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Multiscale Simulation Based on The Meshless Local Petrov-Galerkin (MLPG)
Method

Shengping Shen1 and S. N. Atluri1

Abstract: A multiscale simulation technique based
on the MLPG methods, and finite deformation mechan-
ics, is developed, implemented, and tested. Several al-
ternate time-dependent interfacial conditions, between
the atomistic and continuum regions, are systematically
studied, for the seamless multiscale simulation, by de-
composing the displacement of atoms in the equivalent-
continuum region into long and short wave-length com-
ponents. All of these methods for enforcing the inter-
face conditions can ensure the passage of information
accurately between the atomistic and continuum regions,
while they lead to different performances at short wave-
lengths. The presently proposed Solution Method 2 re-
duces the phonon reflections at the interface, without
increasing the computational burden. Multiple length
scale, multiple time step, and meshless local Petrov-
Galerkin (MLPG) methods are used in the numerical ex-
amples.

1 Introduction

With the advances in materials synthesis and device pro-
cessing capabilities, the importance of developing and
understanding nanoscale engineering devices has dra-
matically increased over the past decade. Computational
Nanotechnology [ Srivastava and Atluri (2002a,b)] has
become an indispensable tool not only in predicting, but
also in engineering the properties of multi-functional
nano-structured materials. The elasto-dynamics is gov-
erned largely by the geometry of the device, while the
atomistic processes are important in its smallest features.
Continuum approaches begin to fail as the system size
approaches the atomic scale, and atomistic methods be-
gin to reach their inherent time and length-scale limita-
tions. The nano-scale is the length scale of individual
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atoms, i.e. 1-10nm. At such length scales, continuum
models are not flexible enough to accommodate the in-
dividual atomic scale processes. An alternative to con-
tinuum analysis is the atomistic modeling and simula-
tion (MD), in which individual atoms are explicitly fol-
lowed during their dynamic evolution. Even though this
MD can trace all details of atomic-scale processes, it has
its own set of limitations. When the length-scale can-
not be accessed by either continuum methods because
it is too small for averaging, or the atomistic methods
[MD or quantum mechanics (QM)] because it is too large
for simulations on the present day computers, these two
approaches become inadequate, and that has presented
significant challenges to the scientific community. The
length scales of the typical material system in multi-scale
structures are shown in Fig. 1.
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Figure 1 : The length scales of the material system

This paper is devoted to computational nanotechnol-
ogy and multiscale simulations, in both length and time
scales, as illustrated in Fig. 2, below [which is more
fully discussed in Shen and Atluri (2004) and Atluri
(2004)]. Molecular Dynamics (MD) Domains, Equiv-
alent Continuum Models (ECM), and Actual Contin-
uum Domains (ACD), will be linked through the device
of the Meshless Local Petrov-Galerkin (MLPG) Method
[Atluri and Zhu(1998), and Atluri and Shen (2002a,b)],
which is a cost-effective alternative to the traditional
finite-element & boundary-element methods, and which
offers the possibility of carrying out uniformly valid sim-
ulations of material properties for multi-scale systems at
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both larger length scales and longer times than the direct
atomistic calculations, and permits a reduction of the full
set of atomic degrees of freedom.
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Figure 2 : Seamless Multiscale Modeling

The role of computational nanotechnology [Srivas-
tava and Atluri (2002a,b); Srivastava, Menon, and Cho
(2001)], has become critically important in the nanode-
vice development [Ajayan and Zhu(2001)]. There are
two major categories of molecular simulation methods
for nanotechnology: classical molecular dynamics (MD)
and ab initio methods. MD treats the motion of atoms
or molecules in approximated finite difference equations
of Newtonian mechanics. In general, ab initio methods
give more accurate results than MD, but they are also
much more computationally intensive. A hybrid method,
tight-binding molecular dynamics (TBMD), is a blend of
certain features from both MD and ab initio methods. In
fact, ab initio and TBMD are the quantum mechanics
(QM) schemes. Despite constant increases in available
computational power and improvement in numerical al-
gorithms, even classical MD computations are still lim-
ited to simulating on the order of 10 6-108 atoms for a
few nanoseconds. The simulation of large systems must
be left to continuum methods. Several methods are de-
veloped for the multiscale simulation.

The quasicontinuum method, introduced by Tadmor et al.
(1996), and Chung, Namburu, and Henz (2004), gives a
theory for bridging the atomistic and continuum scales in
quasistatic problems. In this method, a set of atoms mak-
ing up a Bravais lattice is selected from a subset. A tri-

angulation of this subset allows the introduction of finite
element-like shape functions at lattice points, allowing
the interpolation of quantities at intermediate points in
the lattice. Thus, the problem of the minimization of en-
ergy to find equilibrium configurations can be written in
terms of a reduced set of variables. The method is made
practical by approximating summations over all atoms,
as using summation rules analogous to numerical quadra-
ture. The rules rely on the smoothness of the quantities
over the size of the triangulation to ensure accuracy. The
final aspect of the method is therefore the prescription
of adaptivity rules, allowing the reselection of represen-
tative lattice points in order to tailor the computational
mesh to the structure of the deformation field. The crite-
ria for adaptivity are designed to allow full atomic reso-
lution in regions of large local strain, for example, very
close to a dislocation in the lattice. This method is lim-
ited to the case of a zero temperature.

Another approach to the coupling of the length scales
is the FE/MD/TB model of Abraham (2000). In this
method, three simulations are run simultaneously, us-
ing the finite element method (FEM), molecular dynam-
ics (MD), and semi-empirical tight binding (TB). Each
simulation is performed on a different region of the do-
main, with a coupling imposed in “handshake” regions
where the different simulations overlap. The method is
designed for implementation on supercomputers via par-
allel algorithms, allowing the solution of large problems.
One example of such a problem is the propagation of a
crack in a brittle material. Here, the TB method is used
to simulate bond breaking at the crack tip, MD is used
near the crack surface, and the surrounding medium is
treated with FE. The challenge for mesh generation is
that the mesh should smoothly transition between the true
atomic lattice in the MD region and the closely-packed
FE meshes. Too abrupt a crossover leads to an unphysi-
cal behavior, such as elastic wave resonances at the inter-
face. The coarse-grained MD method proposed by Rudd
and Broughton (1998) derived a constitutive relationship
for the continuum, directly from the interatomic poten-
tial by using a statistical coarse graining procedure. This
method has high computational complexity. Wagner and
Liu (2003) presented a multiscale method for coupling
molecular dynamics and continuum mechanics by using
“bridging scale” decomposition and the quasicontinuum
method [Tadmor et al. (1996)].

Although substantial progress has been made in recent
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years, the multi-scale modeling method is still in its in-
fancy, and it still requires intensive efforts. As pointed
by many researchers, the main issues in the development
of seamless multi-scale modeling methodology are still
the limitations on the length and time scale, and the nu-
merical accuracy and efficiency. Hence, a more accurate
and efficient multi-scale modeling methodology is still
desirable, and such methodologies are currently being
pursued by many researchers, in contemporary literature.
In this paper, we propose a seamless multi-scale mod-
eling methodology, based on the meshless local Petrov-
Galerkin (MLPG) method.

2 The Meshless Local Petrov-Galerkin (MLPG)
Method and Radial Basis functions

Meshless methods, as alternative numerical approaches
to eliminate the well-known drawbacks in the finite el-
ement and boundary element methods, have attracted
much attention in recent decades, due to their flexibil-
ity, and due to their potential in negating the need for the
human-labor intensive process of constructing geometric
meshes in a domain

The MLPG method is a simple and less-costly alterna-
tive to the FEM and BEM [Atluri and Zhu (1998), Atluri
and Shen (2002a,b)]. The main objective of the meshless
methods is to get rid of, or at least alleviate the difficulty
of, meshing and remeshing the entire structure; by only
adding or deleting nodes in the entire structure, instead.
The meshless local Petrov-Galerkin (MLPG) method is
truly meshless, as no finite element/or boundary element
meshes are required in this approach, either for purposes
of interpolation of the trial and test functions for the so-
lution variables, or for the purpose of integration of the
‘energy’. All pertinent integrals can be easily evaluated
over over-lapping, regularly shaped, domains (in gen-
eral, spheres in three-dimensional problems) and their
boundaries. Remarkable successes of the MLPG method
have been reported in solving the convection-diffusion
problems; fracture mechanics; Navier-Stokes flows; and
plate bending problems. Recently, the MLPG method
has made some strides, and it is applied successfully in
studying strain gradient materials [Tang, Shen and Atluri,
(2003)), three dimensional elasticity problems [Li, Shen,
Han and Atluri (2003)], and elstodynamics [Batra, Ching
(2002)]. The MLPG method was also extended to solve
the boundary integral equations [Atluri, Han and Shen
(2003), and Han, Atluri (2003)].

Six different nodal-based local test functions may be
selected, which lead to six different MLPG meth-
ods. Based on the MLPG concept, these variants of
the MLPG method are labeled as MLPG1, MLPG2,
MLPG3, MLPG4, MLPG5, and MLPG6, respectively.
Among them, there are three methods that avoid the
domain integral in the weak-form, over the nodal test-
function domain Ωs: MLPG2 (wherein the local, nodal-
based test function, over a local sub-domain Ω s cen-
tered at a node, is a Dirac’s Delta function); MLPG4
(wherein the local, nodal-based test function, over a lo-
cal sub-domain Ωs centered at a node, is the modified
fundamental solution to the differential equation); and
MLPG5 (wherein the local, nodal-based test function,
over a local sub-domain Ωs centered at a node, is the
Heaviside step function). MLPG4 (which is synonymous
with the Local Boundary Integral Equation method) in-
volves singular integrals; while the collocation method,
(i.e. MLPG2), is notorious for the sensitivity of the solu-
tion to the choice of proper collocation points. However,
MLPG5 does not involve either a domain, or a singular
integral, to generate the stiffness matrix; it only involves
the regular boundary integral. Thus, it is a highly promis-
ing MLPG method while, numerical examples validate
that the MLPG5 method is fast, accurate and robust.

In summary, the MLPG is a truly meshless method,
which involves not only a meshless interpolation for the
trial functions [such as MLS, PU, Shepard function or
Radial Basis Functions(RBF)], but also a meshless in-
tegration of the weak-form (i.e. all integrations are al-
ways performed over regularly shaped sub-domains such
as spheres, parallelepipeds, and ellipsoids in 3-D). In the
conventional Galerkin method, the trial and test functions
are chosen from the same function-space. In MLPG, the
nodal trial and test functions can be different: the nodal
trial function may correspond to any one of MLS, PU,
Shepard function, or RBF types of interpolations; and
the test function may be totally different, and may corre-
spond to any one of MLS, PU, Shepard function, RBF, a
Heaviside step function, a Dirac delta function, the Gaus-
sian weight function of MLS, a special form of the funda-
mental solution to the differential equation, or any other
convenient function, in the support domain, Ω te, of the
test function. Furthermore, the physical sizes of the sup-
ports (Ωtr and Ωte, respectively) of the nodal trial and
test functions may be different. These features make the
MLPG method very flexible. The MLPG method, based
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on a local formulation, can include all the other meshless
methods based on global formulation, as special cases
[see Atluri, and Shen (2003)].

In this paper, we choose the local radial basis functions
[Hardy (1971), Wendland (1999), Liu and Gu (2001)] to
interpolate the trial functions, because of its Kronecker
Delta property. Consider a continuous function u(x) de-
fined in a domain Ω, discretized by a set of nodes. An in-
terpolation of u(x) from the neighboring nodes of a point
xα within the domain Ω, using RBFs augmented by a
polynomial basis, can be written as

u(x) =
n

∑
i=1

Ri (x)ai (xα )+
m

∑
j=1

p j (x)b j (xα)

= RT a+PT b (1)

where Ri (x) is the radial basis function, p j (x) is a mono-
mial in the space coordinates, n is the number of nodes in
the neighborhood of xα, m is the number of polynomial
basis functions (usually m < n), and a i (xα) and b j (xα)
are the coefficients for Ri (x) and p j (x), respectively, cor-
responding to the point xα. The number of the neighbor
nodes of xα is not greater than the total number of nodes
in the global domain. The vectors are defined as

aT = [a1,a2, · · · ,an]
bT = [b1,b2, · · · ,bm]
RT = [R1 (x) ,R2 (x) , · · · ,Rn (x)]
PT = [p1 (x) , p2 (x) , · · · , pm (x)] (2)

The radial basis function has the following general form

Ri (x) = Ri (ri) (3)

where ri = ‖x−xi‖. The polynomial term is added to
ensure the consistency and the condition of the non-
singularity of the RBFs approximation, which should sat-
isfy the following constraints

n

∑
i=1

p j (xi)ai = 0, j = 1,2, · · · ,m (4)

The coefficients are determined by ensuring that the in-
terpolation passes through all n scattered nodes within
the influence domain:

u(xk) =
n

∑
i=1

Ri (xk)ai +
m

∑
j=1

p j (xk)b j, k = 1,2, · · · ,n

(5)

Equations (5) and (4) can be expressed in matrix form

A
{

a
b

}
=
{

ue

0

}
(6)

where

A =
[

R0 P0

PT
0 0

]
(7)

R0 =




R1 (x1) R2 (x1) · · · Rn (x1)
R1 (x2) R2 (x2) · · · Rn (x2)
...

...
...

...
R1 (xn) R2 (xn) · · · Rn (xn)




n×n

(8)

P0 =




p1 (x1) p2 (x1) · · · pm (x1)
p1 (x2) p2 (x2) · · · pm (x2)
...

...
...

...
p1 (xn) p2 (xn) · · · pm (xn)




n×m

(9)

ue = [u1,u2, · · · ,un]
T (10)

Then, from equation (6), the coefficients can be obtained.
Finally, the interpolation is expressed as

u(x) =
[

RT (x) PT (x)
]
A−1

{
ue

0

}
= φφφ (x)ue (11)

where the matrix of the shape functions φ (x) is defined
by

φφφ(x) =
[
φ1 (x) ,φ2 (x) , · · · ,φi (x) , · · · ,φn (x)

]
(12)

with

φk (x) =
n

∑
i=1

Ri (x) Âik +
m

∑
j=1

p j (x) Â(n+ j)k (13)

where Âik represents the (i,k) element of matrix A−1.

The widely used RBFs include multiquadrics (MQ),
Gaussian (EXP), and thin plate splines (TPS) forms, and
so on. In this paper, we will employ the multiquadrics
(MQ) form:

Ri (x) =
(
r2

i +c2)β
(14)

c and β are the shape parameters. Here, we choose c = 1,
β = 1.03 or c = 2, β = 1.99.
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3 The MLPG Method for Multiscale Simulation

In this section, a finite deformation model based on the
atomistic physics will be developed, for use in the ECM
region.

In continuum mechanics, the stress at a material point
is a function of the ‘state’ variables, such as strain, and
its gradients, at the same point. In order to formulate
a constitutive law for an equivalent continuum model
(ECM) from the atomic forces, a hypothesis to connect
the continuum displacement field and the motions of
atoms must be employed. The Cauchy-Born hypothe-
sis is the basis for developing the ECM elastic potentials,
from the atomistic description of the system. In the ab-
sence of slips, phase transitions, twinning or other inelas-
tic phenomena, the Cauchy-Born hypotheses for crystals
are equivalent for homogeneous deformations (Ericksen,
1984). Once the geometry of the deformed lattice vec-
tors is linked to the continuum deformation, a constitu-
tive model based on atomistic description can be con-
structed by equating the continuum strain energy density
to the potential energy of the atomic system for a repre-
sentative cell, divided by its volume, as in Tadmor et al.
(1996).

In this paper, first, we will develop an MLPG tangent-
stiffness method for the ECM region, in which it is as-
sumed that the state of deformation is homogeneous and
can be well-characterized by the local deformation gra-
dient F. The inhomogeneous deformation, such as near
defect cores, will be accounted for by the pure molecular
dynamics (MD). The whole idea is that: in the ECM,
MLPG5 or MLPG1 tangent-stiffness method will be
employed; in the MD region, MLPG2 tangent-stiffness
method will be employed.

Both of these, the ECM and MD regions, will be linked
through the device of the meshless local Petrov-Galerkin
(MLPG) method, which will thus offer the possibility
of carrying out uniformly valid simulations of material
properties for multi-scale systems at both larger length
scales and longer times than direct atomistic calcula-
tions, and permits a reduction of the full set of atomic
degrees of freedom; thus inching towards almost O(N)
algorithms. This is illustrated of in Fig. 3. In the ECM
region, the nodes can be taken to be arbitrary, and not
necessarily be coincident with the atoms. In MD re-
gion, the nodes are taken to be the atoms themselves.
In the ECM region, the solid points represent the atoms,

while the open points represent the nodes of the MLPG
method. MLPG5 will be implemented in “ECM” region
and MLPG2 will be implemented in MD region.

tr

te

s

ECM Region 

( )
MD Region 

tr

Figure 3 : Illustration of multiscale simulation.

The dynamic motion for atomic positions are governed
by Newtonian mechanics and described by molecular dy-
namics. The multi-scale materials are discritized into
a set of nodes. In the molecular dynamics region, the
position of the atom can be interpolated by the mesh-
less interpolation (the moving least square or radial basis
functions) of the nodes, similar to the displacement in
the continuum mechanics region. The atomic forces are
analytic derivatives of the inter-atomic potential (Born-
Oppenheimer expansion). In the ECM, the atomic en-
vironment is characterized by the deformation gradient
there. Each continuum point is taken to represent a large
region on the atomic scale, which is homogeneously dis-
torted according to the deformation gradient at the point.
The constitutive response in this region is obtained from
the atomistic calculation rather than a phenomenological
rule, in a way similar to the quasicontinuum method pro-
posed by Tadmor et al. (1996), and Chung, Namburu,
and Henz (2004).

By means of the concept of the MLPG, a local weak form
(in subdomain Ωs, as in Fig. 3) for the Newton’s law of
motion (conservation of linear momentum) will be used
to derive a system of equations for multi-scale materials
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modeling. In this paper, we choose radial basis function
to be the interpolation scheme, due to its convenience
in this case and their Kroneck Delta property [Atluri &
Shen, (2002a, b, 2003)].

In classical continuum mechanics, a point X in the un-
deformed body Ω0 in the reference frame is mapped to a
point x in its current shape Ω in the current frame. The
deformed configuration of the body is described by a dis-
placement function u(X), which represents the displace-
ment at point X, as

x = X +u(X)

The deformation gradient is defined by

F =
∂x
∂X

= I +
∂u
∂X

to map infinitesimal material vector from the undeformed
body Ω0 into the deformed one Ω. Here, I is the identity
tensor.

In the molecular dynamics region, the initial position of
an atom I is denoted as X I . The current configuration of
the atom is described by a displacement u which depends
on X, and can be written as

xI = XI +uI (15)

where uI =u(XI).

The distance between two atoms I and J in the reference
configuration can be written as

RIJ = XJ −XI (16)

The distance between two atoms I and J in the current
configuration can be written as

r IJ = xJ −xI (17)

According to the Cauchy-Born rule (Ericksen, 1984),
for simple Bravais lattice that has the centrosymmetric
atomic structure, we have

r IJ = FRIJ (18)

However, it does not hold for a complex Bravais lattice,
which can be described by be means of a number of in-
terpenetrating simple Bravais lattices (sub-lattices) and

does not possess centrosymmetry, such as the hexagonal
lattice. In this case, the Cauchy-Born rule gives [Zan-
zotto (1996), Martin (1975), Cousins (1978), Born and
Huang (1954)]

r IJ = FRIJ +ςςςk (19)

where the internal variables ςςςk are shift vectors, with k
ranging from 0 to some integer N (There are N+1 sub-
lattices in the complex Bravais lattice. If atoms I, J are in
the same sub-lattices, ςςςk = 0). ςςςk and F are independent
variables. At the static equilibrium state, the vectors ςςςk

are to be determined by the minimization of the energy
function, so as to reach an equilibrium configuration in
the deformed crystal. This means that the equilibrium
values of ςςςk can be written as functions of F. In this pa-
per, which focuses on dynamical problems, we will avoid
making any specific hypothesis on the behavior of ςςςk.
As discussed later [see equation (98)], what we need is
∂r IJ
/
∂F = RIJ from either (18) or (19).

It is noted that, in order to apply the Cauchy-Born rule
to nanotubes or fullerenes, a more general exponential
mapping procedure like the one in Arroyo and Belytchko
(2002) should be used. That will be taken into account as
we apply the present multiscale simulation to nanotubes.

The right Cauchy-Green strain tensor is defined by

C = FT F (20)

and the Green strain tensor is defined by

E =
1
2

(C− I) (21)

The kinematics of the deformation is characterized by the
deformation gradient. The constitutive nature of the ma-
terial is obtained through the strain energy density func-
tion W which relates the energy at a point to the local
state of deformation there. It may be shown that W can
only be a function of F, from the hypothesis of locality
and use the entropy production inequality. Moreover, ac-
cording to the postulate of material frame indifference, it
can be shown that the dependence of W on F can only be
through the right Cauchy-Green tensor C.

Following the classical continuum mechanics, the second
Piola-Kirchhoff stress S can be defined as

S=
∂W
∂E

= 2
∂W
∂C

(22)
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C and S are invariant with respect to rigid-body rotation.

The conservation of linear momentum leads to:

∇ · (SFT )+ f = ρw (23)

where ∇· denotes the divergence taken with respect to the
material frame, f is the body force, ρ is the density, and
w is the acceleration, i.e., w = d2u

dt2 .

The conservation of angular momentum leads to:

S= ST (24)

The tangent stiffness material-moduli can be defined as

D =
∂2W

∂E∂E
= 4

∂2W
∂C∂C

(25)

More details about the finite strain analysis can be found
in Atluri (1979, 1980).

The local weak form of equation (23) can be written as∫
Ωs

[
∇ · (SFT )+ f−ρw

]
VdΩ = 0 (26)

where V is the test function in the local domain Ω s. The
local symmetric weak form can be written as
∫

Ωs

(SKLxl,L)Vl,KdΩ+
∫

Ls

SKLxl,LnKVldΓ

+
∫

Γsu

SKLxl,LnKVldΓ

=
∫

Γst

SKLxl,LnKVldΓ+
∫

Ωs

( fl −ρwl)VldΩ (27)

where n is the unit normal to the local boundary surface
Γs of Ωs. The corresponding MLPG5 weak-form ( when
the test functions are taken to Heaviside functions) is :∫
Ls

SKLxl,LnKdΓ+
∫

Γsu

SKLxl,LnKdΓ

=
∫

Γst

SKLxl,LnKdΓ+
∫

Ωs

( fl −ρwl)dΩ (28)

Actually, the MLPG5 [equation (28)] can be directly de-
rived from the conservation of linear momentum in an
arbitrary local domain, which is the basis of the finite
deformation theory. The physical basis of the MLPG5 is
the conservation of linear momentum in an arbitrary lo-
cal domain, and that of the MLPG2 is the conservation
of linear momentum on arbitrary point.

A corresponding continuous interpolation will replace
the piece-wise function for the position of the atom in
the ECM region,

x =
N

∑
α=1

φα (X)xα (29)

xα,α = 1, 2, . . .,N, in equation (29), are the nodal values.
φα (X) is the RBF shape function.

Assume that there are N1 atoms in region A (MD), and
N2 in region B (ECM). The displacements of atoms I in
the Region A are denoted by qI (1 ≤ I ≤ N1). The dis-
placements of atom i in the Region B are denoted by u i

(1 ≤ i ≤ N2), which are interpolated from the displace-
ments of the nodes in region B, as

ui = u(Xi) =
N

∑
α=1

φα (Xi)uα (30)

Here, uα, α=1, 2,. . . , N, are the nodal values. It is noted
that N is less than the amount of atoms of Region B, i.e.,
N ≤ N2, and the node is not necessarily an atom. The dis-
placement ui of an atom in region B implies an average
value of the atomic displacement, and can not catch the
thermal fluctuations.

3.1 The Atomistic Constitutive Law for Homogeneous
Deformation and MLPG5, in ECM

The classical MD describes the system’s atomic-scale
dynamics, where atoms and molecules move, while in-
teracting with many of the atoms and molecules in the
vicinity. The system’s dynamic evolution is governed
by Hamilton’s classical equation of motion from New-
ton’s second law. Each atom moves and acts simply as
a particle that is moving in a many-body force field of
other similar particles. The atomic and molecular inter-
actions describing the dynamics are thus given by classi-
cal many-body force-field functions, and the interatomic
potential Π as an infinite sum over pair, triplet, etc., can
be expressed by the Born-Opennheimer expansion as:

Π = ∑
I

[
1
2! ∑

J �=l

V (2) (r IJ)+
1
3! ∑

K �=
∑
J �=I

V (3) (r IJ , rKI, rKJ)

+ · · ·+ 1
n! ∑

L�=
.. ∑

M �=
..∑

J �=l

V (n) (r IJ , · · · , r IL, · · · , rML, · · ·)
]

(31)
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V (2), V (3) . . . and V (n) are the interaction potentials of the
two-, three- and n-body interactions, respectively.

As an example, we consider a two-body and three-body
separable potential here. The energy can be expressed as,

Π = ∑
I

[
1
2 ∑

J �=l

V (2) (r IJ)+∑
K �=

∑
J �=I

V (3) (r IJ, r Ik, r Jk)

]
(32)

In this paper, an important procedure is to estimate the
strain energy density in the ECM If we sum over all
the atoms as in the classical molecular dynamics, we
can certainly get the energy density by evaluating Π

/
Ω.

However, this is very expensive. In the quasicontinuum
method [Tadmor et al. (1996)], for a homogeneously dis-
torted crystal, the continuum strain energy density is ob-
tained by equaling to the potential energy of the atomic
system for a representative cell divided by its volume,
which means that the calculation of equation (32) is lim-
ited to a single unit cell. This method will be used in
regions that are very far from the inhomogeneous region,
in this paper. In the MLPG method, it is natural to limit
the calculation of equation (32) to a local domain Ω s, ie.,

W =
1

Ωs
∑

I∈Ωs

[
1
2 ∑

J �=l

V (2) (r IJ)+ ∑
K �=

∑
J �=I

V (3) (r IJ, r Ik, r Jk)

]

− Πr

Ωs

=
Πs

Ωs
(33)

where Ωs is the volume of the local domain, and Πr is
the potential energy of the reference configuration. It is
noted that the atoms K and J are located in the local do-
main Ωs, and within the cutoff radius of the boundary
of the local domain Ωs. It is noted that both the inter-
atomic potential energy and the strain energy, involve
reference states. The former is referenced to infinitely
separated atoms, and the latter is referenced to the un-
strained configuration. Hence, the constant offset energy
Πr, representing the potential energy in the unstrained
state, which does not affect the dynamics is subtracted in
equation (33).

If the energy can be written in a form that is additively
decomposed, such that Π = ∑

I=1
ΠI , with ΠI denotes the

potential energy for each atom, another way to derive the
strain energy density is to assume that each atom can be
assigned a volume ∆ΩI in the undeformed configuration

(Ω = ∑
I=1

∆ΩI). Then, the strain energy density can be

derived as W = ΠI
/

∆ΩI . In our numerical examples, we
proceed in this way.

After obtaining the strain energy density (33) by the
Cauchy-Born rule, the second Piola-Kirchhoff stress S,
and the tangent stiffness moduli D, in the ECM can be
expressed, respectively, as

S=
∂W
∂E

=
2

Ωs

∂Πs

∂C

=
2

Ωs
∑

I∈Ωs

[
1
2 ∑

J �=l

∂V (2) (r IJ)
∂r IJ

∂r IJ

∂C

]

+
2

Ωs
∑

I∈Ωs

[
∑
K �=

∑
J �=I

∂V (3) (r IJ, r Ik, r Jk)
∂r IJ

∂r IJ

∂C

+
∂V (3) (r IJ, r Ik, r Jk)

∂r Ik

∂r Ik

∂C

+
∂V (3) (r IJ, r Ik, r Jk)

∂r Ik

∂r Jk

∂C

]
(34)

D = 4
∂2W

∂C∂C
=

4
Ωs

∂2Πs

∂C∂C
(35)

where

∂r IJ

∂F
= RIJ,

∂F
∂C

= F−1,
∂r IJ

∂C
= RIJF−1 (36)

The equations from the nonlinear local Petrov-Galerkin
formulation (27), can be solved by employing an incre-
mental algorithm. The total Lagrangean method (T. L.)
will be employed in this paper. Assuming that the equa-
tion (27) is at time t, then from time t to time t + ∆t, the
incremental constitutive relation in the ECM can be ex-
pressed as

∆S= D:∆E = D:
(
∇∆u+∇uT ·∇∆u

)
(37a)

or

∆SKL = DKLMN (∆uM,N +uP,M∆uP,N) (37b)

where ∆u is the discernment of the displacement, i.e.,

∆u = t+∆t u− t u (38)
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with tu denotes the displacement u at time t. The equa-
tion (27) at time t +∆t can be linearized as

∫
Ωs

∆(SKLxl,L)Vl,KdΩ+
∫

Ls

∆(SKLxl,L)nKVldΓ

+
∫

Γsu

∆(SKLxl,L)nKVldΓ−
∫

Ωs

ρ
(twl +∆wl

)
VldΩ

= Q (39)

where the density is defined as

ρ =
1

Ωs

mI

∑
I∈Ωs

or ρ =
mI

∆ΩI
(40)

and

Q =
∫

Γst

SKLxl,LnKVldΓ+
∫

Ωs

flVldΩ

+
∫

Γst

∆(SKLxl,L)nKVldΓ+
∫

Ωs

∆ flVldΩ

−
∫

Ωs

SKLxl,LVl,KdΩ−
∫

Ls

SKLxl,LnKVldΓ

−
∫

Γsu

SKLxl,LnKVldΓ (41)

If we adopt the MLPG5 method, equation (39) and (41)
can be rewritten as∫
Ls

∆(SKLxl,L)nKdΓ+
∫

Γsu

∆(SKLxl,L)nKdΓ

−
∫

Ωs

ρ
(twl +∆wl

)
dΩ

= Ql (42)

and

Ql =
∫

Γst

SKLxl,LnKdΓ+
∫

Ωs

fldΩ+
∫

Γst

∆(SKLxl,L)nKdΓ

+
∫

Ωs

∆ fldΩ−
∫

Ls

SKLxl,LnKdΓ−
∫

Γsu

SKLxl,LnKdΓ

(43)

By using the natural boundary on Γ t , SKLxl,LnK = T l ,
equation (43) can be written as

Ql =
∫

Γst

T ldΓ+
∫

Ωs

fldΩ+
∫

Γst

∆T ldΓ+
∫

Ωs

∆ fldΩ

−
∫

Ls

SKLxl,LnKdΓ−
∫

Γsu

SKLxl,LnKdΓ (44)

According to equation (37), equation (39) or (42) is a
linear equation in terms of ∆u. The increment of dis-
placement, ∆u, can be interpolated in the MLPG method
as

∆u =
N

∑
α=1

φα (X)∆uα (45)

∆uα,α = 1, 2, . . .,N, in equation (45), are the nodal val-
ues. Again, it is noted that N is less than the amount of
atoms of the system, and the node is not necessarily the
atom. For convenience, we rewrite equation (45) as

∆uI =
N

∑
α=1

φα
IJ (X)∆uαJ (46)

with φα
IJ = φαδIJ .

Substitution of equation (45) into equation (42), for all
nodes, leads to the following discretized system of linear
equations:

−
N

∑
β=1

[
Mαβ

t+∆t üβ
]
+

N

∑
β=1

[tKαβ∆uβ
]
= Qα (47)

where

[tKαβ
]

JI

=
∫

Ls

[
DKLMN

(
δJL + tuJ,L

)
nK
(
δPM + t uP,M

)
φβ

PI,N

+SKLnKφβ
JI,L

]
dΓ

+
∫

Γsu

[
DKLMN

(
δJL + tuJ,L

)
nK
(
δPM + tuP,M

)
φβ

PI,N

+ SKLnKφβ
JI,L

]
dΓ (48)

[
Mαβ

]
JI =

∫
Ωs

ρφβ
JIdΩ (49)

{Qα}J

=
∫

Γst

T JdΓ+
∫

Ωs

fJdΩ+
∫

Γst

∆T JdΓ+
∫

Ωs

∆ fJdΩ

−
∫

Ls

SKL
(
δJL + t uJ,L

)
nKdΓ

−
∫

Γsu

SKL
(
δJL + t uJ,L

)
nKdΓ (50)
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The integration in equation (48)-(50) can employ the
Gaussian quadrature. It is shown that no domain integra-
tion in involved in equation (48), which is an important
advantage of MLPG5.

The linearized equations (47) will be very effective for
static or implicit time integration schemes. However, if
an explicit time integration scheme is employed, we can
directly use equations (28), and do not need to linearize
them. In this paper, we will use the central difference
rule to integrate time, and not linearize equations (28).

In this case, equation (28) can be rewritten as

Mαβüβ = tα (51)

for node α or

MCd̈ = tC (52)

for the whole region B, with

tα

=
∫

Γst

(
SFT ) ·ndΓ−

∫
Ls

(
SFT ) ·ndΓ−

∫
Γsu

(
SFT ) ·ndΓ

=
∫

Γst

∂W
∂F

·ndΓ−
∫

Ls

∂W
∂F

·ndΓ−
∫

Γsu

∂W
∂F

·ndΓ (53)

Mαβ =
∫

Ωs

ρφβIdΩ (54)

and

d = [u1,u2, · · · ,uα, · · · ,uN ]T

tC = [t1, t2, · · · , tα, · · · , tN ]T

Gaussian quadrature is employed to compute the integral
in equation (53) numerically. M αβ is the sub-matrix of
the global mass matrix M C in region B. Here, the body
force is not considered. Equation (54) is for the consis-
tent mass matrix. It is noted that we can also use the
lumped mass in equation (52) same as that in FEM. The
lumping procedure can be same as that in FEM. Then, we
will obtain a diagonal mass matrix. Actually, in MLPG
method, to lump the mass matrix is simpler and more
convenient than in FEM, we can just assign the mass on
the node instead of distributing it continuously within the
local domain, i.e.

ρ = mαδ(X−Xα) (55)

with mα =
∫

Ωs
ρdΩ. Then, we have the diagonal mass

matrix

Mαβ = mαδαβI (56)

This reduces to the correct description in the atomic limit,
where nodes coincide with atoms. It is noted that equa-
tion (56) can also be obtained by means of the row-sum
technique, because of the zero-order consistency, i.e.,

n
∑

β=1
φβ = 1.

4 Atomistic (MD) Simulation in the Inhomogeneous
Deformation Region

In the inhomogeneous-deformation region, we will em-
ploy the MLPG2 by letting the node to be the atom itself.
Assume that there are N1 atoms in this region (MD). The
displacement of atom I in this region is denoted as q I

(1 ≤ I ≤ N1). Now, the control equation will be

−mI q̈I + fI = 0 (57)

fI = −∂Π
∂xI

= − ∂Π
∂qI

(58)

The force fI is computed, as it would be in a stan-
dard atomistic calculation. In molecular dynamics, these
equations are approximated as finite-difference equations
with discrete time step ∆t and are solved by the standard
Gear’s fifth-order predictor-corrector or Verlet’s leapfrog
method. The evaluation of the interatomic potential en-
ergy, and forces, is performed by taking advantage of the
neighbor-list of atoms, so that the time for the computa-
tion scales with the number of atoms in region A, i.e. it is
of order-N1. The neighbor list is renewed every several
time steps.

Similar to that in section 3, we can also linearize equation
(57). Although we will not employ it in the numerical
examples, we still list the equations here. Equation (57)
can be rewritten as

−mI
t+∆t q̈I + t+∆t fI = 0 (59)

Then, equation (59) is written as

−mI
t+∆t q̈I + t+∆t fI

≈−mI
t+∆t q̈I + t fI + ∑

J=1

t
(

∂fI
∂qJ

)
∆qJ = 0 (60)
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The above equation can be rewritten as

−mI
t+∆t q̈I +

N

∑
J=1

[
tK IJ∆qJ

]
= ∆QI (61)

where the tangent stiffness matrix tK IJ is defined as

tK IJ =
∂fI

∂qJ
(62)

and

∆QI = −t fI (63)

Now, a unified formulation for the multiscale system can
be developed, based on the MLPG method , and the tan-
gent stiffness concept. The equation (47) and (61) can be
written as

M t+∆t ü + tK∆u = t+∆t Q (64)

This method should be very effective due to the fact
that adaptive remeshing, which is an important factor in
multiscale dynamics, is very convenient in the MLPG
method. This computational methodology provides a
unified method for simulation in MD and equivalent con-
tinuum mechanics regions.

5 Interfacial Conditions between Atomistic Simula-
tion (MD) Region and the Equivalent Continuum
Mechanics (ECM) Region

In the multiscale simulation, the atomistic method is em-
ployed where the displacement field varies on an atomic
scale, and the continuum approach is employed else-
where. For the seamless multiscale simulation, it is im-
portant to ensure that the elastic waves generated in the
atomistic region can propagate into the continuum re-
gion. The continuum region cannot support modes of
short wavelength, which is less than the spacing of the
nodes. One source of finite size effects is the short waves
which are reflected back unphysically from an artificial
interface or boundary, which may also produce uneven
heating across the interface. In order to minimize such
reflections, some interfacial conditions are proposed [Cai
et al. (2000), E and Huang (2001), Wagner and Liu
(2003)]. In this paper, alternate interfacial conditions
between atomistic and continuum regions are proposed.
Their effectiveness in ensuring the accurate passage of

information between atomistic and continuum regions is
discussed.

As mentioned before, the displacement ui of an atom in
region B [ECM] implies an average value of the atomic
displacement, it can not catch the thermal fluctuations.
To describe it more accurately, we assume that the “real”
displacement qi of the atom in the region B can be ex-
pressed as:

qi = ui +δui (65)

where δui denote the atomic thermal fluctuations, and it
is assumed that δui << ui in region B. Now, the total
potential energy of the system (A+B) [wherein Region A
is of MD] can be written as:

Π(q1, · · · ,qN1+N2) ≈ Π(ui;qI)+
N2

∑
i=1

∂Π
∂qi

∣∣∣∣
qi=ui

δui

= Π0 +
N2

∑
i=1

∂Π0

∂ui
δui = Π0 (uB;qA)+

∂Π0

∂uB
·δuB (66)

(I = 1, · · · ,N1 in A; i = 1, · · · ,N2 in B)

Here Π0 denotes the zeroth-order approximation of the
potential energy; qA and uB are the atomic displacement
vectors with dimensions 3N1 (for 3 dimensions) in region
A, and 3N2 in region B, respectively; δuB is atomic ther-
mal fluctuation vector with dimension 3N2. We can also
expand the potential energy to a higher order, which will
be at the expense of an additional computational cost.
However, in the region B, the deformation is homoge-
neous, and δui is very small compared to ui, so that equa-
tion (66) is accurate enough. Effectively, the MLPG al-
gorithm involves an average over the atomic degrees of
freedom that are missing from the nodes in region B. The
second term in right side of equation (66) accounts for the
missing degrees of atomic freedom.

In many of the existing multiscale modeling methods, the
thermal fluctuation is generally neglected, as in Rudd and
Broughton (1998), Shenoy (2003), Abraham (2000). In
this case, in region A, the Newton’s Second law can be
written in a matrix form as

MAq̈A = f0
A; f0

A = −∂Π0
/

∂qA (67)

where the atomic mass matrix M A is a diagonal matrix
of size 3N1 with the atomic masses on the diagonal, and
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the force vector f0
A is of dimension 3N1. Eq. (67) is valid

only for classical 0◦K. We denote the solution of eq. (67)
as “Solution Method 1”. The degrees of freedom (DOF)
N1 in A are in general greater than these in B, viz., N2

[i.e., N1 >> N2]. Thus, in Solution Method 1, which is
computationally inexpensive, has the potential drawback
that higher frequencies waves will reflect back from the
interface between A and B.

To improve the performance at higher frequencies and as-
sure that the energy in region A can pass through the in-
terface between A and B, the thermal fluctuation of atoms
in region B must be considered. Thus, we will use the
first-order approximation of the potential energy, i.e. Π
in eq. (66), to replace Π0 in eq. (67), which leads to:

MAq̈A = f0
A −KABδuB (68)

where

KAB = ∂2Π0
/

∂uB∂qA.

It is noted that the tangent stiffness matrix K AB is of order
3N1 × 3N2, and its entries are nonzero, only when the
atoms in region A are directly coupled to atoms in region
B. δuB can be obtained from the equation of motion in
region B, viz.,

MBδüB = f0
B −MBüB (69)

where the atomic mass matrix M B is a diagonal matrix
of size 3N2, and the force vector f0

B of dimension 3N2 is
approximated as

f0
B = −∂Π0

/
∂uB (70)

In equations (68) and (69), we note that f A in region
A is approximated as f A = −∂Π

/
∂qA ≈ −∂Π0

/
∂qA −

∂2Π0
/

∂uB∂qAδuB; that in region B is approximated as
fB = −∂Π

/
∂qB . By integrating eq. (69) twice, δuB can

be solved for, and substituting this solution into eq. (68),
we have

MAq̈A = f0
A (uB,qA)−KAB

∫ t

0
(t−τ)Y (τ)dτ−R(t)

(71)

where

Y (t) = M−1
B f0

B (uB,qA)− üB (t) (72)

R(t) = KAB [δuB (0)+ tδu̇B (0)] (73)

Y(t) simply represents δüB. R(t) represents the effects
on region A due to the initial thermal fluctuation, and the
velocity in region B and is usually treated as a vector of
random forces to describe the effects of statistical fluctu-
ation in region B at nonzero temperature. In the example
problems in section 7, it is assumed that the tempera-
ture is 0◦K, so that R(t) can be ignored. The solution of
eq. (71), which is originally proposed here, is denoted as
“Solution Method 2”. It is noted that only a few of the
entries in vector Y(t) are necessary, since the matrix K AB

is nonzero only for the atomic pairs in the cutoff of the in-
terface. That makes presently proposed Solution Method
2 is computationally inexpensive.

Now, we will give a brief discussion about the second
term on the right hand side of equation (71). Assuming
that the time step is ∆t, and all the quantities are obtained
at the ith time step, then at the (i+1)th time step, we have

Ji+1 =
∫ ti+1

0
(ti+1 −τ)Y (τ)dτ

= ti+1

∫ ti+1

0
Y (τ)dτ−

∫ ti+1

0
τY (τ)dτ

= ti+1

∫ ti

0
Y (τ)dτ+ ti+1

∫ ti+1

ti
Y (τ)dτ−

∫ ti

0
τY (τ)dτ

−
∫ ti+1

ti
τY (τ)dτ

= ti+1Ŷi + ti+1

∫ ti+1

ti
Y (τ)dτ− Ỹi −

∫ ti+1

ti
τY (τ)dτ

=
(
tiŶi − Ỹi

)
+∆tŶi + ti+1

∫ ti+1

ti
Y (τ)dτ−

∫ ti+1

ti
τY (τ)dτ

= Ji +∆tŶi + ti+1∆Ŷ−∆Ỹ = Ji + ti∆Ŷ−∆Ỹ

+
(
∆tŶi +∆Ŷ

)
= Ji + ti∆Ŷ−∆Ỹ +∆tŶi+1

with

Ŷi =
∫ ti

0
Y (τ)dτ

Ŷi+1 = Ŷi +∆Ŷ

ti+1 = ti +∆t

and

∆Ŷ =
∫ ti+1

ti
Y (τ)dτ =

∆t
2

[Y (ti)+Y (ti+1)]

∆Ỹ =
∫ ti+1

ti
τY (τ)dτ =

∆t
2

[tiY (ti)+ ti+1Y (ti+1)]
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From the above equations, it can be seen that they only
used the results at the ith and the (i+1)th time steps, to
calculate the second term on the right hand side of equa-
tion (71) [only the entries for the atomic pairs in the cut-
off of the interface are needed] at (i+1) time step. Hence,
a complete time history of the trajectory is not needed to
evaluate the second term on the right hand side of equa-
tion (71).

In equations (68) and (69), which are based on the po-
tential energy, we note that the force in the region A is
expanded to the first order of δuB, while the force in the
region B is only of the zeroth order. To increase the ac-
curacy of the results, we can also expand the force in the
region B to the first order, as

fB = f0
B +KBBδuB (74)

with the 3N2 ×3N2 tangent stiffness matrix

KBB = ∂2Π0
/

∂uB∂uB

Then, eq. (69) can be rewritten as

MBδüB = f0
B +KBBδuB −MBüB (75)

Similar to Adelman and Doll (1976), by means of
Laplace transforms, the intermediate-variable δuB can be
solved for, and substituting it back into eq. (68), we have

MAq̈A = f0
A (uB,qA)−

∫ t

0
ϑϑϑ (t −τ)Y (τ)dτ+R(t) (76)

where

ϑϑϑ (t) = L−1
{

KAB
[
s2I +M−1

B KBB
]−1
}

(77)

R(t) = ϑ̇ (t)ϑ̇ (t)ϑ̇ (t)δuB (0)+ϑ (t)ϑ (t)ϑ (t)δu̇B (0) (78)

The matrix ϑϑϑ (t) denotes the time-dependent memory
kernel. The Operator L−1 indicates the inverse Laplace
transform. Eq. (76) is similar to the Generalized
Langevin Equation (GLE) boundary condition derived in
Adelman and Doll (1976) for the single-scale problem,
and in Wagner and Liu (2003) for the multiscale problem
by using a “bridging scale” decomposition [i.e., the entire
system is treated as a coarse scale one, B, first; and then
the entire system is treated as a fine scale one, A, later
sequentially. In the present paper, the system is treated
as a combination of parts A and B simultaneously]. We
denote the solution of eq. (75) as “Solution Method 3”.

The second term on the right hand side of equations (71)
and (75), the time history integral, implies the dissipa-
tion of energy from region A into region B, which results
in non-reflecting boundary conditions, supporting short
wavelengths that cannot be represented by the interpola-
tions in region B.

It is noted that the computation of the of the matrix ϑϑϑ (t)
involves not only an inverse Laplace transform, but also
the inversion of an N2 ×N2 matrix, which appears to be
impractical, although only a few of the entries in this
inverted matrix are necessary, since the matrix K AB is
nonzero only for atomic pairs in the cutoff of the inter-
face. The necessary entries of the matrix ϑϑϑ (t) can be ap-
proximated as that in Adelman and Doll (1976), or com-
puted numerically as in Cai at al. (2000). However, the
computation of the matrix ϑϑϑ (t) is costly. Moreover, a
complete time history of the trajectory is required to eval-
uate the second term on the right hand side of equation
(76). In our numerical examples, we will not consider
Solution Method 3.

6 Multiple Time Steps for Time Integration

In this paper, a multiple time step method is employed
for the time integration in both region A and B. The sta-
bility of multiple time step method was studied in Be-
lytschko et al. (1979), Belytschko and Smolinski (1985),
Belytschko and Lu (1993). The standard method would
be to use the central difference rule. In region B, the
time step is taken to be ∆tB. In region A, the time step is
∆tA = ∆tB

/
k, where k is a positive integer and determined

by the spacing of the nodes. Hence, the MD simulation
in region A is advanced by k steps of size ∆t A, when the
ECM simulation in region B is advanced for a step of size
∆tB.

The scheme for time integration in region A from time
step nk + i to nk + i+1 is as follows:

dnk+i+1 = dnk+i +∆tAḋnk+i +
1
2

∆t2
Ad̈nk (79)

ḋnk+i+1 = ḋnk+i +∆tAd̈nk (80)

Then, the displacements unk+i+1
B , of atom in the cutoff

of the interface, in region B are interpolated by equation
(30), and then

qnk+i+1
A = qnk+i

A +∆tAq̇nk+i
A +

1
2

∆t2
Aq̈nk+i

A (81)
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q̈nk+i+1
A = M−1

A fR
A

(
unk+i+1

B ,qnk+i+1
A

)
(82)

q̇nk+i+1
A = q̇nk+i

A +
1
2

∆tA
(

q̈nk+i+1
A + q̈nk+i

A

)
(83)

where 0 ≤ i < k, fR
A

(
unk+i+1

B ,qnk+i+1
A

)
represents the en-

tire right hand side of equation (67) or (71) or (76). It
is noted that in equations (79) and (80), only the quanti-
ties in the cutoff of the interface are needed. For all the k
steps from step nk, the acceleration of the nodes in region
B is assumed to be constant.

Once q(n+1)k
A are obtained at (n+1)k time step, the node-

displacement in region B is advanced form time step nk
to (n+1)k. The scheme for time integration in region B
from time step nk to (n+1)k is as follows

d(n+1)k = dnk +∆tBḋnk +
1
2

∆t2
Bd̈nk (84)

d̈(n+1)k = M−1
C tC

(
d(n+1)k,q(n+1)k

A

)
(85)

ḋ(n+1)k = ḋnk +
1
2

∆tB
(

d̈nk + d̈(n+1)k
)

(86)

It is noted that equations (79) and (80) give the same
node-displacement at (n+1)k time step as equation (84).
Once these quantities at (n+1)k time step are determined,
they will be used in equations (79) and (80).

7 Numerical Examples

7.1 one-dimensional chains

As a demonstration of the effectiveness of the multiscale
simulation method and the interfacial conditions pro-
posed here, we consider the same example as in Rudd and
Broughton (1998), Cai, et al. (2000), and Wagner and
Liu (2003): one-dimensional chains of identical atoms
with nearest-neighbor interactions. The spring constants,
mass, and equilibrium distances are set equal to unity.
There are 151 atoms in region A, which is bracketed by
two semi-infinite chains (region B). The lumped mass
matrix is used. The time integration uses multiple time
steps: the equivalent continuum simulation in region B is
advanced by a time step ∆tB = 0.1, while the MD simu-
lation in region A is advanced by ∆t A = ∆tB

/
5. The dis-

tance between the nodes in region B is h=7.8. The radius

of the trial function domain is taken to be 3.2h, and the
radius of the test domain is 0.85h. The Solution Methods
denoted as 1 and 2 earlier, are used to simulate the time
evolution, after introducing initial displacements accord-
ing to the wave packet [Rudd and Broughton (1998), Cai,
et al. (2000)]:

u(X , t = 0) = cos(kX)exp
(−X2/2σ2) (87)

Here, X denotes the equilibrium position of atoms. The
center of region A is X = 0. A full MD simulation is
also performed, in which the entire system is treated in
an atomistic scale. As a measure of the effectiveness of
Solution Methods 1 and 2, the wave reflection at the in-
terface between region A and B is evaluated. The reflec-
tivity R is defined as the maximum difference between
the instantaneous energies stored in region A during the
simulation and the full MD run, divided by initial energy
in region A [Cai, et al. (2000)].

R

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
k

Solution Method 1

Solution Method 2

Figure 4 : Comparison of the phonon reflectivity R in
two solution methods.

Fig. 4 shows the variation of phonon reflectivity R versus
the wave number k with σ = 5. In both cases shown, R
approaches to zero in the long wave-length limit. As the
wave number increases, R increases greatly, and is over
0.8 at the boundary of Brillouin zone in Solution Method
1, while it is less than 0.1 in all the Brillouin zone in
Solution Method 2. Solution Method 1 obtains lower R
than that in Rudd and Broughton (1998), and Abraham
(2000), that means MLPG will be a better method for
a seamless multiscale simulation than the finite element
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Figure 5 : Comparison of the displacement profiles computed using the multiscale methods and the full MD, at
t=18.

method. However, Solution Method 1 is much less effec-
tive than the Solution Method 2. Although lower R can be
reached in the Solution Method 3 [Cai, et al. (2000)], due
to its high computational cost, Solution Method 3 should
not be an appropriate choice among the three solutions in
most problems.

Another example is the same problem as in Wagner and
Liu (2003). A short wave-length perturbation is multi-
plied to a Gaussian pulse. The resulting initial displace-
ment is

u(X , t = 0) =

[
exp
(−X2

/
σ2
)−uc

]
1−uc

[1+0.1cos(kX)]

(88)

Here, uc = exp
(−l2/σ2

)
, l = 50, σ = 20, k = 0.4π. All

the other parameters are same as in the first example. Fig.
5 shows the displacements obtained by Solution Methods
1 and 2, and full MD at t = 18. Because of the config-
urational symmetry about X = 0, only the right plane is
plotted. An internal reflection of the short wave-length
perturbation appears in Solution Method 1, which looks
like the mirror image of the short wave-length perturba-
tion in full MD with the mirror located on the interface of
region A and B (X = 75). In Solution Method 2, the short
wave-length waves almost pass out of region A at the
same time as the long wave-length Gaussian pulse prop-

agates into region B. In region B, both cases simulate the
long wave-length Gaussian wave very well. Compared
with the full MD solution, there is an apparent smooth-
ing of the wave profile as the Gaussian pulse propagates
in region B, due to the large node space.

To make sure that the mass-lumping procedure (55)-(56)
are correct, we also used the consistent mass matrix in
Solution Method 2 in this example. The results show that
both the lumped and consistent mass work very well. A
Comparison of the displacement profiles computed using
the consistent and lumped mass in Solution Method 2, at
t=18 is plotted in Fig. 6. The initial displacement profile
is also plotted in Fig. 6.

7.2 Two-dimensional grapheme sheet

This multiscale method can be generalized to multiaxial
problems. In this subsection, a planar problem is consid-
ered to demonstrate the method without loss of general-
ity. The formulations can be extended to more compli-
cated 3-D systems. The problem is of a graphene sheet
of one-atom thickness.

In this example, the Tersoff-Brenner potential [Tersoff
(1988), Brenner (1990)] is used for the energy associated
with the deformation of the atoms. It is given as a sum



250 Copyright c© 2004 Tech Science Press CMES, vol.5, no.3, pp.235-255, 2004

-0.2

0

0.2

0.4

0.6

0 50 100 150 200 250

X

d
is

p
la

c
e

m
e

n
t

consistent mass

lumped mass

Figure 6 : Comparison of the displacement profiles computed using the consistent and lumped mass in Solution
Method 2, at t=18, and the initial displacement profile.

over bonds as

Π = ∑
I

∑
J(>I)

[
VR (rIJ)−BVA (rIJ)

]
(89)

which has repulsive and attractive terms, respectively,

VR (rIJ) =
fIJ (r)D(e)

(S−1)
e−

√
2Sβ(r−R(e)) (90)

VA (rIJ) =
fIJ (r)D(e)S

(S−1)
e−

√
2
S β(r−R(e)) (91)

with the functions of the bond angle

B =
1
2

(BIJ +BJI) (92)

BIJ =

[
1+ ∑

K( �=I,J)
G(θIJK) fIK (rIK)

]−δ

(93)

G(θ) = a0

{
1+

c2
0

d2
0

− c2
0

d2
0 +(1+cosθ)2

}
(94)

and the cut-off function which limits the rang of the in-
teractions

fIJ (r) =




1, r < R(1)

1
2 + 1

2 cos

[
π(r−R(1))
(R(2)−R(1))

]
, R(1) < r < R(2)

0, r > R(2)

(95)

where the constants for carbon are

R(e) = 1.39Å, D(e) = 6.0 eV, S = 1.22,

β = 2.1Å
−1

, δ = 0.5,R(1) = 1.7Å, R(2) = 2.0Å,

a0 = 2.0813×10−4, c0 = 330, d0 = 3.5

and the mass of the carbon atom is mI = 12.01115×
1.65979×10−27 kg, and 1 ev = 1.602×10−19 J.

As discussed in section 3, in this method, the energy
will be written in a form that is additively decomposed.
Hence, equation (89) will be rewritten as sum over
atomic site I,

Π = ∑
I=1

ΠI (96)

where each contribution ΠI is written as

ΠI =
1
2 ∑

J( �=I)
[VR (rIJ)−BIJVA (rIJ)] (97)
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Then, the stress in equation (53) can be written as

∂W
∂F

=
1

∆ΩI

∂ΠI

∂F

=
1

2∆ΩI
∑

J( �=I)

[
V ′

R
∂rIJ

∂r IJ
−VA

∂BIJ

∂r IJ
−BIJV

′
A

∂rIJ

∂r IJ

]
⊗ ∂r IJ

∂F

+
1

2∆ΩI
∑

J( �=I)

[
−VA

∂BIJ

∂r IK
⊗ ∂r IK

∂F

]
(98)

and the force on the atom I can be obtained as

fI = −∂Π
∂xI

= − ∂Π
∂qI

=
1
2 ∑

J( �=I)

[
−V ′

R
∂rIJ

∂r IJ
+VA

∂BIJ

∂r IJ
+BIJV

′
A

∂rIJ

∂r IJ

]

+
1
2 ∑

J( �=I)
∑

K( �=I,J)

[
−VA (rJK)

∂BJK

∂r JI

]
(99)

The example is that of a 2D graphene sheet of one-atom
thickness, with 452.2764 Å length, 68.1819 Å width,
which has 11,552 atoms. The thickness of the sheet is
taken to be 3.4 Å, which is the standard layer separation
thickness for graphite. At the equilibrium sate, which
is taken to be the reference frame, the nearest neighbor
bond length is b=1.4507 Å. The sheet is fixed at left and
right edges. Periodic boundary conditions in the direc-
tion parallel to the surface are imposed, thus the effects
of the upper and lower surface are neglected. Initial dis-
placements are introduced, according to the plane wave
packet

u1 (X1,X2, t = 0)

=

[
exp
(−X2

1

/
σ2
)−uc

]
1−uc

[
1+0.1cos

(
kX1

a

)]
u2 (X1,X2, t = 0) = 0 (100)

where uc = exp
(−l2/σ2

)
, l = 40a, σ = 15a, a =

√
3b
/

2,
k = 0.5π. Here, X1 and X2 denote the positions of atoms
in the reference frame, and u1 and u2 denote the displace-
ment in the X1 and X2 direction, respectively. The cen-
ter line of the sheet is X1 = 0. Because of the config-
urational symmetry about X1 = 0, only the right plane
is considered in this numerical example. The compu-
tational domain is [0,226.1382]× [0,68.1819]. The re-
gion A is [0,74.1242]× [0,68.1819]; this region contains

1920 atoms. The region B containing 5792 atoms, is dis-
cretized into a set of nodes. Two sets of nodes are used
in this paper, the coarse one includes 19×10 nodes, and
the fine one includes 38×20 nodes. Fig. 6 is a part of
the distribution of the atoms and nodes in the reference
frame for the coarse one. The nodes in the region B are
distributed evenly, although it is unnecessary. However,
on the interface of region A and B, the nodes are taken
to be the atoms, as show in Fig. 7. Actually, these nodes
are only used for the interpolation, their motions is still
governed by atomic motion equation (57).

node

atom

Figure 7 : The distribution of the atoms and nodes in the
reference frame.

The computational setup described above is used to sim-
ulate the propagation of a plane wave packet (100). The
equivalent continuum simulation in region B is advanced
by a time step ∆tB = 5×10−15s, while the MD simulation
in region A is advanced by ∆tA = ∆tB

/
10 = 5×10−16s.

The radius of the trial function domain in Region B is
taken to be 4.2h, where h represents the distance between
the nodes in region B, and the radius of the test domain
is 0.85h. The Solution Method 2, with the lumped mass
matrix, is used to simulate the time evolution. A full MD
simulation is also performed to verify our numerical re-
sults.

Fig. 8 shows the displacement profiles of u1 for the atoms
along X2=34.8168 Å at different moments by using the
full MD simulation. The displacement u2 should be 0
in this case. Fig. 9 and Fig. 10 are the corresponding
displacement profiles obtained from the multiscale simu-
lation by using the coarse and fine nodes, respectively.

Comparing Fig. 8 - Fig. 10, we can find that both coarse
and fine cases can obtain good results. In Fig. 11, the
comparison of the displacement profiles at t=0.5 ps from
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-0.4

0

0.4

0.8

1.2

1.6

0 50 100 150 200

X1 (10
-10

 m)

u
1
 (

1
0

-1
0
 m

)

t=0.18 ps

t=0.34 ps

t=0.5 ps

Figure 10 : The displacement profiles of u1 along X2=34.8168 Å at different moments (fine)
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Figure 11 : Comparison of the displacement profiles of u1 along X2=34.8168 Å, computed using the multiscale
methods and the full MD, at t=0.5 ps.

these 3 figures, are plotted. Compared with the full MD
solution, there is an apparent smoothing of the wave pro-
file as the wave propagates in region B, due to the large
node spacing. Certainly, the fine one can get better re-
sults than the coarse one. We also choose two atoms,
one in region A with coordinates (61.5608, 34.8186), an-
other in region B with coordinates (87.6876, 34.8186), to
compare their trajectories. The results are plotted in Fig.
12. Obviously, in region B, we can only obtain the aver-
age displacements of the atoms, the fluctuation cannot be
captured. Hence, the trajectory of the atom in region B is
smoothed, but it does not losse the essential characteris-
tics of the trajectory. Fig. 13 is the displacement profile
of the right half sheet at t=0.5 ps. The three coordinates
in this figure are X1, X2, and u1, respectively. This result
was obtained by using the coarse space resolution.
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Figure 12 : The trajectories of two atoms

Figure 13 : The displacement profiles of u1 at t=0.5 ps.

8 Conclusion

A multiscale simulation technique, based on a combina-
tion of MD and MLPG methods has been implemented
and tested. Multiple length scale, multiple time steps
technique are used in the numerical examples. Good
agreement of wave profile in MD and ECM parts is ob-
served in the simulation. Three alternate interfacial con-
ditions are derived, for the multiscale simulation, by con-
sidering the fluctuation of atoms in the continuum region.
Solution Method 2, proposed in this paper, is found to
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be optimal in both reducing the reflection of phonons
and in lowering computational cost, especially when the
atomistic region moves with time, which is the case that
intrigues us. The MLPG method is also found to be
very effective in seamless multiscale simulations. In this
method, a wave can be transported from the MD region
to the ECM region without losing the essential character-
istics of the wave profile.

This multiscale simulation method allows one to balance
the level of details necessary to provide reasonable accu-
racy in some regions of the model, with computational
cost. The applications of this methodology will be many
and varied. This method will play a key role in the simu-
lation and design methodology for nanodevices.
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