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Adaptive Multi-Scale Computational Modeling of Composite M aterials

P. Raghavan * and S. Ghosh 2

Abstract: This paper presents an adaptive multi-levétrials. Despite property enhancements, the presence
computational model that combines a conventional dist second phase fibers or particles in composites often
placement based finite element model with a microstrutas adverse effects on their failure properties like frac-
tural Voronoi cell finite element model for multi-scaldéure toughness and strain to failure. Structural compo-
analysis of composite structures with non-uniform mnents, e.g. laminates of many composite materials, ex-
crostructural heterogeneities as obtained from opticalabit strong non-uniformities at the microstructural level.
scanning electron micrographs. Three levels of hiéfhe non-uniformities are in micro-scale morphology in-
archy, with different resolutions, are introduced in thisluding variable fiber/particle spacing, size, shape, vol-
model to overcome shortcomings posed by modelingne fraction and dispersion, in meso-scale clustering or
and discretization errors. Among the three levels amirectionality or in varying constituent material and in-
(a) level-0 of pure macroscopic analysis; (b) level-1 eérface properties. The material response and especially
macro-micro coupled modeling, used for signaling thmaicrostructural damage mechanisms, includinginclusion
switch over from macroscopic analyses to pure micrand matrix cracking, interfacial decohesion etc. can be
scopic analyses; and (c) level-2 regions of pure micreery sensitive to these local variations in morphological
scopic modeling. The adaptive Voronoi cell finite eland constitutive parameters. Robust analysis methods to
ement model is utilized effectively for analysis of exdesign optimal composite microstructures are necessary
tended microstructural regions with high efficiency anfdr enhanced utilization of composite materials in load
accuracy. ldentification of statistically equivalent RVBearing high performance applications.

(SERVE) for evaluating the effective properties are magigsterogeneous structures are conventionally analyzed
through the use of correlation functions for different varigjth properties obtained from homogenization of re-
ables. Upon determination of SERVE's for actual m%ponse at smaller (meso-, micro-) length scales.
crostructures, numerical examples of a composite platshoniem and Cho (2002)] provides an overview of
and a composite laminate are solved to demonstrate §d¢rent and a vision for future developements in mul-
ability of the multi-scale computational model in analyziscale simulations for nano- and micro-mechanics of
ing complex heterogeneous structures. materials. Analysis of composite materials is often
performed by the method of homogenization wherein
the macroscopic properties are obtained by averaging
stresses and strains over a periodic representative vol-
ume element (RVE). Commonly used methods of ho-
1 Introduction mogenization, e.g. the asymptotic expansion homoge-
nization [Benssousan, Lions and Papanicoulau (1978);

The commercial use of reinforced composites in variods,nchez-Palencia (1980)], assume spatial periodicity
structural components has increased considerably in fi€microstructural representative volume elements or
last few decades. Based on design requirements, they@ig s and uniformity of macroscopic variables . Mul-

engineered to yield superior thermo-mechanical propgfie scale analyses of linear elastic reinforced com-
ties like high strength or stiffness to weight ratios, r&5osites have been conducted by Fish et. al. [Fish and
sulting in a tremendous advantage over monolithic Magiman (1993)], Guedes and Kikuchi [Guedes and

L Graduate Research Associate Kikuchi (1991)], Ghosh et. al. [Ghosh, Lee and Ragha-

2Professor, Department of Mechanical Engineering, The oh@" (2001); _nghavan’ Moorthy, (_Sho_sh and Pagano
State University, Columbus, Ohio, USA (2001)]. In this issue, the homogenization method has
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been used in conjuction with the boundary elementodel, in addition to the macroscopic solution. To econ-
method for three-dimensional particle reinforced conemize computations, many studies have assumed sim-
posites in [Okada, Fukui and Kumazawa (2003)]. Mple unit cells models of the RVE, consists of a rectan-
cromechanical traction-displacement laws are embegadar domain with one or two fibers. These simplified
ded in the continuum macromechanical formulation BBWVE’s often imply uniform or hexagonal closed-pack
a variational multiscale method in [Garikipati (2002)]distributions in the microstructure bearing little resem-
The application of homogenization methods suffer froimiance with the actual stereographic features of the actual
some shortcomings with respect to accuracy in specificcrostructure. Multiple scale models incorporating the
problems with respect to limitations in the assumptiongéronoi cell microstructural models have proved to pos-
of macroscopic uniformity and RVE periodicity. The unisess significant edge in this regard. The microstructural
formity assumption is not appropriate in critical regionsoronoi Cell Finite Element Model (VCFEM) has been
of high gradients like free edges [Pagano and Rybidkéveloped by Ghosh et. al. [Moorthy and Ghosh (1996,
(1974); Rybicki and Pagano (1976); Raghavan, Modt998, 2000); Ghosh, Ling, Majumdar and Kim (2000)]
thy, Ghosh and Pagano (2001)], interfaces, material dis-overcome limitations of unit cell models and effec-
continuities and most importantly in regions of evolvingvely analyze large microstructural regions with arbi-
damage. Periodicity of simple unit cells is also unreakary dispersions, shapes and sizes of heterogeneities. By
istic for non-uniform microstructures, particularly in theombining assumed stress hybrid finite element formu-
presence of clustering. Even with uniform distributiolations with essential characteristics of micromechanics,
of microstructures, evolving localized stresses or straiasigh level of computational efficiency with good accu-
can violate the periodic assumptions. Problems like thiscy and resolution has been achieved with this method.
have been tackled effectively by global-local techniqués this issue a 3D model for stress and damage analysis
introduced by Fish et. al. [Fish and Wagiman (1993)h multi-inclusion discontinuously reinforced composites
Ghosh et. al. [Ghosh, Lee and Raghavan (2001); Raghas been proposed byoBinh et. al. [Bhm, Han and
van, Moorthy, Ghosh and Pagano (2001)] and Oden Etkschlager (2003)] and a model for woven fabric com-
al. [Oden and Zohdi (1997)]. Sub-structuring in thegeosites has been proposed by Kwon and Roach [Kwon
multiple-scale analysis methods differentiate between sxd Roach (2003)].

gions requiring different resolutions, and enable glob@jhjle VCFEM offers a solution to efficient analysis of
analysis in some parts of the domain and zoom in febmplex microstructures, identifying statistically equiv-
complete microscopic modeling at region of high gradijent representative volume elements or SERVE for
ents. Adaptivity is a desirable ingredient of these MUon-uniform microstructures is a challenge. Under-
tiple scale modeling methods, for automatically seleGepresentation of SERVE’s can lead to considerable er-
ing appropriate regions to minimize discretization angys in the values of effective properties and should be
modeling errors. Without adaptivity, hierarchical mod;yoided. Various authors have used statistical analyses to
eling may not be optimally efficient. Adaptive multiplegetermine the size scale of RVE and the number of fibers
level methods have been proposed by Oden et. al. [O¢@tained in it [Pyrz (1994a,b), Bulsara, Talreja and Qu
and Zohdi (1997); Oden, Vemaganti and Moes (1999)},999)]. Pyrz et. al. [Pyrz (1994a,b)] has used statisti-
Ghosh et. al. [Ghosh, Lee and Raghavan (2001); RagBat correlation functions to obtain characteristic informa-
van, Moorthy, Ghosh and Pagano (2001)] to address dign about the microstructure. For example, geometric
cretization and modeling error for multi-scale analysis @fescriptors like the second order intensity function and
composites. pair distribution functions have been used to distinguish
A second shortcoming of composite analysis using thetween different patterns or distributions . To account
asymptotic homogenization methods is related to effer the interaction between fibers, they have used the
ciency in the concurrent execution of finite element anaharked correlation function as an informative descriptor
yses at the macroscopic and microscopic scales. Erfor-characterizing the size of the microstructural SERVE.
mous computational efforts can result from having fbhe marked correlation functions combines both the ge-
solve boundary value problems of the microstructuraimetric descriptors as well as distributions of response
RVE in each macroscopic element of a finite elemevdriables like stresses and strains in the microstructure.



Manuscript Preparation for CMES 153

In this paper, a systematic multi-scale analysis methodhiee assumed to exhibit dependence on the macroscopic
established for fiber reinforced composite structures cas well as microscopic length scales. Furthermore, the
sisting of non-uniformly dispersed microstructures. Thaicroscopic dependence is assumed torbeeriodic,
multi-level computational model introduced in [GhoshyhereY is the period of RVE. In this method, the dis-
Lee and Raghavan (2001); Raghavan, Moorthy, Ghgalacement field in a heterogeneous domain is expanded
and Pagano (2001); Lee, Moorthy and Ghosh (199@8ymptotically about its values at a macroscopic pgjnt

for simple microstructures is extended in this work. Thia terms of the microscopic coordinatesas

model encompasses three levels in the computational do-

main. The level-0 and level-1 subdomains use effeg(x) = UW0(x,y) + eul(x,y) + €22 (X,y) +---, Y= ~ (2)

tive properties obtained by homogenization of the statis- &

tically equivalent RVE’s, obtained using marked correlahe spatial derivative of any multi-scale function is given
tion functions in the microstructure. Unique methods afs

applying periodic boundary conditions on non-uniform

RVE'’s are developed. Level-2 sub-domains emerge with. (d(x,y)) (3)
loss of periodicity or uniformity in macroscopic regions; i

where the model switches to complete microscopic C@jging £q. 2 and Eq. 3 in kinematics and constitutive re-

culations using precise microstructures. Details of thei o ¢ Eq. 1 yields the stress tensty as
multiple scale computational model is provided in Sec-

tion 4. Numerical examples demonstrating the effectiveg 1, s 23
ness of the model are provided in Section 7. Oij = £ Oij T+ Oij T€0ij +&°0jj - (4)

o 100
S 0x €0y

2 The Asymptotic Expansion Homogenization Using Eqg. 3 and Eq. 4 in the equilibrium relation of Eq. 1,
M ethod equating various powers efand averaging over the pe-

riodic RVE, it can be shown that the following relations
Boundary value problems in a heterogeneous dof2&in hold.

are assumed to satisfy the equations of linear elasticity,

given as W o= w(x)
.0. =
Equilibrium @ ofj ;= —f; Oij 0 o
. . 1 /0 aut W= Ky O
coe == (ST i Xi (¥)
Kinematics : ek'_2<6>q€+6x§> ZX'O
ConditutiveRelations :  of; =Efjyey in Q° (1) oilj = 6}<j' (y)a_l:(:< (5)

whereay;, €; andu; are stress, strain and displacement _ _
whereg; i+ Xp are the microscopic stresses and character-

. . |
fields respectively. The scale parameer - (ly,Ix COr- stic deformation modes. Furthermore the volume aver-

respond to length scales in the microscopic and mactye of microscopic stresses yields the homogenized stiff-

scopic domains respectively) is typically an infinitesioqq tensaEfy, for use in macroscopic calculations.
mally small number. Since computational analysis of this

problem will be prohibitively expensive due to the pres- K 1 [ .
" Et =< 05 >y= o.dY
ence of large number of heterogeneities, most analyst$ i Y[ N

solve an equivalent homogenized version of the problem $ (6)
using macroscopic effective properties obtained by av- = v E pm(OkpOim + W—;)dY

eraging microscopic variables. A powerful method that
has been developed in conjunction with computationghe macroscopic stress-strain relation then takes the
analysis of heterogeneous materials is the asymptotic g,

pansion homogenization method [Benssousan, Lions and

Papanicoulau (1978); Sanchez-Palencia (1980)]. In this . oxm™ oul, H

method variables (stresses, strains and displacemefti)t) =< Eijia (Smdin -+ i )E >Y= Ejjmem(x)
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() o
where the homogenized variables arg(x) =<
o%(x,y) >y and e(x) =< €(x,y) >y. The compo-
nents of the homogenized stiffness ma‘tEﬂkI are y
calculated by detailed solution of separate boundary @L

value problems of the entire RVE. The loading in
each of these problems is in the form of imposed unit ]
macroscopic strains. Additionally, the periodicity on
RVE boundaries implies that points on the boundary

are constrained to displace periodically. For nodes "
on the boundary which are separated by the periods— l
Y1,Y2,Y3 along one or more coordinate directions, the o
displacement constraints can be expressed as €)) (b)
Ui (Xl,Xz,Xg) = U (Xl + k1Y17X2 + k2Y2,X3 + k3Y3),
i—1.23 (8) Figure 1: (a) Composite plate with a hole (b) Optical

_micrograph of the microstructure at point A
wherekq, ko, ks may assume the values 0 or 1, depending grap P

on the node locations.

3 Estimating Statistically Equivalent RVE's for hypothesis, which demand_s that all states available to en-
semble of systems be available to each system of the en-
semble. The justification of the assumptions have been
Macroscopic analysis of a composite structure, requin@®vided in [Zeman and Sejnoha (2001)]. Consequently
that an appropriate RVE be identified for each macra-single SERVE is assumed to represent every macro-
scopic point. RVE’s can be readily identified for a regulacopic point in the plate. The representative size of the
arrangement of fibers like rectangular or hexagonal dSERVE is identified by the use of statistical functions,
tributions. However, microstructures from real compos-g. correlation functions. Pyrz [Pyrz (1994b)] has in-
ite materials hardly possess regular distribution as showaduced “marked correlation functions” for characteriz-
in Fig. 1(b). In Fig. 1 a composite plate with a circulaing the length scales defined as the region of influence in
hole and the corresponding microstructure from a opé#-heterogeneous neighborhood on pre-disposed response
cal micrograph are shown. The fibers are assumed tdfiedds like stresses and strains. The marked correlation
aligned perpendicular to the plane of paper. Since tliisiction for a heterogeneous domain of afeaontain-
microstructure is random, a RVE can be obtained onlyiimg N fibers may be expressed as

a statistical sense and attention is focused on identifying

Non-uniform Microstructures

a Statistically Equivalent RVE (SERVE), which would,, . _ dHi) )
exhibit a macroscopic behavior that is equivalent to the g(r)

average behavior of the corresponding microstructure.

The microstructure shown in Fig. 1(b) corresponds \t,(\g ere

macroscopic point A only. Since the construction of 1 ANE

SERVE's for the entire plate would require a large nurti (1) = W@Z mim(r) (10)

ber of micrographs from various representative points in
the plate, an assumptionis made that, thisis a represeitathe above equatiom; is a mark associated witith

tive microstructure for the entire plate. This may be judiber, k; is the number of fibers which have their centers
tified from two considerations from statistical continuurwithin a circle of radiug around theith fiber, my are
theories that have been described in [Beran (1968)], vike marks of those fibers amd is the mean of all the

(&) an ensemble assumption, in which different expenarks. Marks in the marked correlation function can be
iments with different microstructural arrangements emny field variable for example, the maximum principal
hibit similar macroscopic behavior, and (b) an ergodatress, Von Mises stress etc. associated with each fiber.
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H(r) is called the mark intensity function awr) is the
pair distribution function defined as
1 dK(r)
= 2w ~ar

(11)

whereK(r) is a second order intensity function which is
explained in [Ghosh, Nowak and Lee (1997a,b)]. While
K(r) can distinguish between different patterns, the pair
distribution functiong(r) characterizes the intensity of
inter fiber distances. From the definition it can be seen
that the marked correlation function associates field vari-
ables with morphology of the microstructure. The radius
of influenceRin; may be inferred from a plot d¥i(r) vs

r, in whichM(r) stabilizes as approacheR,s.

Once the radius of influend®, has been determined
from M(r), SERVE may be constructed by using square
windows of sizeRins x Rips at various points of the mi-
crograph. The use of square windows to carve out the
RVE for a random microstructure results in the intersec-
tion of many fibers with the edges yielding cut fibers near
the boundary, as shown in Fig. 2(a). While some authors
have used cut fibers in their RVE construction [Zeman
and Sejnoha (2001)], the application of periodic bound-
ary condition is improper with these RVE’s. Increasing
the window size to include the totality of cut fibers, as
done in [Bulsara, Talreja and Qu (1999)] (Fig. 2(b)), re-
sults in a decreased volume fraction.

_ _ Figure 2 : (a) Particles cut during the RVE generation
As a remedy, to the above discrepancies, a method(gf Boundary of the RVE adjusted to accommodate the

constructing the SERVE boundary by repeating the groggmplete particle (c) Construction of periodic RVE with
of fibers periodically is adopted in this work as shown iRgn-straight edges

Fig. 2(c).
The local microstructure is first constructed by repeat-

ing the randomly distributed fibers obtained from stgsoyndary, created by this procedure are periodic, i.e. for
tistical analysis in both thg; — andy,— directions for eyery houndary node a periodic pair can be identified on
several period lengths. Periodic repetitive fibers afigs houndary at a distance of one period along one or both
placed at(ys,y2), (y1+kiYs,Y2), (Yi,Y2 +ko¥2) @and of the coordinate directions. In Fig. 2(c), the node pairs
(Y1 £ kaY1,y2 £ KoY2), whereky, k; are integers. The pe-gre jgentified as AA, BB etc. The periodicity constraint

riod lengthsy; andY; are selected such that the volumgggitions on nodal displacements can then be easily im-
fraction of the RVE matches with that of the original Minosed.

crostructure. The multi-fiber domain is then tessellated
into a network of Voronoi cells [Ghosh and Mukhopads : -

hyay (1991)] as shown in Fig. 2(c). The boundary of t(:%l Convergence in the Size of SERVE

RVE, shown in bold lines, is generated as the aggregdt@umerical example is used to demonstrate the effect of
of the outside edges of Voronoi cells associated with tls&ze of the constructed SERVE on the macroscopic prop-
primary fibers (dark colored). The consequent SER#ties as well as the microscopic stresses. The pair distri-
will have non-straight line edges corresponding to nobution functiong(r) for the entire microstructure (Fig. 1)

uniform fiber arrangements. However, nodes on the RWEevaluated and depicted in Fig. 3, wheggis the fiber
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radius. Instead of using a correction factor for evaluating 16 ‘ [

K(r), periodicity of the micrograph is used. A compar- i — Von Mises stress in matrix
—- Principal stress in inclusion

- Constant stress

ison with a pure random Poisson distributigpr( = 1) |
shows that the microstructure considered exhibits signif- '
icant deviation from randomness through clustering etc —

High levels of clustering are seen for lower levelsrof g Al
(< 8rp), and the clustering intensity decreases with in-

creasing radial distance.

2 ‘ ‘ ‘ ‘ ‘

‘ ‘ ‘ \ ‘ \ ‘
— Micrograph 0 4.06 8.12 12.18 16.24 20.30

—- Poisson distribution

g(n

1.6 ‘ ‘ ‘ ‘ ‘ ‘ ‘

— Von Mises stress in matrix
—- Principal stress in inclusion

- Constant stress

1.4

I I I I
0 4.06 8.12 12.18 16.24 20.90

Figure 3: g(r) distribution for the micrograph

I I L 1 L 1 L
Maximum principal stress in the fiber and maximum Von 0 4.06 812 1218 1624 2030

Mises stress in matrix in each Voronoi cell are consid-

ered as marks since they are good indicators of failure (b)

initiation in the microstructure. These variables are ob- ] ) )
tained by detailed computational analysis of the entifd9ure4: Marked correlation functions M(r) for (&) uni-
micrograph under tensile loading by the Voronoi Cell f2X1al loading and (b) biaxial loading

nite element method (VCFEM), described in Section 4.3,

[Moorthy and Ghosh (1996)]. The VCFEM mesh is

generated by tessellating the entire micrograph into a

network of Voronoi cells [Ghosh and Mukhopadhyajepresentative volume element.

(1991)]. Plots ofM(r) for different marks are shown inConvergence in effective macroscopic moduli and micro-
Fig. 4(a). It can be seen thit(r ) is high at distances lessscopic stress distributions with respect to the RVE size is
than 8, but stabilizes to a unit value at distances greateow studied. 5 different RVE’s, shown in Fig. 5, are con-
than approximately®. This indicates that the influencesidered with periodic boundary conditions. They consist
on the stress persists for fibers within an approximate @&-1, 8, 18, 35 and 55 fibers respectively with correspond-
dius of &,. It can also be seen thit(r) for both Von ing RVE sizes ofrq, 3rq, 6ro, 9, and 12,. The RVE's
Mises stress and principal stress have a similar behavéoe chosen from any arbitrary region (Region A) in the
and stabilize approximately in the same radial range. micrograph. The matrix material is assumed to be epoxy
very similar behavior oM(r) is also observed when thewith propertiesE, = 3.8 GPA andv, = 0.34, while the
micrograph is loaded under biaxial tension as shownfibers are of graphite with propertiés; = 3800 GPA
Fig. 4(b). This suggests that a length of around 8an andv¢ = 0.2. The effective properties are calculated by
characterize the size scale of the statistically equivalené homogenization method using Eq. 6. A Frobenius
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1635 5 10 15 20
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Figure 6 : Convergence ofl[E| with increasing RVE
Figure5: RVE's with 1, 8, 18, 35 and 55 fibers 51463 at different regions

study reasserts the effectiveness of the marked correla-

norm of the effective elastic modulus is given as : o . .
g tion function in determining the SERVE size.

(12) 80— —

whereN = 3 for plane stress and plane strain. Fig. (_ 60 |- Maximum microscopic principal stress in inclusjor-
shows the convergence BE|| with the increasing RVE ngé'rrgs“gprrgfiggg'sc Von Mises stress in matrix |
sizes. The norm converges with increasing RVE size<=

The difference in the norm between the single fiber ar ﬁ
55 fibers is around 2%, while the difference between 12
fibers (corresponding tRins = 10um in Fig. 4) and 55 20k |
fibers is found to be less than 0.5%. Similar responses ¢

observed for other regions (Region B) in the microstruc
ture as shoyvn with the dotte_d line in Fig. 6. Conse %10 30 % 40 =0 60
guently, a size scale of= 6r, is deemed adequate for Number of fibers in RVE

the SERVE to be used in all subsequent analyses.

GPa)

401 -

In the study of the effect of RVE size on microscopiEigure7: Convergence of macroscopic and microscopic
stresses, unit macroscopic stragps= 1, e,y =0, e, = stress for unit strain loading for different RVE sizes

0, e, = 0 are imposed on the RVE's with periodic
boundary conditions. Fig. 7 shows the macroscopic
stressXxx), the maximum Von Mises stress in the matri
and the maximum principal stress in the fiber, as func-
tions of increasing RVE size. While the macroscopieven if a RVE with a large number of heterogeneities
stress is almost insensitive to the RVE size, the maxs-used, the microscopic stresses or strains at critical lo-
mum stresses in the microstructure change considerabtions may be grossly misrepresented in purely macro-
The difference in maximum Von Mises stress in the maeopic studies with effective moduli established through
trix for the single fiber RVE and 55 fiber RVE is almosinicroscopic homogenization, due to the assumptions of
60% whereas, the corresponding difference for the f8riodicity and macroscopic uniformity associated with
fiber RVE and the 55 fiber RVE is less than 4%. Thike definition of a RVE. It has been noticed by many

The Adaptive Multi-Scale Computational M odel
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authors [Pyrz (1994a); Daniel and Anastassopoulesel-1 element computations are
(1995)] that local morphology of fibers have strong ef-
fect on failure initiation and propagation. The multi-scale e Setting up the macroscopic stiffness by solving RVE
computational model has been developed in [Ghosh, Lee level boundary value problems with unit strains and
and Raghavan (2001); Raghavan, Moorthy, Ghosh and periodic boundary conditions
Pagano (2001)] to overcome the limitations of pure ho- _ _ _ .
mogenization based analyses of heterogeneous material8. POSt-processing to compute microscopic stresses in
This model is adaptive in nature and automatically distin-  the RVE at each integration point of the macro-
guishes between critical and non-critical regions to intro- ~ SCOpic element
duce levels of hierarchy in the computational model. In
this paper, the model is extended to microstructures with
non-uniform distribution of fibers. The main computa-
tional subdomains in the hierarchical model are shown i
Fig. 8 and discussed next.

|:| Level-0

4.1 Computational Subdomain Level-0 p—

Level-0 subdomains encompass regions of macroscoj EI Transition Level
analysis using effective properties obtained by homog:
nization of SERVE. This level is valid in regions where Lekel-2
macroscopic gradients in variables like stresses or strai
are relatively small. For each element in the level-0 sul
domain, a SERVE is identified and the asymptotic hc
mogenization method is then used for obtaining effective
material properties. Conventional displacement base@ure 8 : Multi-level mesh showing different levels for
elements are used for the level-0 element formulatidhe multi-scale model
Each element stiffness matrix and load vector is evalu-
ated and stored for global assembly for this subdomain.
4.2.1 AdaptiveLevel-0 and Level-1 Mesh Enrichment

4.2 Computational Subdomain Level-1 The discretization error in level-0 and level-1 are reduced

Level-1 subdomains are intended as ‘transition’ regiortsy performing adaptive refinement to increase resolu-
where microscopic information in the SERVE is used tion in required regions of the model. Different types of
decide whether microscopic computations are necessatiaptations are possible for these models. Three pop-
for these regions. They are seeded in regions of localilar refinements viz., thé-version, p-version and the
increasing gradients of macroscopic variables in the pumg-version have been proposed in literature. The sim-
level-0 simulations. These gradients may be causeddg and most common is theversion, where refinement
microscopic non-homogeneity in the form of large lds accomplished by subdividing the element while keep-
calized stresses and strains, or when the microstructung the same polynomial order of the element. In the
faces possible damage initiation or localization. Conp-version, the size of an element is kept constant, but
putations in this region are still based on assumptiotige order of interpolating polynomial is increased. In the
of macroscopic uniformity and periodicity of the RVEhp-version both of the above refinements are included.
Concurrent with macroscopic simulations, computatiokhen high accuracy is required, the usepefersion or

are executed in the microstructure to monitor variablédse hp-version is necessary. Mathematical and numeri-
in the RVE. Computational requirements for microstrucal work by Babuska and co-workers [Babuska and Sz-
tural analysis of elements in this level are consideraldypo (1991)], have shown that with the-refinement, it
higher than that for level-0. It is therefore important tis possible to achieve an exponential rate of convergence
design robust criteria to avoid redundant element trato-the exact solution for many problems, including those
sition from level-0 to level-1. Major steps involved inwith singularities. The rate of convergence in tie-
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adaptive method has been estimated [Guo and Babuska

(19864a,b)] as

159

lu—uf| <chp ™D |y (13) g. e O AN ...
wherep = min(p,m— 1), p= polynomial orderm= reg- .. CV5OWU6%O %
ularity of the solution an€ = constant independent bf ) ,, ao‘«ooo X

andp. The estimate shows that the rate of convergenc@ c‘ :)Or@ﬁo 0; %
will be slow if m— 1 is less tharp. On the other hand @ = )n#_}AQOf' [ ]
if mis large, which is the case when the solution is very b'uu’)VQ‘ , ()

smooth, the rate of convergence will be limited only by @ @ @ O

the order of polynomiap. A method for estimating the
value ofm is given in [Ainsworth and Senior (1997)].
For problems with singularity, the value wfwill be low
near singular regions. ThHe adaptivity procedure auto-
matically performdh refinement near a singularity apd
refinement outside of the singular regions.

4.3 Computational Subdomain Level-2

Level-2 regions are characterized as those with signifi-
cant microstructural non-uniformities in the form of high
local stresses or strains that would occur e.g. near a crac’
tip or free edge. High gradients in macroscopic variables
and loss of RVE periodicity are expected in those re-

00 0 0000 090 0 0060
()

\«OVQU“Q\
b e9gees 2

FISRK A

gions. Scale effects are importantin these regions, resfriigure9: (a) Level-1 element boundary superposed over
ing in mesh-dependence of pure macroscopic compuite actual microstructure (b) Level-2 element formed by
tions. Adaptivity is used to switch from level-1 to level-Zarving out the microstructure

elements for performing extended microscopic analysis.
The microscopic model in level-2 elements is required
to encompass considerable portions of the microstructure
with large number of heterogeneities as shown in Fig. 9.

Level-2 elements are constructed by filling macro level-1
elements with the exact microstructure at that location.®
The regionQf, constituting thek —th level-2 element, is
obtained as the intersection of the entire microstructural
regionQ¢f with the boundary of the—th level-1 element
Qe

Q5 = Q°NQYY (14)
Steps in creating a level-2 element are itemized below

e Use adaptation criteria described in Section 6.2, _}%
determine if a level-1 element needs to switch to
level-2 element.

Tessellate the regio®; to generate a mesh of
Voronoi cell elements as shown in Fig. 9(a).

Carve out the regio@}‘2 by superposing the bound-
ary of Qf onQq. This procedure will result in dis-
secting some of the fibers on the boundangx.
When this happens, additional nodes are generated
on the Voronoai cell boundary at locations where the
fiber surface and Voronoi cell edges intersects the
boundary ofQF,. The dissected pieces of a fiber be-
long to two contiguous level-2 elements are joined
together when the two contiguous elements share a
common edge.

e high resolution model for level-2 elements with
many heterogeneities entails prohibitively large compu-

tations with conventional finite element models. Con-
e Identify a regiorQ; € Q° that is located in the samesequently, the microstructure based Voronoi Cell Finite
region in Q}‘z and that extends beyorﬁ}‘2 by ap- Element Model (VCFEM), which has been developed by

proximately two fiber lengths.

the authors [Moorthy and Ghosh (1996, 1998, 2000)] in
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modeling non-uniform heterogeneous materials is useé
for analyzing the level-2 elements. Extensive microstruc-
tural regions, obtained from micrographs, are efficiently
modeled by this approach. In VCFEM, the computa-
tional mesh consists of multi-sided Voronoi polygons
that naturally evolve by tessellation of the microstruc-
ture [Ghosh and Mukhopadhyay (1991)]. Each ele-
ment in VCFEM consists of a heterogeneity (inclusion or
void) with its immediate surrounding matrix. Accuracy
of analysis is maintained for these relatively large mul- ® Level-0/1 nodes outside transition layer
tiphase elements by incorporating observed behavior of~ Level-0/1 nodes on transition layer
stress fields from micromechanics in an assumed stress VCFEM nodes on level-2/tr boundary
hybrid finite element formulation [Moorthy and Ghosh x \vCFEM internal nodes

(1996, 1998)]. This method has shown considerable suc-,
cess in modeling elastic-plastic problems [Moorthy and
Ghosh (1996)] and problems with damage by particSe

[ ] Level-0/1 Element [ Transition element

I Level-2element 0o Interface layer

Transition element nodes on transition layer

: : 10 : Interf [ he level-0/1 el
cracking and debonding [Moorthy and Ghosh (1998 ;\%utrrzngitior;tilree:;:gnionstralnt atthe level-0/1 element
Ghosh, Ling, Majumdar and Kim (2000)]. VCFEM has
been successful in significantly reducing computational

degr_ees O.f freedom and curren.t VCFEM computing eél’ements depending on the number of fibers. The inter-
fort is estimated to be- 60-70 times lower than most

) ) mediate boundary segment in generally chosen to have
commercial FEM packages for modeling complex ml’figher order interpolation than the adjacent level-O/level-
crostructures. 1 element boundaries. As suggested in [Aminpour, Ran-
som and McCleary (1995)], Lagrange multipliers are
43.1 Transtion Elements between Level-0/1 and ysed to satisfy the interfacial displacement continuity
Level-2 Elements constraint in a weak sense. Comprehensively speaking,

The interface between the macroscopic displacemmﬁwtal potential energy of the multi-level element mesh
based level-0 or level-1 elements, and level-2 elemeft8Y D€ expressed as

requires a Ia_y_er of tra_nsition elements_ for_ creating @ _ Moy, + Moy, +May, + Mo,

smooth transition of variables as shown in Fig. 8. These

elementstf) are essentially level-2 elements with a dis- + MO —uMy dr (15)
placement constraint imposed at the interface with level- "

0/1 elements. In [Ghosh, Lee and Raghavan (2001)], a+ [ A{"(vi —u") drl

direct constraint has been imposed on Voronoi cell FEM "

nodes in the transition elements to conform with the digere Mg, Mg, Mg, and Mg, are the total poten-
placement interpolation of the adjacent level-0/level-1 dial energies for elements in level-0, level-1, level-2 sub-
ement boundaries. domains and transition regions respectively; corre-

Such a direct constraining process may however leadSRPnds to the interfacial layek!%!* andA'" are Lagrange
local singularities in the transition element due to ifnultipliers onliy, corresponding to boundaries@fq,i;
duced displacement discontinuities at the interface. #§d Qu respectively. The interfacial displacements on
avert these spurious singularities, a special interfactBf boundaries d,o/; andQ;, elements at the interface
layer is introduced between the transition elements adt designated as®/!'* andu'". The Euler's equations,
the level-O/level-1 elements. As shown in Fig. 10, the le#btained by the variation of Eq. 15 with respech!%/!1
side corresponds to level-O/level-1 elements with low@ndA', are

order displacement polynomials on the boundary. Th

right sidepcorrespondps t)(/) the boundary of transiti)(;n elé;]fO/Il = (aijm)'*" = =\ = —(aijn))"" and

\ ) . . o (16)
ments which consists of multiple edges, of Voronoi cell u /11 _ u}r =V
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wheren; is the unit outward normal vector, ahq!lo/ll and for the entire domain can be expressed as
A" correspond to the interface tractions on the boundaries
of Qjo11 andQy, respectively. PYTL
Ui 10
Zij —dQ — fiéui dQ
Qo ox Xj Qo
adult
+ [ % -d - fidult dQ
5 Coupling of all Levels Qi X Qi
adul? 2
The global stiffness matrix and load vectors are derived + a, )V oxi X ox 00 o fidu"dQ
for the complete multi-scale model consisting of level-0, —
I_evel-l, Ievgl-z and transition .elements. The computa- 4 ”65U do — f,3ul" dQ
tional domain Q) can be described as Qur 0X; Qur
— [ tduodr— [ toultdr
Q= {QioUQLUQLUQ 17 " "
= U U U
{QioUQ1UQ2UQy } 17 ~ [ wouzdr— [ taurdr
rI2 Ttr
" | | +6/ )\!O/'l(vi—u!o/'l)dFJré/ A (v — ") dr = 0
e Qo= U Eg - Domain comprised dfy level-0 el- Fin Fin
k=1 (19)

ements with boundargQ g

o Q= U E|1 Domain comprised o\, level-1 el-
ements Wlth boundagQ;

N
o« Qpp— kElJZlE'Z - Domain comprised o, level-2 el-
ements with boundar§Q,

o Q4 = U Etr Domain comprised oN;, transition
elements with boundadQ;,

The boundary of the complete domdircan be written
as

F:{ﬁouﬂluﬁzurtr} (18)

where, o, M1, M2, Ty are defined ag|p = 0QigN
F, M= 6Q|1ﬂ F, Mo = 6Q|2ﬂ F, Ftr = aQtr NI re-

An implicit assumption is made in this equation that the
traction continuity between level-0 and level-1, and level-
2 and transition elements, are satisfied in a weak sense.

The terms in the box of Eq. 19 f&,, andQy, are ana-
lyzed using the Voronoi cell finite element method and
should be integrated with the other terms obtained by
conventional displacement based finite element analysis.

The VCFEM employs the assumed stress hybrid for-
mulation with independent assumptions on equilibrated
stress fieldsd) in the matrix Q) and fiber phase<))

of each element, and compatible displacement figfds
on the element boundagQ. and u® on the matrix-
inclusion interfac@Q. as shown in Fig. 11. The element
complimentary energy functional is given by

I'Ig(o,ue,uc):/ 0:S:0dQ— [ ©-n® u®doQ
Qe 20

+ [ t-usdr+ (6™ -0 -n°-u° doQ
Fim Flol

(20)

whereSis the elastic compliance tensof,andn® are the
outward normals 08Q. anddQ. respectively antlis the
prescribed traction on the bounddry,. The total energy

spectively. The equation for the principle of virtual workunctional for a level-2 element containimdy,. Voronoi
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Fig. 11. Eq. 22 can be re-written as

Nve
5nC:—Z/ 0-n®-SUCdIQ—
é=1/0Qm
(24)

Nve Nve —
Z/ -n%-5uedaQ + Z £.5uedr
é=1/ 0 e=

Mm

In the virtual work equation Eq. 19, the boxed terms cor-
responding to energy in level-2 and transition elements
can be re-written using divergence theorem, in the ab-

sence of body forces as
G-DuedQ:/ one-éuedr—/ G -u®dQ
Glof o}

/sz/tr 12/tr 12/tr

> (25)

\ e
oQext 0Q
& 12 The first term in Eq. 25 is obtained as the contribution to

the stiffness from all Voronoi cells and can be calculated
using Eq. 24 as

s

Figure 11 : A Level-2 element with Voronoi cell finite
elements

Ny
o-ne-éuedF:—Z/ o-n®-du®doQ
& Jaqy

. 12/tr (26)
cell elements can be written as _
+ t-éuedr+/  5-n®. 85U daQ
Nue Nue Fim o
ne = > ng = > / 0:S:0dQ The lastterm in Eq. 25 drops out since the analysis is per-
e=1 Qe formed using VCFEM, which uses an equilibrated stress
Nee e e Nee - e field. The contribution to the stiffness matrix from level-
— o-n-u daQ+Z t-ufdr .
& Joae & Jrim 2 elements may therefore be calculated by assembling
Nec the stiffness contributions from all VCFEM elements us-
+ Z (6™—0°)-n¢-u° doQ ing Eq. 22 and condensing out the internal degrees of
e=170%% freedom or@Q'™. To achieve this, the displacement field

(21) along the edges of VCFEM elements are interpolated by

The variation of the above equation with respect to tHei} = [Lvc]{Uc} (27)

element boundary displacemenfsresults in The degrees of freedott,c can be separated intd2t

Ny Ny andU%* depending on whether they belongd@®* or
3M° = — > / 0-n®-ou°doQ+ % [ t-ou°dr (22) Q™ respectively. The stiffness matrix and the load vec-
00 é=1/Tim tor of the ensemble of all Voronoi cell elements belong-

The boundaries of all Voronoi cells can be splitas N9 0 @ level-2 element can be partitioned as

Kext,ext Kext,int yext Fext
Ne - [ Brext | iatint ] { 2 }—{ ot } (28)
3 0Q. = 0Q™ U 23) | K™ K U2 F2
e Static condensation of the internal degrees of freedom
wheredQ®* corresponds to external Voronoi cell elemereads to
boundaries that coincide with level-2/transition elemert extinfl Twintint] =2 [ int ext oxt
boundary andQ'™ corresponds to all the other interna:[[Klz - [KIZ ’ } [Klz' } [Klz' H {uz}

boundaries of Voronoi cell elements. The external el- Cind vintin] L i
ement boundarie8Q®® are identified by thick lines in ={R$"} - [KFZX ’m} [Km ’ } {RY"

(29)
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The above equation is then used in global assembly. submatricesq/ 1, Ki2 andK;r and the vectorgg i1, f2
The displacements!® and u/* in level-0 and level-1 andR;, correspond to stiffness matrices and load vectors

elements are interpolated by the standard or hierarcdifm the respective subdomains given as
cal shape functions based on Legendre polynomials as -
[Ainsworth and Senior (1997)] Kiojia] = /Q|0/|1[B] [E][B]dQ

! = Nios1l {f}dQ Nig/] T {t}dr
{u}'" = [Nio11]{Ui0/12} = [NlaNQ 114 3:%;:1} {Fon} /Q Nopa] {1} +/r|0/|1[ o/l {133)

(30) where[B] is the strain-displacement matrix. The stiffness

whereU| |, corresponds to the nodal degrees of freeddify2/::] and the load vector§Fy | for level-2 and tran-

: : " sition elements are obtained by solving VCFEM usin
at the interface with transition elements a(g,, are e procedure described in [Moc))/rth andgGhosh (1996)(;;
all others. A similar separation can also done for '[raH1 P y :

sition elements into displacements on this interfagg, The tCQUptT]?esgévzﬁfonu tﬁr:;vaer;o[g] ?nnairréizsxﬁirlrle le-
-0 mentsis a ,
and otherwisel),2, . g

The displacements and the Lagrange multipliers on tﬁée

intermediate boundary segment are interpolated frofflosi1] = —/ [Nigy12] [Lywopa] dl

nodal values using suitably assumed shape functions as i

Rl == [ (Lol Iyl o

{v} = [Lind (Uint}  {N"} = [Lyon] {Aiopa} (31) fin (34)
(N} = L {Aw } [Qiopa] = / [Ling] " [Lyvons] dF

Fint

10/11

Substituting interpolations from Eq. 29,Eq. 30 and Eq. 31 [Q,,] :/ [Lin T [Lye] dF
in Eq. 19 results in a coupled set of matrix equations for Firt _ . _ _ _
the multi-level domain. The global assembly leads to tHé1e system of equations is solved using an iterative

following coupled set of equations solver with Lanczos method.
i K|I6I/|1 Kllég)ll 0 0 0 PRoir 0] 6 Discretization and Modeling Error Indicators
0,0 : . .
Kioje Ko O 0 0 0 0 | Theerrors associated with the multi-level model are clas-
0 0 K KI'*Z% 0 0 PR, | sified into two groups, viz., discretization errors and
o,l 0,0 i .
0 0 KI2/tr KIZ/tr 0 0 0 modeling errors
TO 0 0 0 TO Qiony Qu 6.1 Discretization Error
Fopn O 0 0 o O 0 _ L _ .
0 0 PRI 0 Qr 0 0 Discretization error in level-0/1 elements is a result of
) Ul \ Fl . insufficient orders of interpolation in the finite element
o/ 111 model. Thehp— adaptive mesh refinement suggested in
U|o|/|1 I:IO{Il [Ainsworth and Senior (1997)] is adopted in this paper to
U(;r lzt)r reduce the discretization error. The steps involved in this
UI2/tr - FIZ/tr process are as follows
Ui 0
A mtll 0 ¢ Evaluate the energy norm of the local ery for
/St/ 0 elemenk, by solving the residual in the principal of
' (32) virtual work as

. ) ) /k Zij((pK)aj(V)dQ:/k fiVidQ
The notation corresponding to the supersclipepre- Qo Qo

sents quantities on the interface whereas those with the / /
. . : - Zij(u i(v)dQ ividr
superscripO are on the regions other than interface. The 3 (Uio1a)@j(v) 2+ rk(gk)I '

(35)

10/11
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where(gk)i is the traction discontinuity on the ele-Transition from level-1to level-2:
ment boundaryX. Criteria for transition from level-1 to level-2, is based on
) o observation of variables in the RVE and prediction of de-
o Identify elements fohp— adaptivity from the con- o4, re from periodicity. In this work, large local stresses
dition @ = Cu(@)max, Where (@max is the maxi- i, the matrix/fiber or interfaces are assumed to indicate

mum elemental local error. If an element is a cagycp, gepartures. Two alternative criteria are used in this
didate for adaptation, an exponenis evaluated to

: L paper.
determine the type of adaptivity i.eff+2 < m
— thenp refinement 1. Level-1 to level-2 transition takes place if the local
— elseh refinement microscopic equivalent streskgy = 4 /%oi’j 0jj ex-
_ _ o ceeds the average. The equivalent stress is a good
is performed. The singularity indicaton can be indicator for damage, especially in plasticity dom-
obtained by solving inated problems. Level-1 to level-2 transition is
—2(m— made if
9% = ll@pqllE +CE(p+a)~*™Y (36)
: . . n > n
for three different values ofg as outlined in (Oiqv)max > C4(0§qv)avg or (39)
[Ainsworth and Senior (1997)]. (Oeqv)max = Ca(Oeqy)avg
6.2 Modeling Error at more than 1% of all integration points in the RVE.

(O?qv)m and(cgqv)ayg1 and(ogq\,),mx and(ogqv)ayg
represent the maximum and average equivalent
stresses in the matrix and in the fiber.

Transition from level-Oto level-1:

Modeling errors for level-0 and level-1 elements evolve
at regions where macroscopic uniformity and micro-
scopic periodicity become invalid. Various conditions, 2
depending on the physics of the problem being are pro-
posed. Two examples of such criteria considered in this
paper are given below.

Transition from level-1 to level-2 takes place if
| T| = Cs|Tavg| (40)
where T represents the local interfacial traction

(v/T2+T?) evaluated on the fiber/matrix inter-
face. Tayg is the average traction on the fiber/matrix

1. If a macroscopic stress;; is important, criteria
based on the gradients of this stress can be proposed.
Transition from level-0 to level-1 for an elemédais

performed if boundary and is given b%—llT, whereNlI is the to-
tal number of integration points on the fiber/matrix
Ex > CoEavg (37) interface in the RVE. Since debonding is an impor-
vE g2 o tant failure mechanism in fiber reinforced compos-
whereEayg = (Zkﬁ%)l/z and EZ= % ites, this criteria is expected to warrant significant
NE is the total number of elements aﬁcﬂ is the amount of debonding in the microstructure.

jump operator.

_ S All constantsC; to Cs are chosen from trial numerical
2. When traction gradient is critical [Raghavan, MOO@xperiments.

thy, Ghosh and Pagano (2001)], level-0 to level-1

transition for elemenk will be made if _ _ _
7 Numerical Examples - Composite Plate with a

Ex > CsEavg (38) Hole

NE 2 1 1
whereEqyg — (zkﬁEEi /2 and Numerical experiments are conducted to demonstrate the

(T4 2)dr _ effectiveness of the multi-scale model. Two examples,
Ef =T T andTy and Ty are tractions one of a composite plate and another of a composite lam-
in x andy directions respectively. inate are considered.
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7.1 Composi te Platewith aHole TOTAL ELEMENTS = 1098
LEVEL 0=1091
LEVEL1= 2

A fiber reinforced composite plate with a hole as showrjerosevers= >
in Fig. 1 is analyzed. The dimensions of the compos-
ite plate areV = 2286 mm, L =114285mm andr =
6.858mm. The representative microstructure of the plate
at the point A is shown in Fig. 1 with dimensions 100
pm x 79.09um. All fibers are assumed to be posses
the same radius value of 1.7. Average fiber spacing
is around 3.41m. The estimated total number of fibers
for this quarter plate is approximately 8 million. The
matrix material is epoxy with propertids,, = 3.8 GPA
andvny, = 0.34. The graphite fiber properties dfg =
3800 GPA andv: = 0.20. The plate is subjected to a

Y

load of unity along they direction on the top face. A X;
statistically equivalent RVE for this plate is evaluated as
described in Section 3 and is found to contain 18 fibers. (@) (b)

The effective modulus (in GPa) calculated by
homogenization for this SERVE is given by
E1111 = 10.51, E1122 = 4.49, E1133 = 4.23, E2222 =
1119, Eip10 = 2.85, Ezzzz = 127.35. USiI’]g this
modulus the macroscopic model is constructed with
300 level-0 elements. Generally no singularities are
expected in the solution of the problem. Consequently,
discretization error would result ip— adaptivity being
predominant. While ap— adaptation would suffice
for the problem, then— refinement facilitates for sig-
nificantly smaller regions of localized modeling error
identification and hence realization of fewer elements
making level transitions. Thé— adaptations are
executed to a minimum macroscopic element size of ()

25 um and no more. Level-0 to level-1 transition takes

place according to Eq. 37 as specified in Section g-2gure 12 : (a) h adapted multi-level mesh (b) Mesh
with the value ofC, taken to be 1.5. Level-1 to level-2around local circled area (c) Microstructure of level-
transition takes place according to Eq. 39 as specifiddiransition elements

in Section 6.2 with the value @@, taken to be 4.0. The

adapted multi-scale mesh, shown in Fig. 12, consists of

1091 level-0 elements, 2 level-1 elements, 3 transition

elements and 2 level-2 elements. The mesh in the

critical region is circled and shown in Fig. 12(b). The ,
microstructure for the level-2 and transition elements Is
shownin Fig. 12(c). The macroscopic contour ploEQf
stress and microscopic contour plotayy, stress for the The performance of the multi-scale model in the pres-
element close to the critical region A is shown in Fig. 1&nce of singularity is demonstrated with this example.
It can be seen that the maximum microscopic stressesEine composite laminate consists of randomly distributed
at least one order higher than the macroscopic valugisers on the top and bottom whereas the middle portions
The maximum microscopic stresses is near the podunsists only of matrix material. With effective modulus
where two or more fibers are located close to each othbeory this architecture corresponds to a homogenized

— Level-2/transition element boundary

Free Edge Composite Laminate Subjected to Ex-
tensional Loading
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Max.
B, - 7.997E-03

b 4.775E-03 ’ ens
h

r 3.165E-03

r 1.554E-03

A‘ Min Vas - -5.698E-05

) (b)

@)

YOO 126202 Figure 14 : (a) Composite laminate subjected to exten-
sional loading (b) Optical micrograph of the microstruc-
- e4sE03  ture near point A

- 6.619E-03

| .oees O the laminate is modeled with effective properties ob-

\ tained by homogenization. The initial mesh in the multi-
& | omseos  lEVEl model consists of 200 level-0 4-noded bilinear or
{ QUADA4 elements. The discretization error in the homog-

enized model is reduced by performing— adaptations.
The presence of free edge at the composite-monolithic
(b) material interface causes a singularityoify stress. Due

to the singularityh adaptivity is dominant near the free
Figure 13 : (a) Contour plot of macroscopi,, stress edge, while regions far away from the free edge pre
for the plate with a hole (b) Contour plot of microscopi@dapted.
oyy stress for the macroscopic element close to point Arhe hp— adapted mesh is shown in Fig. 15(a) with a

blow-up of the mesh near the free edge is shown in

Fig. 15 (b).

Due to the requirement of traction continuity at the mate-
material sandwiched between two composite plies. Thg] interface level-0 to level-1 transition is made accord-
laminate is subjected to extensional out-of-plane loadifigy to Eq. 38. For the level-1 to level-2 transition the cri-
along the fiber direction as shown in Fig. 14(a). teria in Eq. 40 is used. The parame®randCs are cho-
The microstructure of the laminate around the free edgen to be 2.5 and 1.25 respectively. The evolved multi-
point A is assumed to be same as in the previous probldevel model consists of 513 level-0 elements, 7 level-1 el-
The dimension of the cross section ish x 32 mm. ements, 3 transition elements and 1 level-2 element. The
The out-of-plane loading, is simulated using a generahicrostructure of the macroscopic element close to the
ized plane strain condition with prescribeg = 1. The free edge is shown in Fig. 15(c). The macroscapjg
distribution of the microstructure is assumed to symmedtress singularity at the material interface E is shown
ric about thex andy axes. Due to symmetry in the in Fig. 16. The figure also shows microscopig stress
andyz planes only one quarter of the laminate is modhear the free edge obtained from the multi-scale solution.
eled. Symmetric boundary conditions are employed ttrcan be observed stress singularity observed at the free
the surfacex = 0 andy = 0, and the top and right sur-edge in the effective modulus solution is not present in
faces are assumed to be traction free. The top porttbie multi-scale solution. The macroscopic contour plot

. > - -1.848E-03
Min.
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TOTAL ELEMENT 524 ‘ T T T T T T
LEVEL 0=513 ‘ o8 o8 — Effective modulup
LEVEL1= 7 -- Multi-scale

TRANSITION ELEMENTS = 3 N el

|
|
i
!

LEVEL2= 1 + . ool * a
T ite = ! )
) > = O‘Mfdh e ’ e x/h e °
T (@) (b)
Figure 16 : (a) Macroscopi&,y stress ay = E obtained
(a) (b) with the homogenized model (b) Microscopigy, stress
aty = E near the free edge obtained with multi-scale

model

Max~ - 2.678E-01

r 1.811E-01

r 9.446E-02

r 7.813E-03

(©)

r -7.883E-02

Figure 15: (a) hp— adapted multi-level mesh (b) Mesh
around local circled area (c) Microstructure of level-
2/transition elements near the free edge (@)

Min Vas - -1.655E-01

Max.
N, - 3.680E+01

of Zyy stress is shown in Fig. 17. Fig. 17 also shows the - 1416E401
distribution of microscopioyy stress for the macroscopic

element close to the free edge.

It can be noticed that the microscopic stress are atleast
2 orders higher than the macroscopic stress and occur
the fibers close to the free edge. The atrtificial interfa
created in the effective modulus solution is avoided in th
multi-scale model thus providing with accurate stress
in critical regions.

r -8.477E+00

r-3.111E+01

r -5.375E+01

vin, /™ L .7.630E+01

(b)

8 Conclusion

This paper presents an adaptive multi-level computigure17: (a) Contour plot of macroscopk,y stress for
tional model that combines a conventional displacemeht composite laminate (b) Contour plot of microscopic
based finite element model with a microstructuraly stress for the macroscopic element near the free edge
Voronoi cell finite element model for multi-scale analy-

sis of composite materials. The model is developed with

the capability to analyze both macroscopic and micro-
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scopic stresses and strains in real composite structusad a monolithic layer, are solved to demonstrate the
with non-uniform microstructural heterogeneities aability of the multi-scale computational model in analyz-
obtained from optical or scanning electron micrographiag complex heterogeneous structures. Extension of this
Three levels of hierarchy, with different resolutiongp model to determine the initiation and propagation of
are introduced in this model to overcome shortcomingslure due to fiber/matrix interfacial debonding is cur-
posed by modeling and discretization errors. Amongntly in progress.

the three levels are: (a) level-0, where pure macro-

scopic analysis is conducted using effective propertiggknowledgement:  This work has been supported by
obtained by homogenization of variables in a statisticéle Air Force Office of Scientific Research through grant
equivalent RVE; (b) level-1, which are intermediatBlo. F49620-98-1-01-93 (Program Director: Dr. B.
regions of macro-micro coupled modeling, used far Lee). This sponsorship is gratefully acknowledged.
signaling the switch over from macroscopic analys&omputer support by the Ohio Supercomputer Center
to pure microscopic analyses; and (c) level-2 regiotiwough grant # PAS813-2 is also gratefully acknowl-
of pure microscopic modeling where critical events iadged.

the microstructure are expected to occur. The adaptive
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