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Generating optimised partitions for parallel finite element computations
employing float-encoded genetic algorithms
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Abstract: This paper presents an algorithm for auto-
matic partitioning of unstructured meshes for parallel fi-
nite element computations employing float-encoded ge-
netic algorithms (FEGA). The problem of mesh partition-
ing is represented in such a way that the number of vari-
ables considered in the genome (chromosome) construc-
tion is constant irrespective of the size of the problem. In
order to accelerate the computational process, several ac-
celeration techniques like constraining the search space,
local improvement after initial global partitioning have
been attempted. Finally, micro float-encoded genetic al-
gorithms have been developed to accelerate the compu-
tational process.

Numerical experiments have been conducted to demon-
strate the effectiveness of the GA based partitioning al-
gorithms. The proposed algorithms have been tested
on unstructured meshes describing practical engineering
problems. Apart from these meshes, several benchmark
problems available in the literature are also considered
to evaluate the performance of the GA based partitioning
algorithms. Results indicate that the proposed algorithms
are qualitatively superior to popular spectral approaches
and multilevel algorithms. It was also shown through nu-
merical experiments that the micro-float-encoded genetic
algorithms provide faster solutions with slight reduction
in the quality when compared to float-encoded genetic
algorithms.
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1 Introduction

Domain decomposition methods are widely used for par-
allel finite element computations. The necessary first
step of the domain decomposition based parallel algo-
rithms is partitioning of the given finite element mesh
into specified number of submeshes which is usually
equal to the number of processors. Distributing the mesh
across a parallel computer so that the computational load
is evenly balanced and the data locality is maximised is
usually referred to as mesh partitioning. The quality of
the mesh partitioningcan seriously effect computing time
of parallel finite element analysis. Hence greater empha-
sis is required to the problem of mesh partitioning while
developing parallel algorithms for finite element compu-
tations.

The problem of finite element mesh decomposition is
equivalent to partitioning the deduced graph of the finite
element mesh into subgraphs of roughly equal size such
that the partitions cut the least number of edges of the
graph. The n-way graph partitioning problem can be de-
fined as follows: Let G = G(N, E) be an undirected graph
where N is the set of vertices with || N || vertices and
E is the set of edges with || E || edges, partition N into
n subsets, N1, N2,N3,... ..Nn such that Ni∩N j= 0 for i
�= j, || N i|| = || N || /n and UiNi = N, and the number
of edges of E whose incident vertices belong to different
subsets is minimised. The problem of graph partitioning
is well known in the graph theory literature and is not
solvable in polynomial time. It is in fact classified as a
NP-hard problem [Garey and Johnson, (1979)]. Fortu-
nately, it is not necessary to find an optimal solution to
the problem, as a good quality sub-optimal partition is
usually adequate.

In recent years, much attention has been focussed on de-
veloping suitable heuristics, and some powerful methods
have been developed based on graph theory. These in-
clude methods based on heuristic searches most notably
the Farhat’s greedy [Farhat (1988)], and Kernighan-Lin
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heuristics [Kernighan and Lin (1970)], coordinate based
bisections [Jones and Plassmann (1994)], inertial meth-
ods [ De Keyser and Roose (1992)], methods based on
geometric partitioning [Miller, Teng, Hurston and Vava-
sis (1998)] such as graph growing algorithms, techniques
employing neural networks [Rama Mohan Rao, Appa
Rao and Dattaguru (1998) ; Pian , De Oliverira, Goddard
(1999)], simulated annealing [Williams (1991); Bouh-
mala and Pahud (1998)], graph bisection algorithms like
spectral bisection algorithms [Simon (1991); Barnard
and Simon (1994)]. There is another class of algorithms,
which are particularly popular, and successful in address-
ing this mesh partitioning problem, known as multilevel
algorithms [Hendrickson and Leland, (1995); Karypis
and Kumar (1999); Walshaw and Cross-, (1999)]. They
usually combine a graph contraction algorithm with a lo-
cal refinement algorithm and a heuristic fast coarse graph
partitioning algorithm. Among all, spectral bisection and
the multilevel algorithms have established a reputation
for producing high-quality partitions. Apart from gen-
erating quality partitions, the multilevel algorithms are
found to be extremely fast and they are primarily de-
signed for ordering sparse matrices or for partitioning
these matrices. As these sparse solvers are expected to
take only few seconds, multilevel algorithms are effec-
tive to partition the sparse matrices without too much of
additional overheads. A detailed review on these mesh
partitioning techniques is given elsewhere [Rama Mohan
Rao (2001)].

In contrast to sparse solvers, the finite element solutions
for large models typically say for nonlinear or nonlin-
ear dynamic analysis (where incremental and/or itera-
tive form of solutions are usually employed) run time
on parallel machines will be high. For example, the
crash worthiness studies will generally be carried out for
about 100,000 time steps [Plaskacz, Ramirez and Gupta
(1994)] and the run time of this sort of applications will
be about few hours. In such situations, superiority in
the quality of partitions is preferred at the expense of
slightly higher run time in generating the partitions. In
other words, if one can minimise the cut edges further
even at the expense of an additional computing time, con-
siderable savings can be expected during the finite ele-
ment solution as these applications (nonlinear/nonlinear
dynamics) require interprocessor communication in each
time step/ iteration or increment. It can be also applied
to the meshless methods [Atluri and Shen (2002), Atluri,

Han and Shen (2003)].

The quality of generated partitions for an application can
be assessed only after taking into consideration the archi-
tectural features of the parallel platform. These architec-
tural features vary from machine to machine. The dedi-
cated parallel processing machines like Intel PARAGON,
IBM SP-2, Indian PARAM-10000 etc., are built with
high-speed interconnection network (usually a propri-
etary switch). The communication overheads in these
dedicated machines are less when compared to the clus-
ter of workstations where the interprocessor communica-
tions are usually accomplished using the local area net-
work. In such situations, the minimisation of interface
nodes has greater thrust at the expense of slight imbal-
ance in the computational load. Most of the heuristic
algorithms reported in the literature including the mul-
tilevel approaches generate the partitions with minimum
cut edges while maintaining the computational load ap-
proximately equal. None of these algorithms can cater
to these mutually conflicting interests without modifica-
tions to the basic algorithm.

On the other hand the optimization based algorithms
like gradient descent, simulated annealing, genetic al-
gorithms (GAs) which are based on a cost function can
be more effective in these circumstances. These opti-
mization algorithms consider the cost function as a black
box and the performance of the basic optimization algo-
rithm will not be affected with changes in the cost func-
tion. The partitioning algorithms can easily be tuned to
the individual requirements by simply modifying the cost
function and they approach the problem more holistically
than most of the heuristic algorithms reported in the lit-
erature. Apart from that, soft computing techniques like
genetic algorithms have been proved to be successful for
solving combinatorial optimisation problems [ Park and
Carter (1995)].

In this paper, an attempt has been made to devise a
mesh partitioning technique employing genetic algo-
rithms. The proposed algorithm has been devised em-
ploying float- encoded genetic algorithms. Unstructured
meshes are considered as numerical examples and solved
to demonstrate the effectiveness of the proposed GA
based mesh partitioning algorithms.
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2 Genetic Algorithms

Genetic algorithms (GAs) are general-purpose search al-
gorithms, which use principles inspired by natural ge-
netic populations to evolve solutions to problems [Hol-
land (1975); Goldberg (1989)]. The basic idea is to main-
tain a population of chromosomes, which represent can-
didate solutions to the concrete problem that evolves over
time through a process of competition and controlled
variation. Each chromosome in the population has an
associated fitness to determine which chromosomes are
used to form new ones in the competition process, which
is called selection. The new ones are created using ge-
netic operators such as crossover and mutation. GAs
have had a great measure of success in search and op-
timisation problems and have been employed for many
combinatorial optimisation problems [Park and Carter,
(1995)]. The reason for a great part of their success can
be attributed to their ability to exploit the information ac-
cumulated about an initially unknown search space in or-
der to bias subsequent searches into useful subspaces, i.e.
their adaptation. This is their key feature, particularly
in large, complex, and poorly understood search spaces,
where classical search tools are inappropriate, offering a
valid approach to problems requiring efficient and effec-
tive search techniques.

GA initially starts with a population of randomly gener-
ated chromosomes (genome), and advances toward bet-
ter chromosome by applying genetic operators, modelled
on the lines of genetic process occurring in nature. The
population undergoes evolution in a form of natural se-
lection. During successive iterations, called generations,
chromosomes in the population are rated for their adapta-
tion as solutions, and on the basis of these evaluations, a
new population of chromosomes is formed using a se-
lection mechanism and specific genetic operators such
as crossover and mutation. An evaluation or cost (fit-
ness) function H, must be devised for each problem to be
solved. Given a particular chromosome, a solution, the
fitness function returns a single numerical fitness, which
is supposed to be proportional to the utility or adaptation
of the solution, which that chromosome represents.

Although there are many possible variants of the basic
GA, the fundamental underlying mechanism operates on
a population of chromosomes or individuals, which rep-
resents possible solutions to the problem, and consists
of three operations namely, evaluation of individual fit-

ness, formation of a gene pool (intermediate population)
through selection mechanism and finally recombination
through crossover and mutation operators.

Representation is a key issue in GA because GAs di-
rectly manipulates a coded representation of the prob-
lem and because the representation schema can severely
limit the window by which a system observes its world
[Koza (1992)]. Fixed length and binary coded strings
for the representation solution have dominated GA re-
search since there are theoretical results that show them
to be most appropriate ones [Goldberg (1991)]. More-
over binary representation is amenable to simple imple-
mentation. However, GA’s good properties do not stem
from the use of bit strings [ Antonisse (1989) ; Radcliffe
(1992)]. In view of this, several non-binary representa-
tions have been attempted based on application require-
ment and one of the most important among them is the
floating-point number representation.

It is natural to represent the genes directly as floating
point numbers for optimisation problems of parameters
with variables in continuous domains. These are called
float- encoded genetic algorithms and also referred to as
real coded genetic algorithms in the literature. This rep-
resentation makes it possible to use large domains for the
variables, which is difficult to achieve in binary repre-
sentation where increasing the domain would mean sac-
rificing precision, assuming fixed length for the chromo-
somes. Another advantage of the Float Encoded Genetic
Algorithms (FEGA) is their capacity to exploit the grad-
uality of the functions with continuous variables, where
the concept of graduality refers to the fact that slight
changes in the variables correspond to slight changes in
the function. In this line, a highlighting advantage of
FEGA is the capacity for the local tuning of the solu-
tions. In view of this, FEGA have been employed in the
present formulations. Moreover, Since the search space
in the present formulation is continuous, FEGA is ideally
suited.

3 Review of previous work

There are a limited number of papers about topics related
to development of mesh partitioning techniques employ-
ing genetic algorithms. Khan and Topping [Khan and
Topping, (1998)] have used genetic algorithms for parti-
tioning the finite element meshes. However, rather than
explicitly representing the partition, their approach used
a population of cutting planes which bisected the finite
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element domain. A well-balanced partition is not sought
by the technique, since it was designed for short run-
times and thus used as an estimation of the number of
elements to appear in final refined sub-meshes. Mansour
and Fox (1991, 1994), partitioned graphs with a genetic
algorithm using a direct encoding, where the sub-mesh
membership of each vertex was explicitly represented
by the value of a gene. Since these values were un-
constrained, partitions of arbitrary imbalance were pos-
sible. These genes were concatenated and subjected to
two-point crossover. The imbalance constraint was pro-
gressively enforced during evolution through the use of
a penalty term in the fitness function. Wendl (1996)
has devised a seed based decomposition procedure em-
ploying parallel genetic algorithms and concluded that
the results of the GA based algorithm are comparable to
simulated annealing but lacks consistency in providing
continuously optimal solutions. Genetic algorithm us-
ing direct coding has also been applied by Gil , Ortega,
Diaz and Monotoya (1998) to graph partitioning in the
context of circuit partitioning. However, the authors re-
ported that GA based approach was outperformed by an
approach devised synthesizing simulated annealing with
tabu search. Soper, Walshaw and Cross (2001) have de-
vised a graph partitioning technique by combining a mul-
tilevel algorithm with an evolutionary search procedure,
which is reported to have better quality interms of cut
edges with higher runtime. All the formulations reported
in the literature employ Binary GA. In contrast, the pro-
posed algorithm uses a distinct approach, with FEGA and
also Micro FEGA.

4 Objective Function

The aim of any good mesh partitioning algorithm as
already discussed is minimisation of the interprocessor
communication and also maintaining equal distribution
of computational load among processors. Therefore, the
objective function for mesh partitioning can be written
as:

H = Hcalc. +µ Hcomm. (1)

Where Hcalc represents load balance and is minimised
when all the processors have the same load and Hcomm

measures the communication cost and µ represents a fac-
tor which can be used to indicate the relative importance
of the two terms in that particular context.

5 Problem Formulation

One of the effective ways of formulating the problem
of mesh partitioning (i.e. partitioning of the associ-
ated graph) employing genetic algorithms is by combin-
ing them with multilevel algorithm [Rama Mohan Rao ,
Appa Rao and Dattaguru (2001)]. When GA is synthe-
sized with multilevel algorithms, the genetic algorithms
need to apply in each coarsened level. Since GA is rela-
tively much slower than their compatriot local refinement
algorithms like KL (Kernighan-Lin), Mob or other lo-
cal refinement heuristics, the over all computational time
is likely to be large. Moreover, in this formulation, the
chromosome size is equal to the number of vertices in the
graph, which may lead to memory and also convergence
problems, while solving very large problems even with
multilevel approaches. Apart from this, the multilevel al-
gorithms are sensitive to the graph coarsening methods.
Keeping all these things in view, a novel formulation has
been employed in the present work.

The current formulation requires the positional parame-
ters of the vertices. Since the algorithms are to be applied
for partitioning finite element meshes, the positional pa-
rameters i.e., the (x, y, z) values of each vertex of the
corresponding dual graph can be obtained by averaging
the nodal coordinates of the corresponding element. Two
arbitrary points are chosen within the extents of the do-
main as illustrated in Fig. 1 and are allowed to float
around till the plane passing through these points bisects
the graph into two good and equal partitions. This can
be accomplished by bringing the analogy of the static
electric field around a charged particle (Coulomb’s law)
[Giannakoglou and Giotis, (2001)]. The two arbitrary
points can be thought of as a pair of point-charges float-
ing around a domain. Each point charge ( A or B) creates
a 3-D scalar field around the domain. The field value at
any graph vertex (x, y, z) can be determined by consid-
ering its distance from point A(xA, yA, zA) and B (xB,
yB, zB). The following mathematical expression for the
scalar value F at any graph vertex (x, y, z) can be em-
ployed.

F(x,y,z) =
KA

r2
A

− KB

r2
B

(2)

where rA and rB are the distances of a vertex from the
floating arbitrary points and given by
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rA =
√

(xA−x)2 +(yA−y)2 +(zA−z)2 (3)

rB =
√

(xB−x)2 +(yB−y)2 +(zB−z)2 (4)

The scalar field value can be used as separator for parti-
tioning the graph. KA and KB are two constants.

       

B ( XB, YB, ZB )

A (XA, YA, ZA )

Figure 1 : Partitioning of a 3D domain using FEGA-GB

It is evident from the above discussion, that only eight
parameters ( xA, yA, zA, xB, yB, zB, kA, kB) are enough to
obtain separators for partitioning the graph. The genetic
algorithm controls these eight free parameters. The sep-
arators computed using these eight free parameters can
be used to partition the graph into two equal parts. In
other words for any pair of point charges, a single poten-
tial value is computed at any graph vertex. These poten-
tial values are sorted and the graph vertices above and
below the median are assigned to the first and second
submesh respectively. This satisfies the load-balancing
requirement. In this case, the first term in the cost func-
tion given in Equation (1) becomes zero. Hence, only
the second term of the objective function will be enough
to compute fitness values. In order to reduce one more
parameter, KA is assumed as –1 and KB is chosen arbi-
trarily.

6 Float-encoded genetic algorithm and genetic oper-
ators

In genetic algorithm, the decision variables are treated as
organisms as a series of genes. These genes correspond
to the chromosomes in natural genetics. The value of
the objective function corresponding to the design vector
provides a measure of the quality of fit of the vector. The
aim of the GA is to find decision vector with the best
fit (corresponding to the minimum value of the objective
function).

In the present work, float-encoded genetic algo-
rithms(FEGA) have been have employed to obtain the
optimal (near optimal) parameters. Since proposed mesh
partitioning algorithm deals with continuous variables
and as the search space is continuous, FEGA is more
effective than the standard GAs. The procedure for the
float-encoded genetic algorithm employed in this paper,
is described as follows:

6.1 Encoding

In the FEGA employed in this work, each parameter is
represented as a floating-point decimal number with 15
digits. The float point representation of parameters in
GAs has an another advantage as it avoids the difficult
encoding and decoding of binary data that is required in
standard GAs.

6.2 Selection

Selection embodies the principle of ‘Survival of the
fittest’. The fitness of a particular design vector, termed
individual, provides a measure of the suitability of the
vector. A ‘good’ individual has high fitness while a ‘bad’
individual would have a low fitness. ‘Good’ individu-
als are selected for reproduction while ‘bad’ individuals
are eliminated. For this selection process in GA, sev-
eral selection operators have been proposed in the litera-
ture. Among them, roulette wheel and tournament selec-
tion operators are popularly being used in many applica-
tions. In the present work, a simple binary tournament
selection has been employed as it is found to be effec-
tive, when compared to roulette wheel selection opera-
tor, while solving several test problems with the proposed
formulations. The details of these studies have not been
presented here as they are of least consequence.

In the binary tournament selection employed in the
present work, pairs of individuals are picked at random
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from the population and the individual (genome) which
has higher fitness is copied into the mating pool. This is
repeated until the mating pool is full.

6.3 Crossover

An important feature of the genetic algorithms is known
as crossover. Crossover consists of taking two selected
chromosomes as parents and combining them with a cer-
tain probability to create two new children, which en-
ter into a new population. Since the parameters are en-
coded as floating point numbers in FEGA, the conven-
tional crossover and mutation operators being employed
for binary (traditional) GA cannot be used.

In the present work, SBX crossover [Deb and Agarwal
(1995)] has been employed. SBX crossover has been for-
mulated by simulating the crossover operator of binary
GA. In order to formulate SBX crossover, a probability
distribution is used around parent solutions. For this pur-
pose, the probability distribution is first calculated for
single point crossover operator in binary GAs and the
same is then adopted for FEGA. The probability distri-
bution is represented as a function of a non-dimensional
parameter β in order to be independent from parent solu-
tions.

β =
|c2 −c1|
|p2 −p1|

(5)

Where c1 and c2 are children solutions and p1 and p2 are
parent solutions. The probability distribution is given as

P(β) = 0.5(n+1)βn if β ≤ 1

P(β) = 0.5(n+1)βn+2 if β > 1 (6)

‘n’ is a parameter which controls the extent of spread in
children solutions. Children solutions are created as near
parent solutions when n is taken as large value. Smaller
value of ‘n’ allows children solutions far away from par-
ents. Moreover the probability distribution chosen for
SBX preserves the following two observations found in
crossover operators of binary GA:

1. The average of parent and children solutions is same
i.e. it satisfies the condition p1+ p2 = c1(p1, p2) +
c2(p1, p2).

2. If the crossover is applied between two children in-
dividuals at the same cross site as was used to cre-
ate children, the same parent individuals will result.
This is preserved by assigning equal overall prob-
ability for creating solutions inside and outside the
region enclosed by parent solutions.

The details of the implementation of crossover in the
present work is as given in Fig. 2. The implementa-
tion ensures that children solutions are within the given
domain (i.e. within the upper and lower limits of the vari-
able).

____________________________________________

xmean = (p1 + p2)/2

xdiff = p1 - p2

xdist = p1 - MIN  or   MAX – p2   ( whichever is smaller)

MIN and MAX are the lower and upper bounds of the

particular variable under consideration

 = 1+ (2.0*  xdist / xdiff)

 Umax = 1.0- 0.5/ 
(n+1)

‘n’ is parameter which controls the search space and  is

generally taken as 2

R = Umax * RAND(0, 1) where  RAND is a random number

generator for floating point numbers

if ( R< =0.50)  spread factor  = (2.0* R) 
1/(n+1)

if(R > 0.50) Spread factor  = (0.5(1- 2.0*R)) 
1/(n+1)

c1(p1, p2) = xmean +0.50* * xdiff

c2(p1, p2) = xmean – 0.50* * xdiff

_________________________________________________

Figure 2 : Crossover in float-encoded genetic algorithm

6.4 Mutation

Mutation allows new areas to be explored in the search
space. If the mutation operation of binary GA is consid-
ered, the aim is to change the parameter ‘c’ of a certain
individual to another individual ‘c 1‘ in a given domain.
The purpose of mutation operation for FEGA is same as
for traditional binary GA. However, the traditional mu-
tation operators being used in binary GA can not be em-
ployed here. Hence a parameter based mutation opera-
tor [ Deb and Goyal (1996)] has been employed in the
present work. A polynomial probability distribution is
used to create a solution c1 in the vicinity of a parent
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solution c. The details related to implementation of mu-
tation operator are given in Fig. 3.

_________________________________________________

d1 = c - MIN

d2 = MAX – c

MIN and MAX are the lower and upper bounds of the

particular variable under consideration

MIN)(MAX

d2)(d1,min

�

�

R = RAND (0, 1) where RAND is a random number

generator for floating point numbers.

If  (R <= 0.50) x = [2*R + (1- 2*R ) ( 1- � )
1/K+1

]
1/(k+1)

 -1

If  (R >0.50) x =1-[2*(1- R) + 2* (R - 0.50) ( 1- � )
K+1

]
1/(k+1)

The value of K is set to K � 100, in order to a mutation effect

of 1% perturbance in solutions

 = x * (MAX-MIN)

c1 = c +   where c1 is the new value of the variable after

mutation.

_______________________________________________

Figure 3 : Mutation operator in float-encoded GA

7 Computational procedure

In this paper, the problem of mesh partitioning has been
formulated as recursive bisection which gives rise to 2 n

submeshes. The genetic algorithms operate on the dual
graph of the finite element mesh. Due to their recursive
character, the problem can be formulated for a single bi-
section. By repetitively applying the same algorithm, 2 n

partitions can be obtained.

The partitioning algorithm operates on the dual graph
corresponding to the given finite element mesh. The
genome consists of seven parameters as described above
and the initial population is chosen randomly. The ex-
tents to the arbitrary points A and B are fixed based on
the maximum and minimum values of the positional pa-
rameters of the graph vertices. The positional parameters
of these two arbitrary points are chosen randomly within
these fixed extents.

The field separators are computed using the Equation (2)
and the vertices are partitioned based on this field sepa-
rator. The number of cutedges Nce can be evaluated by
employing the Laplacian matrix, L of the graph

Nce= xTLx (7)

Where x is the vector consisting of the vertices of two
partitions represented in the form of +1 and –1.

The complete procedure for FEGA is described as fol-
lows:

1. Encode each parameter to float decimal number.

2. Specify certain population size and maximum num-
ber of generations, and the number of runs (MR),
then generate an initial population randomly.

3. Evaluate the fitness value of each individual (using
equation (2) for field separators and equation (7) for
cutedges).

4. If convergence condition is satisfied, then print the
optimal solutions else continue.

5. Perform the selection operation (binary tournament
selection).

6. Perform the crossover and mutation operations.

7. Repeat steps (3) – (7) until the maximum num-
ber of generations is completed or convergence is
achieved.

8. Repeat steps (1) – (7) for each run till maximum
number of runs is completed.

This method is termed as FEGA-GB (Float-encoded Ge-
netic Algorithm for Graph Bisection). It is appropriate to
point out here that the computational cost of this method
is proportional to the graph size (i.e. number of ver-
tices in the graph). For large size graphs, the run time
is expected to be quite high. In view of this, attempts
have been made to reduce the partitioning cost by de-
vising certain acceleration-refinement techniques. The
various acceleration-refinement techniques employed are
discussed here.

7.1 Method FEGA-GB(S)

In this formulation, bisection is based on a potential field
created by point charges. The potential field is always
continuous and defines more or less distinct subgraphs,
even during the very first generation. Hence, the number
of generations required for convergence is usually low.
However, the computations involved in each generation
are high making the total computational time very high
for large graphs. In order to accelerate the convergence
process, the following approach has been employed.
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1. Run GA (FEGA-GB) only for two/three generations

2. Compute the average fitness of the population.

3. Shrink the search space of all free parameters based
on the values corresponding to the population with
best fitness. The search space is centered upon the
location of the fittest solution and extends symmet-
rically in each direction by a user-defined factor.
The shrinking of the search space is carried out at
a user-defined interval.

4. Repeat steps (1) to (4) till convergence

User-defined factor indicates to what extent, the search
space should extend symmetrically in each direction
from the location of the fittest solution (i.e. from optimal
points A and B shown in Fig.1). In other words, the user-
defined factor can be defined as the ratio of ‘minimum
distance between the optimal point (A or B in Fig.1) and
the extended point’ to ‘the minimum distance between
the optimal point and upper/lower limit point’. This fac-
tor has been taken as 0.25 in the present work.

The shrinking of search space can as well be carried out
in each generation. However little purpose will be served
in doing so. Moreover, it involves some extraneous cal-
culations in fixing the revised search space. In view of
this it is proposed to shrink the search space only after
every specific number of generations defined by a param-
eter called ‘user defined interval’. In the present work
this has been set to 4.

7.2 Method FEGA-GB (I)

The compute intensive part of the formulation being dis-
cussed in this paper is the computation of matrix vector
product xTLx and subsequent sorting. Eventhough, the
Laplacian, L is not formed explicitly and the sparsity of
the matrix is taken into account while performing matrix
vector products, this operation is still a compute intensive
one. These computations are proportional to the number
of vertices in the graph. For larger graphs, this partition-
ing process will obviously be very slow and undesirable.
Any economy achieved in computing the matrix vector
product, result in improvement in the performance of the
algorithm. In order to achieve this, the following proce-
dure is employed.

1. Run GA (FEGA-GB) for two or three generations
considering the whole graph to be partitioned

2. Select the bisection corresponding to the fittest in-
dividual of the population. These separators are ex-
pected to be reasonably good and the separator can
be further improved by migrating interface vertices
across the boundary i.e., local refinement.

3. Mark the interface vertices. The idea here is to
choose only the vertices, which are most likely to
swap across partitions. These are termed as ‘active
vertices’hereafter. The rest of the vertices are ex-
pected to lie in the same partition during the subse-
quent generations and hence will be called as ‘inac-
tive vertices’. Once these vertices are identified, the
computations can be drastically reduced.

4. Compute the matrix vector product xTLx corre-
sponding to the inactive nodes and store as Cu i .

5. Apply GA only on the active vertices. Each time,
the matrix vector product xTLx corresponding to the
active vertices is computed and added to the Cu i to
get the total cutedges of the bisection. The sorting
is also confined only to the active vertices. Here,
both sorting as well as matrix–vector products are
just confined only to the active vertices. These ac-
tive vertices will generally be a small fraction of the
total graph. This is likely to save computing time
especially while solving large size problems.

7.3 Method FEGA-GB (I-S)

This method is a combination of FEGA-GB (I) and
FEGA-GB (S). It can be described as follows:

1. Run GA (FEGA-GB) for two or three generations
by considering the whole graph to be bisected.

2. Select the bisection corresponding to the fittest indi-
vidual of the population. Choose the active vertices
corresponding to the interfaces.

3. Apply GA on these active vertices for a selected
number of generations say four or five generations.

4. Define a new search space based on the values of
free parameters of the current fittest solution. The
search space is centered upon the location of the
fittest solution and extends symmetrically in each
direction by a user-defined factor. The adaptive
shrinking of search space is carried out at every
user-defined interval.
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5. Apply GA on the active vertices and considering
only the shrunken search space.

7.4 Micro float-encoded Genetic Algorithms (µ-
FEGA) For Graph Partitioning

The genetic algorithms are certainly useful for obtaining
robust solutions for mesh partitioning problems. How-
ever, the time penalties involved in evaluating the fitness
functions are quite high especially for large size prob-
lems. In order to reduce the computational time, the
micro-genetic algorithms have been employed.

The term micro-genetic algorithm (micro-GA) refers to a
small population genetic algorithm with reinitialization.
The idea was first suggested by Goldberg (1989) based
on some theoretical results. According to him, just a pop-
ulation size of 3 was sufficient to converge, irrespective
of the size of the chromosome. The process suggested
by Goldberg was to start with a small randomly gener-
ated population, then apply to it the genetic operators un-
til reaching nominal convergenceand then to generate a
new population by transferring the best individuals of the
converged population to the new one. The remaining in-
dividuals would be randomly generated. The application
based on micro-GA was reported later by Krishna Kumar
(1989). He has applied for the problem of non-stationary
function optimization. He has used population size as
5, a crossover rate of 1 and mutation rate of zero. The
results obtained was reported to be superior to standard
GA. The same concepts of micro-GA have been applied
here for graph partitioning, with some modifications and
are termed as micro float-encoded genetic algorithms (µ-
FEGA). The µ-FEGA implementation is as discussed be-
low:

1. Perform genetic operations on the total population
for two or three generations. Total population is
considered as 40 in our experiments.

2. Select the new population size as six. Choose two
copies of best ever string till the previous generation
and then randomly pick four other from the shuffled
total population (i.e., forty which were generated in
step (1)).

3. Evaluate the fitness and determine the best string.
Carry two copies of the best string to the next gen-
eration (elitist strategy). This ensures that the infor-
mation about good schema is preserved.

4. Choose the remaining four strings for reproduction
based on a deterministic tournament selection. The
best string also competes for a copy in the repro-
duction. Apply crossover, mutation and evaluate the
fitness function.

5. Check for convergence.

6. If not converged Go to step 2.

7. If converged, preserve the best solution to use in the
next run. Repeat steps (1) to (5) for the next run.
The maximum runs are taken as four in our numeri-
cal experiments.

Since the objective here is to find the best ever solution
as quickly as possible rather than the best average behav-
ior, micro-float-encoded genetic algorithms (µ-FEGA)
are expected to work efficiently.

In order to further accelerate the computational process,
the µ-FEGA is employed both with shrinking the search
space (µ-FEGA-(S)), with active vertices (µ-FEGA-(I))
and with both shrinking and active vertices(µ-FEGA-(S-
I)). Numerical studies to demonstrate various formula-
tions discussed above are presented in the next section.

8 Evaluation of mesh partitioning algorithms

In this paper, mostly unstructured meshes are considered
as numerical examples mainly due to two reasons. First,
the unstructured meshes are often better suited than reg-
ular structured grids for representing completely general
geometries and resolving wide variations in behavior via
variable mesh densities and are becoming quite popular
among the users of the finite element and finite volume
methods. The second reason is that partitioning of these
unstructured meshes is more cumbersome and challeng-
ing.

The GA based mesh partitioning algorithms have been
integrated into PSTRAIN (Parallel STRuctural Anal-
ysis INterface) [Rama Mohan Rao (2001)] software,
which consists of variety of mesh partitioning algo-
rithms. PSTRAIN is built with powerful Graphic User
Interface using X, Motif and OpenGL in order to facil-
itate visualisation. The proposed algorithms have been
implemented on Unix workstations. For the numerical
studies reported in this paper HP C-240 workstation is
used.
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The eight variants of mesh partitioning algorithms de-
veloped using Float-encoded GA have been employed to
solve the unstructured meshes given in Fig. 4 and Fig. 5.
The population size is taken as 40 for FEGA and 6 for
µ-FEGA. SBX crossover with a probability of 80% has
been employed for FEGA and 90% for the µ-FEGA. The
mutation is considered as 0.25% for the FEGA and it is
set to 0.20% for µ-FEGA. The number of runs is one for
FEGA and 4 for µ-FEGA.

Convergence studies have been carried out employing the
proposed GA based mesh partitioning algorithms in or-
der to optimally choose the convergence criterion. For
this purpose, the two unstructured meshes have been
solved employing different convergence criterion em-
ploying both FEGA and µ-FEGA. Since the convergence
trend in both FEGA and µ-FEGA found to be same, only
the results for µ-FEGA are presented here.

Generations for
Convergence 4 20 40 50 80

Num. of Runs 4 4 4 4 4
Cut Edges 155 155 150 146 146
Total Num. of
Generations 38 187 352 474 508

Table 1 : Convergence of µ-FEGA for unstructured mesh
of JOINT1 for generating four partitions

Generations for
Convergence 4 20 40 50 80

Num. of Runs 4 4 4 4 4
Cut Edges 306 302 293 289 289
Total Num. of
Generations 86 435 695 1046 1121

Table 2 : Convergence of µ-FEGA for unstructured mesh
of JOINT1 for generating eight partitions

Tab. 1 to 4 show the results of µ-FEGA, while gener-
ating four and eight partitions for the two unstructured
meshes shown in Fig. 4 and 5. The numbers indicated
against the field ‘convergence’ in the tables indicate the
number of consecutive generations considered as conver-
gence criteria i.e., the FEGA is assumed to have been
converged if there is no improvement in the solution in
specified number of consecutive generations.

Generations for
Convergence 4 20 40 50 80

Num. of Runs 4 4 4 4 4
Cut Edges 186 178 178 178 178
Total Num. of
Generations 39 198 378 468 527

Table 3 : Convergence of µ- FEGA for unstructured
mesh of JOINT2 for generating four partitions

Generations for
Convergence 4 20 40 50 80

Num. of Runs 4 4 4 4 4
Cut Edges 339 328 323 323 323
Total Num. of
Generations 90 499 859 987 1077

Table 4 : Convergence of µ-FEGA for unstructured mesh
of JOINT2 for generating eight partitions

 

Figure 4 : Unstructured mesh describing a typical joint
of an off-shore structure-JOINT1
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Figure 5 : Unstructured mesh describing a complex joint
in a space frame - JOINT2

A close look at the results given in Tab. 1 to 4 indi-
cate that there is a marginal decrease in cutedges, when
the number of consecutive generations for convergence
requirement is increased. At the same time, there is
considerable increase in terms of total number of gen-
erations required for meeting the stringent convergence
criteria. This obviously results in higher computational
time. Similar trends have been observed with the pro-
posed formulations for many other test graphs. In view
of this, a rather relaxed convergence of four generations
has been adopted through out the studies reported in this
paper. i.e., the solution is assumed as converged if no
improvement in solution is found in the last four consec-
utive generations.

The two unstructured meshes shown in Fig. 4 and 5 are
solved for generating varied number of submeshes, em-
ploying various alternative FEGA implementations. The
result interms of execution time (CPU in seconds) and
cut edges (EC) for the two examples are shown in Tab. 5
to 8.

In order to solve a moderately large problem, an unstruc-
tured mesh of an automobile body (BODY) is taken as a
numerical example. The number of vertices and edges
in the associated dual graph of the unstructured mesh
are 45087 and 163734 respectively. The results obtained
from all the variants of FEGA and µ-FEGA are presented

in Tab. 9 and 10 respectively.

It is evident from the results, that the FEGA-GB gener-
ates partitions with minimum cut edges. It is however
takes longer time to converge. The interface refinement
occasionally improved the results with lesser computa-
tional cost. For smaller problems the saving in compu-
tational cost appears to be marginal. However, for even
moderate size problems (Tab. 9), interface refinement
can save up to 14% of computing time. The shrinking of
extents has an effect on the acceleration of the solution.
However, the savings in the cost are marginal. This may
be due to very relaxed convergence criteria employed in
order to accelerate the runtime of the algorithm. The
results obtained by µ-FEGA are slightly inferior to the
FEGA-GB. However, the cost of computation has been
drastically reduced. It is worth mentioning here that no
special efforts have been made to tune the parameters for
micro-float-encoded genetic algorithms (µ -FEGA) for
optimal performance. Hence, with optimal tuning of the
parameters, the results obtained using µ -FEGA are likely
to improve further.

Finally, the proposed GA based algorithms have been
evaluated by solving several benchmark graphs of fi-
nite element meshes available in the net. Since the pro-
posed algorithms require coordinate information, only
the benchmark graphs available with positional param-
eters are considered for evaluation. The details of these
graphs are given in Tab. 11. Here only µ-FEGA based
partitioning algorithms, which are fastest among the
GA based algorithms discussed in this paper, are con-
sidered for comparison. These algorithms have been
compared with the multilevel spectral bisection algo-
rithm, RSBM [Bernard and Simon, (1994)] and multi-
level graph partitioning algorithm, METIS [Karypis and
Kumar (1998,1999)].

For this purpose, a multilevel spectral algorithm with
boundary KL (Kernighan-Lin) refinement and METIS
version 4.0 available in the net are implemented on HP
C-240 workstation. METIS provides two algorithms
PMETIS and KMETIS for partitioning an irregular graph
into k equal size parts. PMETIS [Karypis and Kumar,
(1999)] uses the multilevel paradigm and solves the k-
way partitioning of the graph by recursive bisection. In
contrast, KMETIS [Karypis and Kumar, (1998)] uses
multilevel paradigm to construct a k-way partitioning of
the graph directly i.e. the coarsest graph is directly parti-
tioned into k parts and this k-partitioning is refined suc-
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NP
FEGA-GB FEGA-

GB(S)
FEGA-
GB(I)

FEGA-
GB(I-S)

CPU EC CPU EC CPU EC CPU EC
2 6.1 66 5.15 66 8.3 66 7.6 66
4 11.6 164 10.2 164 8.9 164 8.2 164
8 16.7 294 14.8 294 13.0 291 12.2 291

16 21.7 448 19.2 448 18.9 432 16.6 427
32 26.5 624 22.8 624 23.7 631 20.9 631
64 31.2 863 28.7 863 28.7 851 25.8 851

Table 5 : Performance of FEGA-GB based partitioning algorithms- JOINT1

NP
µ−FEGA µ−FEGA

(S)
µ−FEGA

(I)
µ−FEGA

(I-S)
CPU EC CPU EC CPU EC CPU EC

2 1.64 68 1.23 68 1.25 68 1.16 68
4 3.10 155 2.28 155 2.36 155 2.11 153
8 4.57 304 4.22 310 4.56 304 5.16 304

16 5.9 485 5.1 485 5.02 485 4.86 485
32 7.22 713 6.02 727 6.24 713 6.08 713
64 8.57 965 7.16 968 7.59 968 7.07 968

Table 6 : Performance of µ-FEGA based partitioning algorithms- JOINT1

NP
FEGA-GB FEGA-

GB(S)
FEGA-
GB(I)

FEGA-
GB(I-S)

CPU EC CPU EC CPU EC CPU EC
2 10.5 86 8.9 86 9.2 86 8.7 86
4 20.0 180 18.3 180 19.1 178 18.4 178
8 28.8 349 26.7 349 26.6 354 26.4 354
16 37.3 560 34.5 560 32.3 595 31.8 595
32 45.4 780 43.2 780 44.1 825 42.1 825
64 53.3 1070 49.8 1070 50.9 1073 48.8 1073

Table 7 : Performance of FEGA-GB based partitioning algorithms- JOINT2

NP
µ−FEGA µ−FEGA

(S)
µ−FEGA

(I)
µ−FEGA

(I-S)
CPU EC CPU EC CPU EC CPU EC

2 2.84 90 2.44 90 2.76 88 2.54 88
4 4.52 186 4.02 186 4.20 184 4.08 184
8 7.88 339 7.21 340 7.60 344 7.41 344
16 10.2 575 9.98 575 9.92 582 9.54 582
32 12.5 879 11.0 882 10.0 879 9.82 879
64 14.6 1300 13.1 1302 14.2 1314 14.0 1314

Table 8 : Performance of µ-FEGA based partitioning algorithms- JOINT2
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NP
FEGA-GB FEGA-

GB(S)
FEGA-
GB(I)

FEGA-
GB(I-S)

CPU EC CPU EC CPU EC CPU EC
2 77 266 78 274 65 260 68 260
4 138 659 134 675 122 659 118 668
8 202 1184 190 1202 177 1180 173 1184
16 242 1914 235 1914 214 1914 210 1914
32 282 3422 287 3443 250 3412 248 3414
64 314 5018 309 5012 279 5004 281 5010

Table 9 : Performance of FEGA-GB based partitioning algorithms- BODY

NP
µ−FEGA µ−FEGA

(S)
µ−FEGA

(I)
µ−FEGA

(I-S)
CPU EC CPU EC CPU EC CPU EC

2 8.9 272 9.2 272 8.2 270 8.5 270
4 16.1 662 15.2 662 12.2 658 12.6 662
8 23.8 1202 24.4 1239 18.6 1196 17.8 1196
16 31.2 1945 29.8 1945 26.4 1912 25.2 1926
32 35.6 3420 32.4 3418 31.2 3442 32.0 3418
64 43.4 5031 44.0 5018 38.6 5018 37.4 5018

Table 10 : Performance of µ-FEGA based partitioning algorithms- BODY

S.NO Graph name Num. of
Vertices

Num. of
Edges

Description

1 3ELT 9000 13278 2D Finite element mesh
2 AEROFOIL 8034 11813 2D CFD mesh
3 BIG 30269 44949 2D Finite element mesh
4 CRACK 20141 30043 2D Finite Element mesh
5 WHITAKER 19190 28581 2D finite Element mesh
6 FE-4ELT 15606 45878 2D Finite Element Mesh
7 BRACK2 62631 366559 3D Finite Element Mesh
8 FEMESH 19334 55305 3D Finite Element Mesh
9 BIPLANE 21701 42038 NASA bench mark prob-

lem
10 SHOCK 36476 71290 NASA bench mark prob-

lem

Table 11 : Finite element meshes for evaluation of FEGA based algorithms
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NP 2 4 8 16 32 64

3ELT

µ−FEGA 59 109 179 312 503 793
NGEN 12 38 86 185 379 945
Time 1.96 3.85 5.40 7.2 9.0 10.56
RSBM 76 249 430 689 1173 1828
Time 0.39 0.59 0.71 0.77 0.78 0.82
PMETIS 65 156 243 358 569 907
Time 0.19 0.21 0.24 0.28 0.33 0.38
KMETIS 64 128 195 328 566 885
Time 0.15 0.16 0.18 0.19 0.24 0.32

AIRFOIL1

µ−FEGA 42 87 143 240 428 720
NGEN 15 38 90 186 380 763
Time 1.66 3.16 4.46 5.80 7.38 8.67
RSBM 56 201 357 594 1042 1672
Time 0.32 0.50 0.58 0.63 0.64 0.66
PMETIS 39 88 156 285 487 820
Time 0.15 0.16 0.19 0.21 0.25 0.29
KMETIS 39 103 157 276 505 809
Time 0.15 0.16 0.17 0.19 0.21 0.23

BIG

µ−FEGA 138 242 548 1020 1904 2203
NGEN 12 38 90 198 408 809
Time 4.42 8.46 12.26 15.88 19.46 22.78
RSBM 422 704 1231 1921 2489 3083
Time 4.17 6.26 7.32 7.87 8.16 8.32
PMETIS 87 209 358 585 962 1522
Time 0.57 0.69 0.78 0.87 0.98 1.10
KMETIS 77 189 334 603 901 1507
Time 0.55 0.56 0.57 0.58 0.62 0.67

CRACK

µ−FEGA 112 246 404 721 1014 1368
NGEN 13 33 87 185 381 771
Time 3.87 7.44 10.78 13.95 17.00 20.04
RSBM 148 491 822 1302 1965 2964
Time 1.8 2.7 3.17 3.40 3.54 3.62
PMETIS 101 216 363 634 916 1382
Time 0.37 0.45 0.51 0.56 0.63 0.71
KMETIS 100 224 377 575 891 1313
Time 0.36 0.37 0.38 0.40 0.42 0.48

WHITAKERR 3

µ−FEGA 64 156 366 624 911 1352
NGEN 12 37 89 189 385 765
Time 3.57 6.90 10.05 12.9 15.9 18.78
RSBM 88 398 704 1224 1825 2800
Time 1.66 2.48 2.91 3.12 3.24 3.32
PMETIS 70 207 368 650 974 1500
Time 0.35 0.42 0.48 0.53 0.60 0.68
KMETIS 73 213 382 643 970 1472
Time 0.35 0.34 0.35 0.37 0.40 0.45

Table12: Performance (cut edges, EC) of µ-FEGA based mesh partitioning algorithms
(NGEN: number of generations; Time: CPU time in seconds)
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NP 2 4 8 16 32 64

SHOCK

µ−FEGA 128 352 687 1131 1755 2629
NGEN 12 38 86 187 374 758
Time 8.04 15.5 23.0 30.9 38.7 46.7
RSBM 156 448 956 1519 2270 3365
Time 1.80 2.70 2.85 3.40 3.54 3.62
PMETIS 151 399 761 1184 1946 2892
Time 0.84 1.01 1.17 1.31 1.43 1.57
KMETIS 147 420 706 1217 1930 2896
Time 0.80 0.81 0.82 0.85 0.89 0.99

BIPLANE

µ−FEGA 130 219 449 724 1169 1792
NGEN 9 35 88 186 380 766
Time 4.53 8.85 14.31 19.08 22.77 27.24
RSBM 118 210 437 846 1413 2132
Time 8.1 12.1 14.1 15.2 15.7 16.0
PMETIS 82 189 440 812 1307 1998
Time 0.47 0.56 0.64 0.71 0.78 0.88
KMETIS 94 224 522 796 1260 1942
Time 0.46 0.47 0.48 0.49 0.53 0.59

FE-4ELT

µ−FEGA 177 347 672 1072 1704 2816
NGEN 12 36 84 180 372 760
Time 2.01 3.44 5.11 6.44 7.60 8.57
RSBM 287 422 707 1232 1926 3087
Time 1.89 2.71 3.17 3.40 3.54 3.62
PMETIS 183 401 734 1101 1806 2905
Time 0.45 0.51 0.57 0.62 0.69 0.78
KMETIS 151 415 638 1092 1819 2869
Time 0.43 0.43 0.44 0.46 0.48 0.54

BRACK2

µ−FEGA 731 3008 7524 11092 20005 29354
NGEN 12 42 92 197 417 837
Time 14.6 28.8 40.9 52.6 63.8 78.3
RSBM 1036 4125 8776 15404 22890 32999
Time 5.10 6.89 10.28 11.95 12.80 13.78
PMETIS 748 3230 7707 12838 20039 29232
Time 3.41 4.05 4.59 5.08 5.56 6.01
KMETIS 794 3251 8310 13068 19849 28969
Time 3.31 3.34 3.36 3.42 3.51 3.69

FEMESH

µ−FEGA 243 662 1708 2756 3549 4034
NGEN 13 41 97 198 418 822
Time 13.1 25.9 37.44 48.1 58.3 68.7
RSBM 389 1292 2272 4570 6499 9627
Time 2.44 3.22 5.98 7.01 8.42 9.67
PMETIS 267 886 1970 3253 4688 6945
Time 0.56 0.65 0.76 0.83 0.95 1.07
KMETIS 300 950 2152 3599 5204 7180
Time 0.54 0.55 0.57 0.60 0.64 0.74

Table 12: Performance (cut edges, EC) of µ-FEGA based mesh partitioning algorithms (continued)
(NGEN: number of generations; Time: CPU time in seconds)
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cessively as the graph is uncoarsened back into the orig-
inal graph.

The cutedges and CPU timings of µ-FEGA, RSBM,
PMETIS, KMETIS while solving the benchmark graphs
are presented in Tab. 12. A close look at the results indi-
cate that in most of the situations, the cut edges generated
employing µ-FEGA found to be much lesser than the two
other popular mesh partitioning algorithms. However,
the computational cost is quite high.

In order to demonstrate the effectiveness of the proposed
algorithms through visuals, a few numerical examples
are considered and results are compared with RSBM and
METIS. First, the unstructured mesh of a typical joint
(JOINT1) of an offshore platform given in Fig. 4 is
solved employing µ-FEGA, PMETIS and RSBM and the
partitioning results are shown in Figs. 6, 7 and 8 re-
spectively. The associated dual graph has 7860 vertices
and 11790 edges. It can be observed that the proposed
GA based algorithm generates compact partitions with-
out any domain splitting (i.e. the domains (submeshes)
formed with discontinuous regions), while the other two
algorithms generates fairly elongated partitions. Domain
splitting can be observed in the partitions generated with
METIS. The cutedges obtained for the four submeshes
generated by µ-FEGA, PMETIS and RSBM are 155, 184,
191 respectively.

 

Figure 6 : Generation of four submeshes of JOINT1 em-
ploying µ-FEGA based algorithm

Similarly, the partitioning results obtained for the un-
structured mesh of a typical joint (JOINT2) shown in Fig.

 

Figure 7 : Generation of four submeshes of JOINT1 em-
ploying PMETIS.

Figure 8 : Generation of four submeshes of JOINT1 em-
ploying RSBM.
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Figure 9 : Generation of four submeshes of JOINT2 em-
ploying µ-FEGA based algorithm

5 of a space frame are presented in Figs. 9-11. The as-
sociated dual graph consists of 12900 vertices and 19350
edges. A close look at the figures indicate that the pro-
posed GA based algorithm exhibits better performance
interms of partitioning the mesh. Split domains can be
observed in the partitions generated by RSBM (Fig.11).
The cutedges obtained for generating four submeshes by
µ-FEGA, PMETIS and RSBM are 180, 186, 198 respec-
tively.

An unstructured mesh describing a mechanical shaft,
shown in Fig. 12 is considered as third numerical ex-
ample. The associated dual graph consists of 4060 ver-
tices and 5992 edges. Four submeshes are generated em-
ploying µ-FEGA, PMETIS and RSBM algorithms and
the partitioning information is shown in Figs. 13-15.
Here also one can observe the superiority of µ-FEGA in
terms of generating partitions with optimal cuts. Domain
splitting can be observed in the partitions generated by
PMETIS (Fig. 14). The cut edges for four partitions are
found to be 62, 69 and 55 for RSBM, PMETIS and µ-
FEGA respectively.

Fig. 16 shows a 3D well graded finite element mesh
(FEMESH) of a thick metal sheet. Four partitions gen-
erated employing µ-FEGA based partitioning algorithm
are shown in Fig. 17. It can be observed that the parti-
tions generated by GA based algorithms are quite com-
pact with good aspect ratio. No domain splitting is ob-

 

Figure 10 : Generation of four submeshes of JOINT2
employing PMETIS

p y g

 

Figure 11 : Generation of four submeshes of JOINT2
employing RSBM
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Figure 12 : Unstructured mesh describing a mechanical
shaft ( SHAFT)

Figure 13 : Generation of four submeshes of SHAFT
employing µ-FEGA based algorithms

Figure 14 : Generation of four submeshes of SHAFT
employing PMETIS

Figure 15 : Generation of four submeshes of SHAFT
employing RSBM
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Figure 16 : A 3D graded mesh describing a thick metal
sheet (FEMESH)

Figure 17 : Generation of four submeshes of SHAFT
employing µ-FEGA based partitioning algorithm

Figure 18 : Unstructured mesh describing the body of an
helicopter(HELIC)

served in this case also.

Finally Fig. 18 shows an unstructured finite element
mesh describing the body of an helicopter. The asso-
ciated dual graph consists of 7920 vertices and 11654
edges. Fig. 19 presents the compact submeshes gener-
ated employing µ-FEGA based algorithm. The number
of cut edges for eight partitions generated is found to be
321 against 654 of RSBM.

It can be observed from the results that the µ-FEGA
based partitioning algorithms consistently generate bet-
ter partitions than the multilevel algorithms like RSBM
and METIS. The computational cost of µ-FEGA is higher
when compared to the multilevel algorithms. However,
GA based algorithms are excellent candidates for paral-
lel processing than the multilevel or spectral approaches.
The computational efficiency of these GA based algo-
rithms can be substantially improved by moving these
algorithms onto parallel processing machines.

9 Conclusions

A novel formulation has been proposed for addressing
the mesh partitioning problem. The mesh partitioning
problem has been formulated by allowing two arbitrary
points to float within the graph associated with the given
finite element mesh and optimising the position of these
two arbitrary points. The arbitrary points are at their
optimal positions within the extents of the graph, if the
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Figure 19 : Generation of eight submeshes of a mesh,
HELIC employing µ-FEGA based algorithm

vertex separators computed with respect to the position
of these arbitrary points, partition the targeted graph in
such a way that the cutedges are minimum. Optimising
the position of the two points is accomplished by em-
ploying genetic algorithms. Here the size of the genome
is not dependent on the size of the graph and only seven
parameters need to be considered while constructing the
genome. Since the parameters are continuous, float-
encoded genetic algorithms have been employed for for-
mulating the mesh partitioning algorithms. It is how-
ever appropriate to mention here that the binary GA can
as well be employed for this formulation. However, as
already discussed in section-2 of this paper, the float-
encoded GA has distinct advantages over binary repre-
sentation while searching continuous parameter spaces.

Although the genome representation in the proposed for-

mulation is simple and convenient, the cost involved in
evaluation of fitness is proportional to the size of the
graph. For large size problems, it becomes computa-
tionally quite expensive. In order to improve the compu-
tational efficiency, several acceleration refinement tech-
niques like adaptively shrinking the search space, switch-
ing over to interface refinement etc. have been attempted.
Numerical studies indicate that FEGA with shrinking and
interface refinement consistently gives good results. The
shrinking of search space has minor impact in minimis-
ing the computational cost. However the interface refine-
ment found to improve computational performance up to
14% for moderate size problems.

The micro-float-encoded genetic algorithms (µ-FEGA),
which operate with a small population, have been de-
veloped and tried out for the mesh partitioning problem.
They are computationally inexpensive. However, the
quality of results obtained using µ-FEGA is marginally
inferior when compared to the FEGA formulations. Fur-
ther tuning of the GA parameters may improve the qual-
ity of partitions. The results presented in this paper (in-
cluding visuals) demonstrate that the µ-FEGA based al-
gorithms generate consistently better partitions than the
multilevel spectral algorithm (RSBM). Similarly when
compared with the multilevel graph partitioning algo-
rithms like METIS, GA based partitions are better in
most of the numerical examples solved and presented in
Tab. 12. However, it is appropriate to mention here that
the GA based algorithms including the fastest µ-FEGA
algorithms are much slower than METIS and RSBM.
In view of this, this method in the present state can be
used for applications which consume substantial runtime
on parallel processors (typically problems like nonlinear
dynamics and computational fluid dynamics) so that the
overheads associated with partitioning becomes negligi-
ble. These algorithms are certainly not practical for prob-
lems like parallel sparse solutions, which require parti-
tions to be generated rapidly. However, we aim to in-
vestigate these techniques further to improve the com-
putational performance by moving them on to parallel
machines and also to improve the quality of submeshes
by introducing some additional parameters like submesh
aspect ratios.

Finally it should be mentioned here that the objective
of the present work is not to suggest the proposed GA
based algorithms as an alternative to popular mesh parti-
tioning algorithms like METIS. The emphasis is only to
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demonstrate the potential of genetic algorithms in devis-
ing successful partitioning algorithms which are capable
of generating partitions superior in quality when com-
pared to the state-of-the-art mesh partitioning algorithms
like METIS.
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