby

Young's modulus) of the second phase particles is larggtting each component 03‘):—? be one and all the others
than that of matrix, the above procedures suffer from a e oug L g o o a3
convergence problem. That is because the strains (&)Igo_zeroo(e.g.@ =landal =5 = —ou o
placement gradients) in the second phase particles = g%j = g%j = 0, etc.) in the unit cell analysis.
come much smaller than those in matrix material. Wg present BEM approach, the effective stregs%g;an
have overcome this problem by slightly modifying th@e evaluated in a similar manner.

initial strain iteration algorithm. When the elastic con-

stants for the second phase patrticles are larger than those

for matrix, the strains are updated by:

1 N aue
o =— [EM, + SV (B —EM VR | =X
{Q}Current Wy | I; (Efjim — Efjm) Rinke %
i i 39
_ (FAICT) [{é} _ {é}PreVIoui +{é}Prewous (39)
Max (E*') Effective elastic moduli are expressed, as:
(FACT) = —— (36)

M
E Eff

T ijmn

current iteration step by using Eq. 29 or 27. |Y]
E*(1=1,2,3,---,N) andEM are the Young’s moduli (40)
for the second phase particles and matrix materials.

where {8} represents the strains evaluated in the 1 em 1 A M | |
E = [Ef +5 >V (E; Eifm) (Rimke + Rinek)
=1

whereRi*j'ké are the characteristic functions expressing the

34 Effective (homogenized) stressesand elastic mod-  ir4ins in thd-th particle, as:

uli

(0]
Effective elastic moduli are expressed in Eq. 14 ina]. = Ri*jlke%
general form. When the single-region BEM with vol- 0%,

ume cells is used for the homogenization analysis, the, dinth luated
effective stresses;; due to the macroscopic deformatiofjka"® computed inthe same waykag, are evaluated.

modedug /ax, are expressed by (see Okada, Fukui & Ku- el I
mazawa (2001a, 2002)): 4 Numerical results

4.1 One particleproblem

(41)

0 _

N
EMe + % ZL/Y' (Ei?ké - Ei’\j/lké> ay™ First, a simple problem is solved to compare the results
= of present BEM formulation with those of multi-region
1 N (E*' EM akang*I ouy 37 BEM (Okada, Fukui & Kumazawa (2001a, 2002)) cal-
ﬂy, I;/y*. ijmn iimn) AYn %, (37) culations. A spherical particle located at the center of
the unit cell is assumed, as showrFigure 8. The size

Eq. 36 was derived from Eq. 14 by applying Gauss divednd elastic modulus of the particle are varied and the ac-

gence theorem appropriately. The effective elastic mdiracy of present formulation is discussed. Matrix and
uli are expressed to be: the particle are isotropic and the Poisson’s ratios for both

the materials are assumed to be 0.3. 36 (6 by 6) linear
1 N guadrilateral boundary elements are placed on each face
Ei'j*ké = Ei’}/lkg + VI Z/ | (Ei*jlké — Ei’\j/lkg> dy™ of the cube. There are a total of 216 boundary elements
MIETA on the outer faces of the unit cell.
c / (E-*-' _EM ><6ka4 +6Fn1€k>dY*| Analysis models for present BEM and for the multi-
gx yoHme T gy, Oyn domain BEM analyses are shownHigures 9 and 10.
(38) It is noted that when present formulation is used only

NS
2|Y|
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Figure 8 : One particle problem to compare the result

of present method and those of multi-region BEM Boundary elements Interface elements

Figure 10 : Boundary and interface discretizations for
the one particle problem which is solved by multi-region
BEM approach
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Figure 9 : Boundary discretization and a particle for th&igure 11 : The variations of effective elastic constants
one particle model which is solved by present BEM agEfl,, EH,,andE}},,) with respect to that of the ratio
proach E*/EM of Young's moduli for the casey/f; = 0.25

the location and the size of spherical particle are spegjynts EH ., ,EH . andEL, ) with respect to the change
fied and there is no volume discretization. The particlf the ratioE* /EM are presented far,/¢; being 0.25,

is shown by an illustration. For the multi-region BEMp 35 and 0.45. Ifigures 11, 12 and13. The results ob-
analysis, we need to discretize the interface between fhed by present method and by the multi-region BEM
particle and matrix by boundary elements. We have 2{§mulation are indicated by “Particle-BE” and “Multi-
linear quadrilateral interface elements. The ratio of tRge" respectively. It is seen that the value of /e
radiusr, of particle and the siz&; of unit cell are set to s equal or less than 0.35 (volume fraction is equal to
be 0.25, 0.30, 0.35, 0.40 and 0.45 and their correspog@ess than 17.96%), the results of present and multi-
ing volume fraction of the particle are 6.55%, 11.31%eggion BEM formulations are in a perfect match. How-
17.96%, 26.80% and 38.17%. The raEd/EM of the ever, for the case Ofp/€£ being 0.45 (VOIUme frac-
Young's moduli of the particles and matrix are varieflon is 38.17%), the results of present formulation differ
from 0.01 to 100. The case &"/E" = 0.01 represents from those of multi-region BEM. The discrepancies may
a case where the particle is so soft that this case almgstcaused by the assumption of uniformly distributed
represents the problem of a spherical void. In the casesgfesses and strains within a particle. The distance be-
E*/EM =100, the particle is so stiff that this case almogfeen the boundary of the unit cell and the particle be-
represents the case of spherical rigid particle. comes so small that the assumption breaks down. Then,
We first present the variations of effective elastic coseme comparisons are made on the variations of effec-



Homogenization Analysis for Particulate Composite Materials

£

145

~®-E;111 (Particle-BE)

5, 200F ~8-E111 (Particle-BE) w12 1
= 175} -A-E ;22 (Particle-BE) = I - Ej12; (Particle-BE)
= i B-E s (Particle-BE) = 1 ‘.'ELtharticle-BE]
g oot O E{}11 (Multi-BE) gz 0 -0 Ey’11 (Multi-BE)
e 125F 4 Efiza (Mti-BE) g08[ - Efiz2 (Multi-BE)
% 1.00 [ O E 1212 (Multi-BE) % 06 —IF Eiz12 (Multi-BE)
S o7s5F © g4l

[ )
2 0s0p z [ - __
3 025 802
= -l PEERTTIT | PECETETIT | PR ETTIT BT | w M L A 1 M 1 M L " 1 L 1 L
W 0.00 0

0.01 0.1 1 10 100 005 01 015 02 025 03 035 04

Ratio (E' / EM) Volume fraction of second phase material

Figure 12 : Variations of effective elastic constant§igure 14 : Variations of effective elastic constants
(EH,, EH,,andEl,,) with respect to that of the ratio(E{};1, Efi,,andEf),;,) with respect to the ratio /(e
of the radius of particle and the size of unit cell for

E*/EM of Young's moduli for the casey /¢ = 0.35
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Figure 13 : Variations of effective elastic constant$ igHure 1H5 : Variﬁtions of effective elastic constants

(EH,, EH,,andEH, ) with respect to that of the ratio(Ei111 Ef122@ndE[3;5) with respect to the ratio /(e

E*/EM of Young’s moduli for the case//e = 0.45 of the radius of particle and the size of unit cell for
E*/EM =100

tive moduli with respect to the that of the volume frac-

tion of the particle. IrFigures 14 and15, the variations gyalized. It is noted here that the case V\Eth/EM —

are plotted for the cases & /EM being equal 0.01 andp 01 (shown inFigure 16 (a)) almost corresponds to
100. The results of both the methods (present and Mufiiz case of spherical \/oidE*/EM = 100 (Figure 16
region BEM) are almost identical to each other when thg)) indicates that there is an almost rigid inclusion. For
volume fraction is equal or less than 0.268. However, q§*/EM = 0.01, it is seen fronFigure 16 (a) that stress
pecially for E*/EM = 100, large discrepancies betweeg,, is almost zero inside the particle and at both the sides
the results are seen. Therefore, it can be said that preggpfarticle the stress in matrix is almost zero (the value is
method can serve reasonably accurate solutions Whengﬁgzhﬂy negative, but its magnitude is very small). There
volume fraction of the particles is smaller than 26%. is no unacceptable jump in stress value at the interface.
The distributions of stress are presented for the caslso, we find stress concentration in matrix at the top and
rp/ls =0.35 withE* /EM = 0.01 andE* /EM = 100. A bottom of the particle. Frorfiigure 16 (b), the stress1;

two dimensional finite element-like mesh is generatediimside of the particle is significantly larger than average
the cross section of the unit cell. The plane of visuadtress in matrix. At the top and bottom of the particle,
ization includes the center of the spherical particle andfite stress is almost zero. For both the cases, we do not
is perpendicular to thgs axis. The distributions of1; find any unacceptable stress jump at the interface and the
under macroscopic deformation mo@lﬁ/xl =1 are vi- distributions of stress are as expected.
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— The results are presentedhingures 18 (a), (b) and(c).
' : The effective Young's modulus are plotted for the varia-
I tion of the ratioE* /EM of Young’s moduli of particles
oss and matrix. The trends of the results which are obtained

’i? _ by present BEM approach are very similar to those of the

g 2 reference solutions. Therefore, the solutions of present
1 .
(@) E* EM=0.01 (b)E*/ EM= 100 BEM approach are proven to be reliable.

Figure 16 Distributions of stresg 11 normalized byEM Stress di§tributions in the cross secti_on of the unit cell
for macroscopic deformation mod®/dx; = 1 in the (1,25 pqrtlcle _m_odel) are pr_esentedl-‘mgure 19. TW9
cross section of the unit cell. (&*/EM = 0.01 and dimensional finite element-like mesh is generated in the
(b)E*/EM = 100 cross section and then the distributions of stress are
drawn. InFigure 19 (a), the distributions of stress;;
for E*/EM = 0.01 anddug /ox, = 1 (and all the others
are zero) iry, = 5 plane, is shown. Ifigure 20 (b), the
distribution ofo 11 is plotted forE* /EM = 100. Itis seen
that the stress distributions in matrix is very complex,
and, especially for the case Ef/EM =0.01, stress con-
centrations at the sides of the particles (voids) are found.
In Figure 19 (b), the particles are found to have a large
magnitude of stress.

(a) 27 particle model (b) 125 particle model  (c) 1000 particle model
Figure17: (a) 27, (b) 125 and (c) 1000 particle model

4.2 Randomly distributed particles 5 Conclusions

The problems of randomly distributed spherical particles

are considered in this section. Three models are analy2edew BEM formulation for the analysis of particulate
as shown irFigure 17 (a), (b) and(c). The volume frac- composite materials is presented in this paper. Present
tions of the particles are 12% for 27 particle model, 15%rmulation can analyze the problems of unit cell which
for 125 particle model and 15% for 1000 particle modetontain a number of distributed particles. The number
To distribute the particles, we adopted Sobol’ sequenakdistributed particles, which are demonstrated in this
(Press, Teukolsky, Vetterling & Flannery (1996)), whicpaper, is up to 1000. By using BEM in a traditional
is a method to evenly distribute points in a multi dimenaay (i.e., multi-region BEM) for the analyses of hetero-
sional space. The sizes of the particles are determirgesheous materials, such a huge RVE would extremely
such that the radius of a particle is set to be a fractionlog difficult to deal with. In present approach, there are
distance to the center of the nearest particle. The fraccertain level of simplification such as the uniformly
tion is adjusted so that the volume fraction becomes tHistributed stresses and strains in each particle, is intro-
specified value. For the case of 27 particle problem, theced. The effective properties obtained by present ap-
highest possible volume fraction we could set was abquiach are accurate when the volume fraction of the par-
13%. When the value of volume fraction which is largdicles is less than about 25%.

than 13% is specified, some particles overlap each othgtie results presented in this paper are rather simple
For a class of problems in which the particles randoméases. For example, with present formulation, one may
distribute in the unit cell, it is extremely difficult to obtainanalyze the problems of stress induced phase transforma-
solutions by using the finite element method or by th@n (see Okada, Fukui & Kumazawa (2001b)). Macro-
boundary element method. And there is no exact solutiscopic stress-strain curve may be obtained based on the
to compare with. We take the solutions of self-consisteaxolution of microstructure. In the authors’ forthcoming
method and Eshelby’s method (see, Mura (1982)) as @aper, we apply present BEM approach to such nonlinear
references. problems.
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