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Development of New Algorithms for High Frequency Electromagnetic Scattering
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Abstract: We describe elements of our current work
on the development of new methods for high frequency
electromagnetic scattering, based on the wavefront (WF)
representation of propagating fields and on the asymp-
totic but rigorous solution of integral equations for sur-
face currents. In the wavefront evolution technique, sur-
faces of constant phase are constructed and treated not
merely as collections of independent rays, but as well
defined geometrical objects endowed with the full con-
nectivity information. Hence, a precise determination
of shadow and reflection boundaries, a construction of
(multiply) diffracted wavefronts, a dynamic adjustment
of the number of rays, an approximately constant ray-
ray distance, and an accurate evaluation of fields on the
wavefronts by means of interpolation between the neigh-
boring rays are possible. As such, the wavefront evo-
lution approach constitutes a significant improvement
over conventional ray tracing methods. An essential ele-
ment of the asymptotic, high frequency integral-equation
(HFIE) method is the solution Ansatz, i.e., the represen-
tation of the current as a sum of known rapidly oscillating
functions multiplied by unknown smooth functions vary-
ing slowly over the distance of a wavelength. While the
form of the Ansatz is relatively straightforward for sim-
ple geometries, it becomes quite complicated for com-
plex objects. We propose a general numerical proce-
dure for the Ansatz construction which is based on de-
termination of the rapidly oscillating components of the
Ansatz from surface fields generated by a sequence of
wavefronts corresponding to physically relevant multi-
ple reflection and diffraction processes. Since both the
Ansatz construction and the asymptotic integral equation
approach will require the same discretization, determined
not by the wavelength but by the geometrical complexity
of the scatterer and the desired accuracy of the asymp-
totic expansion, the number of unknowns in the approach
will be frequency independent. We also present results
of our analysis of the ability and accuracy of the WF
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and HFIE approaches in capturing such important physi-
cal phenomena as multiple scattering, diffraction, surface
waves and cross-polarization effects.

keyword: Computational electromagnetics, wave-
fronts, high frequency integral equations.

1 Introduction

Problems involving ground combat vehicles in the fre-
quency range up to 100 GHz require development of new
methods. With the recent advances in the state-of-the-
art matrix compression techniques based on Fast Multi-
pole Method (FMM) [Coifman, Rokhlin and Wandzura
(1993)] and Fast Fourier Transform (FFT)-type (AIM)
algorithms [Bleszynski, Bleszynski and Jaroszewicz
(1996), Bruno and Kunyansky (2001)], it is possible to
carry out calculations involving realistic military vehicles
whose geometry representations contain several (1 – 20)
million unknowns. For example, radar signature calcula-
tions for a fairly representative model of a ground com-
bat vehicle at 2 GHz, containing, depending on the level
of details, about 1 million unknowns, would require ap-
proximately one day on 32 processor Origin 2000. Cal-
culations with larger number of unknowns, although pos-
sible, become gradually impractical; calculations for the
same vehicle at 100 GHz would require about 2.5 billion
unknowns. In addition, more realistic simulations of a
ground scene call for inclusion of high clutter environ-
ments (ground, trees, etc.), and multi-look angle, multi-
frequency solutions for radar processing.

New faster and accurate techniques need to be developed
capable of capturing accurately all relevant physical phe-
nomena contributing to radar signatures, such as multi-
ple reflection, surface waves, and (multiple) edge diffrac-
tion. These my be either approximate methods involving
hybridization of high frequency (HF) and low frequency
(LF) solutions, or new asymptotic high frequency meth-
ods.

The conventional hybrid methods are usually based on
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partitioning of the geometry into domains, and apply-
ing different solution methods (conventional method
of moments (MoM), FFT and FFM-based compression
schemes, HF methods) to individual domains. A chal-
lenging problem in this approach is reducing the com-
putational complexity of coupling between the domains
while maintaining accuracy of the solution. Signifi-
cant benefits stemming from the development of hy-
brid approaches combined with the improvement of LF
impedance matrix compression based modules are as fol-
lows:

(i) They allow us to solve, with different degrees of ac-
curacy, various practical problems, before new fully
developed high frequency solvers become available.

(ii) They allow us to validate accuracy of various cou-
pling schemes.

(iii) They form a framework for the validation and hence
acceleration of the development of new HF ap-
proaches.

The first approach we discuss in this paper is the wave-
front (WF) evolution method. WF evolution method is
a relatively new approach in problems of electromag-
netic propagation. It has been largely followed in the
context of geophysical applications (see, e.g., [Vinje,
Iversen, Astebol and Gjöystdal (1996a), Vinje, Iversen,
Astebol and Gjöystdal (1996b)]). Alternative, “Eulerian”
methods [Steinhoff, Fan and Wang (2000), Ruuth, Merri-
man and Osher (2000), Osher and Fedkiw (2002)], have
been recently advanced describing propagation of scalar
waves. We also note, that recent improvements of the Eu-
lerian wavefront method which result in, e.g., improved
stability of the solutions in the presence of multiple re-
flections, are presented in [Cheng, Kang, Osher, Shim,
and Tsai (2004)]

In the WF evolution technique, surfaces of constant
phase are constructed and treated not merely as collec-
tions of independent rays (or “ray tubes”), but as well
defined geometrical objects endowed with the full con-
nectivity information. This information allows a pre-
cise determination of shadow and reflection boundaries,
a construction of (multiply) diffracted wavefronts, and
an accurate evaluation of fields on the wavefronts by
means of interpolation between the neighboring rays. In
this way, the wavefront evolution technique constitutes
a significant improvement over conventional ray tracing

methods. It also allows for adjustments in the number
of rays in situations when the WF expands or shrinks,
and maintains in this way approximately constant ray-
ray distances. The last feature improves the efficiency of
the WF method compared to conventional ray shooting
and bouncing methods by eliminating the need of creat-
ing very dense sets of incident rays.

Our developments in the area of WF methods pro-
vide a major extension of the previous work by includ-
ing diffraction effects. We construct diffracted wave-
fronts by geometrical methods. Subsequently, diffracted
fields obtained from the Geometrical Theory of Diffrac-
tion (GTD) or Uniform Geometrical Theory of Diffrac-
tion (UTD) (see, e.g., [Keller (1962), Kouyoumjian and
Pathak (1974)]) can be ascribed to the wavefronts.

The obtained reflected and diffracted fields are further
used to determine the HF currents on the scatterer’s sur-
face. We note that these currents can be utilized for two
purposes:

(i) as a basis to compute approximate scattered fields and
cross-sections, or

(ii) as a basis to construct solutions using the High Fre-
quency Integral Equation (HFIE) method which we
discuss below.

The HFIE approach is based on an asymptotic form of
the rigorous integral equations for surface currents, in
which the “Ansatz” for the solution is represented as a
superposition of known rapidly oscillating functions (cor-
responding to specific HF scattering processes) multi-
plied by unknown smooth functions varying slowly on
the distance scale of the wavelength. We note that, in
the past, several attempts of asymptotic integral-equation
formulations have been reported, employing current rep-
resentations as superpositions of products of rapidly and
slowly oscillating functions, to describe two dimensional
[Aberegg and Peterson (1995), Bruno, Sei, and Caponi
(2002), Bruno (2002)], body of revolution [Altman, Mit-
tra, Hashimoto and Michielssen (1996)], and some se-
lected three-dimensional [Kwon, Burkholder and Pathak
(2001), Mittra (2002)] scattering problems. In these ap-
proaches, the current Ansatz functions were constructed
either analytically or numerically.

By discretizing the unknown smooth functions appearing
in the Ansatz one arrives at a linear system of equations
formally equivalent to that obtained in the MoM, but cor-
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responding to basis functions defined on large, frequency
independent supports. As a consequence, the number of
unknowns is also frequency independent, in contrast to
conventional MoM, in which the number of unknowns
grows as ∼ L2/λ2, where L is the scatterer size.

For realistically complex geometries, however,

(i) the Ansatz may have to include contributions from
HF processes other than single and multiple reflec-
tions, in particular from single and multiple diffrac-
tion, and

(ii) because of the large number of reflection and diffrac-
tion processes the Ansatz construction becomes pro-
hibitively complex.

We address both of the above problems. We construct ap-
propriate forms of the Ansatz including diffraction con-
tributions and verify their validity on a series of exam-
ples. We also formulate a numerical approach to the
Ansatz construction based on computing approximate
high frequency currents by means of the wavefront evo-
lution method presented above. The numerical method
of Ansatz construction leads in a natural way to the con-
struction of large support basis functions and a subse-
quent Galerkin discretization of the high frequency inte-
gral equations.

2 The wavefront (WF) evolution method

2.1 Wavefront description

The wavefront (WF) evolution method may be consid-
ered an extension of the ray-tracing approach. Here, in
addition to a set of propagating rays, we introduce a fam-
ily of WF surfaces. Each of these surfaces is orthogonal
to the rays, and is defined in terms of ray-ray connec-
tivity, i.e., a surface mesh consisting of triangular faces
whose vertices are points on the rays. This additional
connectivity information allows a number of operations
on the set of rays, which are difficult to implement in
the conventional ray-tracing approach, where each ray
(or small sets of rays, forming ray tubes) are treated sep-
arately. These manipulations include: (a) adding or re-
moving rays, in order to maintain an approximately con-
stant ray-ray distance when the wavefront expands or
shrinks, (b) adding new rays at the shadow and reflection
boundaries, (c) adding new rays generated by diffraction.
The last mechanism is the major new element we added

in our development of the WF techniques. The work can
be considered as the first attempt at incorporating diffrac-
tion in the WF evolution method.

We construct diffracted wavefronts by geometrical meth-
ods, and ascribe to them diffracted fields obtained from
the Geometrical Theory of Diffraction (GTD) or Uni-
form Geometrical Theory of Diffraction (UTD) (see, e.g.,
[Keller (1962), Kouyoumjian and Pathak (1974)]).

In the present context the main purpose of using the WF
methods is to determine the HF currents on the scatterer
surface, either as approximate solutions to be used di-
rectly in computing the scattered fields, or as the ele-
ments of the Ansatz for the HF asymptotic solution. Cor-
respondingly, we have devised a general procedure for
computing the fields and currents on the scatterer surface,
using field interpolation within “ray cells”, i.e., triangular
prisms built from triplets of adjacent rays, and the corre-
sponding faces on the two consecutive WFs. We describe
this method in Section 2.3.

Since the method will have to be applied to large and
complex scatterers, our main concern is about the algo-
rithm efficiency. In order to reduce the cost of computing
the WF evolution, we plan to implement intelligent pro-
cedures of selecting only the needed portions of the WFs,
and discarding the irrelevant ones. E.g., since in the con-
sidered problems we are interested not in the scattered
far fields but only in the determination of the surface cur-
rents, we can eliminate those parts of the WFs which
evolve in free space, without further interaction with the
scatterer. As another extension of the present WF algo-
rithm, we might allow for longer and perhaps variable
WF evolution steps. We have already implemented an
algorithm allowing several reflection processes within a
single evolution step. It might be possible to similarly
generalize the algorithm for generating diffracted WFs.
In this case, the number of evolution steps, and thus the
computational cost of the algorithm, could be signifi-
cantly reduced. The overall number of evolution steps
would be then dictated only by the considerations related
to the tests of possible WF collisions with the scatterer,
as discussed above (i.e., the unneeded parts of the WFs
would be removed at the end of each evolution step).

As we mentioned above, the main use of the WF evo-
lution method is to compute currents on the scatterer
surface, either to be used directly to compute scattered
fields, or to construct the HFIE solution Ansatz. In both
cases, the number of the rays involved in the WF evolu-



298 Copyright c© 2004 Tech Science Press cmes, vol.5, no.4, pp.295-317, 2004

tion should be of the order of the number of unknowns N
needed to parameterize the smoothly varying functions
in the solution (we recall that N is much smaller than the
number of unknowns needed in the MoM formulation,
and independent of the frequency). Therefore, the total cost
of the WF evolution algorithm is expected to be also pro-
portional to N, multiplied by the relatively small number
of evolution steps (also depending only on the scatterer
geometry, and not on the frequency).

Below we discuss several aspects of our WF approach
relevant in the present context.

2.2 Wavefront propagation and reflection

WF propagation in free space and WF reflection from
scatterer surface are described according to the laws of
Geometrical Optics (GO). Special care is taken in our al-
gorithm to treat shadow and reflection boundaries with
high accuracy. In particular, “ray tubes” represented by
rays at the corners of a WF facet are split at these bound-
aries by creating new rays exactly at the boundary. This
process is illustrated in Fig. 1 on an example of WF scat-
tering on a flat screen.
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Figure 1 : Splitting of a ray tube into forward propagat-
ing and reflected parts.

Here the rays (a,a′) and (b,b′) (emerging from two cor-
ners of the WF facet (a,b,c)) pass without interacting
with the screen. The third ray, (c,c′′), hits the screen. The
algorithm constructs two new rays, (α,α ′) and (β,β′),
touching the edge of the screen at points α ′′ and β′′. The

original facet (a,b,c) is then split into a quadrilateral
(a′,b′,β′,α′) (which is subsequently split into two tri-
angles belonging to the evolved WF φ′), and a triangle
(α′′,β′′,c′′), which subsequently undergoes reflection.

The algorithm illustrated above can also be applied to
reflection off smooth surfaces, and allows us to define the
shadow and reflection boundaries with a high accuracy.
For a scatterer surface of curvature radius R the error e in
determining shadow and reflection boundaries is of the
second order in the ray-ray spacing, e = O(h2/R).

2.3 Wavefront diffraction

Our algorithm for constructing WFs due to edge diffrac-
tion is based on the original GTD) [Keller (1962)], which
in turn follows from the generalized Fermat’s principle,
and ultimately from the stationary-point asymptotics of
the high-frequency scattering processes. We stress, how-
ever, that this statement applies only to the geometrical
construction of diffracted WFs; the associated field am-
plitudes are computed using the better behaved Uniform
Geometrical Theory of Diffraction (UTD) [Kouyoumjian
and Pathak (1974), Pathak (1992)].

The main steps of the algorithm for construction of edge-
diffracted WFs are as follows:

1. Identify those scatterer edges which may be sources
of diffraction; these edges are referred to as “diffrac-
tion edges”. In addition, create new rays (obtained
by interpolation between pairs of rays on the WF)
which exactly hit the diffraction edges; these are re-
ferred to as “diffraction source rays”.

2. Generate sets of diffracted rays emanating from the
diffraction edges, from the points hit by diffraction
source rays.

3. Assign WF diffracted field values (obtained from
UTD) and curvature parameters and the created
diffracted rays.

4. Construct ray-ray connectivity (triangulation mesh)
for the diffracted rays belonging to two consecutive
sets (created by two consecutive diffraction source
rays).

We discuss now the implementation of these steps.

Step 1 requires devising an algorithm for (1) detecting
“sharp” edges, and (2) detecting the shadow boundary.
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If the edge-diffraction algorithm is applied to a face-
tized scatterer surface, we assume that the “sharp edges”
are sources of diffraction, while “smooth edges” have to
the treated by a separate algorithm for smooth-surface
diffraction.

The first algorithm can be applied directly to identify
diffraction edges in wedges whose both faces are illumi-
nated by the incident WF. Such tests for diffraction edges
have to be generalized to wedges whose one face only is
illuminated (Figs. 2 and 3).
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Figure 2 : Detection of a diffraction edge at the shadow
boundary.
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Figure 3 : Another case of a diffraction edge at the
shadow boundary.

The second algorithm has to be extended to include a test
for the normals to the scatterer surface intersected by the
ray passing “just inside” the scatterer, as shown in detail
in Figs. 4 and 5. This procedure is then able to detect a
sharp edge at the shadow boundary.

An important element of the algorithm is that the identi-
fied “diffraction edges” are associated with and accessed
through the WF mesh edges. As indicated in Fig. 6, the
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Figure 4 : Shadow boundary detection algorithm for a
smooth scatterer surface.
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Figure 5 : The diffraction-edge detection algorithm for
a scatterer surface with an edge at the shadow boundary.
The edge is considered sharp or blunt depending on the
angle between the face normals.

pairs of new rays (α1,α2, . . . ) hitting the sharp edge E
emerge from the edges of the WF mesh (e1,e2, . . . ). In-
deed, as illustrated in Figs. 2 and 3, these pairs of rays
are created by interpolating rays at end vertices of the
WF edges. For a facetized scatterer surface, also associ-
ated with the pairs of rays α 1,α2, . . . is the information
on the surface facets intersected by the rays, and on the
sharp edge itself (as the common edge shared by the two
facets, as shown in Fig. 7).

E

e1 e2

e3α1 α2

α3

Figure 6 : Projection of the WF mesh on the view of
the scatterer surface with a diffraction edge (denoted by
E). Sets of pairs of new rays (marked by α1, α2, etc., are
associated with edges if the WF mesh (e1, e2, etc.)
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Figure 7 : A view of the facets f ′ and f ′′ of the scatterer
surface intersected by the new rays (α ′ and α ′′) emerging
from an edge e of the mesh on the WF φ.

Step 2 is performed in a loop through the edges e of the
WF. From some of these edges there emerges a pair of
new rays α, terminating at a diffraction edge. At the
termination point we create a set of new rays (of length
equal to the evolution step decreased by the length of the
ray segments α), in the plane normal to the diffraction
edge. The number of diffracted rays is fixed, and is de-
termined on the basis of the required WF resolution (this
element of the algorithm is not critical, since the number
of rays will adjust itself during the subsequent evolution
of the diffracted WF). This procedure is shown in Fig. 8.
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Figure 8 : Sets of diffracted rays emanating from the
termination points of the ray segments α connecting WF
edges and the diffraction edge.

Finally, Step 3 is executed as a loop through the faces F
of the WF. We consider here such faces F from two edges
of which emerge pairs of new rays α (Fig. 9.) Through
these rays we access two consecutive sets of diffracted

rays, and create edges connecting the corresponding rays
in the two sets, forming a surface consisting of quadri-
lateral facets. By triangulating that surface (Fig. 10), we
arrive at a meshed diffracted WF.

E
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Figure 9 : Building connectivity for the diffracted rays.

E

α1 α2

Figure 10 : Triangulation of the diffracted WF.

The algorithm does not currently handle corner diffrac-
tion (although such a generalization is certainly possi-
ble). In this situation, we modified the algorithm to
avoid creating spurious diffracted rays associated with
the edges. Specifically, we imposed the condition which
prevents generating connectivity between groups of rays
located on the two sides of the corner. This procedure
will be illustrated in the examples presented below.

Further, although we constructed the diffraction algo-
rithm for the case of triangulated scatterer surfaces, we
do take into account the curvature of the diffraction edges
(unless the edge forms a “sharp corner”, according to
some predefined specification). The approximate aver-
age curvature of the diffraction edge is computed on the
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basis of several consecutive segments of the edges; this
is a reliable procedure provided the lengths of the edge
segments are small compared to the curvature radius.

We implemented the algorithm consisting of the steps 1–
4 above, and tested it on the number of problems.

Example: Diffraction on a circular disc

As the first example we consider a circular disk with a
plane WF incident on it in the normal direction. For def-
initeness, we place the disc at the origin of the reference
system, in the (x,y) plane, and take the plane wave in-
cident along the negative z-axis, with the electric field
along the x-axis.

Figs. 11 and 12 show examples of the wavefronts after
undergoing reflection and diffraction from the considered
disc scatterer S. For clarity, only halves of the scatterer
and the WF are shown.

In an early stage of development seen in Fig. 11 the WF
consists of:

1. a flat segment (denoted “0”) propagating downward,
which has not interacted with the scatterer;

2. another flat segment (denoted “r1”) propagating up-
ward, and due to reflection off the scatterer; and

3. a toroidal surface (denoted “d1”) around the edge of
the disc, due to diffraction.

In a later development stage, shown in Fig. 12, the
toroidal (diffracted) part of the WF has grown, and is
intersecting itself. As expected, the color-coded field in-
tensities are the highest near the upward and downward
directions.

In the present case of a circular disc (diffraction on
curved edges), the scattering amplitude and cross-section
can be computed directly using the evolved WFs, since
the fields behave asymptotically as spherical waves (with
the 1/R dependence on the distance R). The far-field and
the scattering amplitude can be then expressed in terms of
the intensities of the fields on the WF, and the WF curva-
tures. The results for the bistatic cross-section agree very
well with the standard GTD or UTD results. As expected,
the main diffraction peak is not reproduced correctly by
either GTD/UTD or WF approach, because of the caus-
tic occurring in the back-scattering direction. Outside the
peak, however, the agreement with the exact MoM com-
putation is good, except for near-grazing angles, where
multiple diffraction effects are expected to play a role.

0

d1

r1

S

ki

Figure 11 : One of evolution stages of the a plane WF
incident on the disc (scatterer S), and undergoing reflec-
tion and diffraction. Colors show components of the WF
due to individual processes: 0 for no interaction, r1 for
single reflection, and d1 for single diffraction.

2.4 Computation of fields and surface currents

We describe now the application of WF evolution meth-
ods for obtaining fields associated with the WF, and the
corresponding equivalent surface currents. As we dis-
cussed before, these currents can be used either per se as
approximate HF solutions, or as the input for construct-
ing the HF solution Ansatz (or, equivalently, the HF basis
functions).

For a p.e.c. scatterer, the equivalent surface electric cur-
rent is J = 2 n̂×∆H, where n̂ is the normal to the scatterer
surface, and ∆H is the magnetic field discontinuity across
the scatterer surface.

One of the first questions we encounter when trying to
determine surface currents is how these currents should
be represented and parameterized. At high frequencies it
is, clearly, impractical to use a representation of the cur-
rent in terms of their values at selected points on the sur-
face, since this would require about 10 sampling points
per wavelength. A more useful representation is its pa-
rameterization as a sum of rapidly oscillating exponen-
tial factors multiplied by smoothly varying coefficients.
Such parameterizations would be applicable in some sur-
face patches D j centered around some “current points”
R j. The sizes of the regions D j is assumed to be of the
order of the local ray spacing, and they are required to
cover the entire scatterer surface S.
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Figure 12 : A more advanced evolution stage of the WF
shown in Fig. 11. Here colors indicate intensities of the
electric field associated with the WF.

Let us assume for a moment that a set of M distinct rays
(originating from different segments of the WF) coalesce
at a current point R j. The conventional WF form of the
fields suggest then the representation

J(r) =
M

∑
m=1

Am(r)eikSm(r) for r ∈ D j , (1)

i.e., a sum of contributions of distinct rays arriving at
R j. Here Sm’s are the phases of the individual rays, de-
fined so that ∇ Sm(r) = nm, where nm is the unit vector
in the direction of the ray propagation. The amplitudes
Am are parameterized as constant amplitudes multiplied
by the conventional ray divergence factors involving the
ray evolution parameter and the curvatures. As we dis-
cuss later, the current representation (1) can be used as
a parameterization of the solution (Ansatz) in the HFIE
method.

Conceptually, the interpolation algorithm for calculating
the fields can be stated as follows:

1. Specify a set R of “field points” R j at which the
fields are to be computed; the spacing of these
points should be sufficiently small to resolve the
variation of the amplitudes of the fields (but not vari-
ation of their phases).

2. At every step of the WF evolution find, for each
“field point” R j, a set of nearby rays (within the dis-

tance of a few average ray-ray spacings). These rays
are selected from the set of rays propagating from
the previous WF to the current WF χ (Fig. 13).

3. For each of nearby rays ξ construct a ray ξR j
passing

through the point R j and parallel to the ray ξ. The
length ∆s of the ray is set to the distance between the
point R j and the WF, measured along the direction
of the ray ξ.

4. By evolving the ray ξR j
forward in time find its in-

tersection with the WF χ. Identify the WF face f
intersected by the ray (Fig. 13). (We note that a con-
tinuation of the ray ξR j

may intersect further seg-

ments of the WF, but theses intersections are irrele-
vant, since we are only computing contributions of
the rays evolved up to the WF χ.)

5. Identify the rays ξ f 1, ξ f 2, and ξ f 3, associated with
the corners of the face f . Evolve these rays back-
ward through the distance ∆s to form an image f ′ of
the face f . The prism built on the faces f and f ′ is
our definition of the ray cell.

6. Check if the point R j is located inside the face f ′. If
it is, continue to the point 7. If it is not, determine
the average direction n123 of the rays ξ f i (i = 1,2,3),
construct a new ray ξR j

emerging from R j in the di-

rection of n123, and return to the point 4.

7. Interpolate field values associated with the ends of
the rays ξ f i to the point R j.

Several remarks and clarifications are in order here:

(a) The steps 3 to 7 are repeated for all rays passing near
the observation point R j. If several near rays yield the
same ray cell, only one of them is taken into account.
Contributions to the fields from all distinct ray cells are
added to the field representation at R j. The field is repre-
sented in analogy to Eq.(1), i.e., in the form of constant
vector amplitudes and the corresponding wave vectors.
Specifically, for each of the ray cells containing the point
R j, we store the field amplitudes Em(R j) and the phase
Sm(R j) evaluated at the observation point, as well as the
gradient n j,m = ∇ Sm(R j) at that point. These data pro-
vide a local parameterization of the field in the neighbor-
hood of the point R j as a sum of plane waves.
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Figure 13 : The algorithm for computing a contribution
of a ray to the fields at the observation point R j, by inter-
polating between rays ξ f 1, ξ f 2, and ξ f 3 associated with a
face f on the WF χ. The heavy arrow denotes the direc-
tion of WF propagation.

(b) If the observation points R j are located on the scat-
terer’s surface, it is understood that the WF χ is the WF
computed as in the absence of the scatterer, i.e., before
the effect of rays’ reflections is taken into account. In
fact, in our present implementation the WFs are first
evolved without reflections, and then transformed by re-
flecting the rays.

(c) We note that our algorithm for field interpolation dif-
fers from the method being used in previous WF ap-
proaches, and based on a somewhat different concept
of the “ray cell” [Vinje, Iversen, Astebol, and Gjöystdal
(1996a), Vinje, Iversen, Astebol, and Gjöystdal (1996b)].
That concept of a ray cell requires using two consecutive
WFs (the “previous” and the “current” ones), while our
construction employs only one WF (the “current” WF).
Our procedure was mainly motivated by applications to
diffraction: in this case we may encounter a situation
where the “previous” WF simply does not exist, because
the current WF, due to a diffraction process, was newly
created in the considered evolution step.

(d) In computing currents on an open surface we need to
evaluate the magnetic field discontinuity, i.e., we have to
compute fields at observation points slightly above and
slightly below the surface. In this calculation we have to
ascertain which side of the surface is illuminated by the
given ray, and we have to take into account possible dis-
continuity of fields associated with the diffracted waves.

We also note that the above current computation algo-

rithm is applicable both to GO WFs and to WFs including
diffraction effects. It can be thus used both to generate
GO currents as input for Physical Optics(PO)-type com-
putations, and for creating the initial Ansatz (including
diffraction) for the solution of the HFIEs. In particular,
as we discuss in the following, the Ansatz can be repre-
sented precisely in the form of Eq.(1).

ki

0

d1

r1

S

Figure 14 : A relatively early evolution stage for the a
plane WF incident on the square plate (scatterer S). Col-
ors show components of the WF due to individual pro-
cesses: 0 for no interaction, r1 for single reflection, and
d1 for single diffraction.

Example: Diffraction on a rectangular plate

For the previously discussed rectangular plate problem
the relevant WFs, as computed by the present algorithm,
consist of the incident wave and waves diffracted on
the edges of the plate (Fig. 14 and 15). We note that
the present algorithm generates disconnected segments
of the WF associated with diffraction on the individual
edges; in the full algorithm these segments would be con-
nected by spherical WF due to corner diffraction.

To visualize the procedure of computing field and sur-
face currents described above, we have generated graph-
ical representations of the ray cells associated with the
individual observation points.

Fig. 16 shows an example, taken from the actual compu-
tation, of a set of ray cells containing one of the obser-
vation points, in this case a point located slightly above
the plate. As expected, there are five ray cells contain-
ing the observation point: one (I) due to the incident WF,
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Figure 15 : A more advanced evolution stage of the WF
shown in Fig. 14. Here colors indicate intensities of the
electric field associated with the WF.

and four (D1, . . . ,D4) due to the diffracted WFs emerg-
ing from the four sides of the plate. For an observation
point below the plate the cell due to the incident WF is
absent.

An an example of an application of our procedure of
current computation, we computed induced currents on
a 10λ × 10λ plate for a normally incident plane WF,
and used them to evaluate the bi-static cross-section. In
Fig. 17 we display a comparison between bi-static cross-
sections for v-polarization, calculated with the (a) MoM
method, (b) WF approach without edge diffraction con-
tributions, and (c) WF approach with edge diffraction. It
is seen that edge diffraction contributions to the current
play an important role in improving the agreement of the
WF result with the MoM computation (some discrepan-
cies are expected, since corner diffraction and multiple
diffraction effects are not taken into account in the WF
algorithm).

3 HFIE approach

The approach is based on an asymptotic form of the rig-
orous integral equations for surface currents, in which
the “Ansatz” for the solution is represented as a superpo-
sition of known rapidly oscillating functions multiplied
by unknown smooth functions varying slowly on the dis-
tance scale of the wavelength.

As we discuss below, the method can be alternatively for-
mulated as the MoM with suitably chosen basis func-
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Figure 16 : Ray cells associated with an observation
point slightly above the plate scatterer S, due to the in-
cident wave (I), and waves diffracted on the four sides of
the plate. The faces denoted by D1, . . . ,D4 are located on
the four FWs emitted from the edges E1, . . . ,E4.

tions of large, frequency-independent supports. Typi-
cally, these basis functions are (a) dependent on the inci-
dence angle, (b) dependent on the geometry of the entire
scatterer.

In the most basic case of a convex smooth scatterer the
Ansatz can be realized simply as follows:

1. Take the PO current induced on the scatterer surface
by the incident field as the rapidly oscillating func-
tion.

2. In the lit region, discretize the smoothly varying
function with the resolution independent of the
wavelength.

3. In the shadow boundary region (of width ∼ √
λ),

discretize the smoothly varying function with the
higher resolution, of the order of a fraction of λ.

It can be shown by means of the asymptotic analysis of
the resulting integral equations that, in the considered
case, the Ansatz described above is sufficient to correctly
describe the solution in both the lit and the shadow re-
gion, with the accuracy better than any inverse power of
the wavenumber k = 2π/λ. One of the reasons why such
a relatively simple Ansatz is possible is that the current
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Figure 17 : Comparison between the bi-static cross-
sections of a 10λ × 10λ plate illuminated with a v-
polarized normally incident wave calculated with the
MoM method, the WF approach without edge diffrac-
tion contributions, and WF approach with edge diffrac-
tion contributions.

components due to diffraction on the smooth surface are
damped exponentially away from the shadow boundary.

The situation is, however, more complex in the cases of
non-convex and non-smooth scatterers.

First, on a concave scatterer, the incident wave may be re-
flected, according to the laws of geometrical optics (GO),
a number of times. Hence, the leading (GO) term in
the Ansatz will contain, in general, not only the incident
wave, but also the reflected waves.

Secondly, in the presence of sharp edges the currents and
the scattered fields contain in general diffraction con-
tributions which do not decay exponentially with the
distance from the diffraction source, but rather fall off
according to a power law; for instance, diffraction on
a straight wedge with flat faces generates currents and
fields proportional to 1/

√
kr, where r is the distance from

the diffraction point. In this case it is impossible to incor-
porate the diffraction effects in the Ansatz by merely in-
creasing the smooth-function discretization density near
the diffraction source. Because of the slow, power-law
decay of the diffraction contributions, the dense dis-
cretization region would have to extend through a dis-
tance controlled only by the scatterer geometry, and not
the wavelength. The cost associated with this discretiza-
tion would be then of the same order as the discretiza-

tion cost of the MoM, and would defeat the purpose of
using the Ansatz. Thus, the oscillatory behavior of the
diffracted wave must be included in the Ansatz explicitly.

Further, for a smooth, but concave, scatterer explicit in-
clusion of diffracted wave contributions in the Ansatz
may also be necessary. Such a situation may occur when
a wave diffracted on a smooth part of the boundary illu-
minates another part of the scatterer. Then, although the
surface currents due to the smooth-surface diffraction are
localized near the shadow boundary, the diffracted wave
may fall off according to the same 1/

√
kr law as for edge

diffraction, and the currents induced by this wave on the
scatterer surface will not be localized.

Moreover, even for smooth and convex scatterers, the spa-
tial extent of the diffracted wave contribution near the
shadow boundary may grow large, if the scatterer cur-
vature becomes small. In fact, the exponential damp-
ing of the diffracted wave is controlled by the extinction
length proportional to R(λ/R) 1/3, which may become
quite large in realistic situations. In such cases the cost
of the dense discretization may be too high, and it may
be more advantageous to include the diffraction contri-
bution explicitly in the Ansatz.

To summarize, one can identify the following elements
of the HFIE approach:

• Construction of the Ansatz. It follows from the above
discussion that, for arbitrarily shaped geometries,
the HF solution Ansatz may have to explicitly in-
clude currents due not only to GO processes (mul-
tiple reflections), but also currents due to diffraction
processes. In addition, contributions to the current
due to any combination of a diffraction process with
any number of GO reflection processes are as im-
portant as the contribution of the diffraction process
itself.

A new element in our construction of the solution
Ansatz is the explicit inclusion of diffraction terms,
whose form is derived from the asymptotic diffrac-
tion theory. In the present formulation we consider
only objects built of flat surfaces, and therefore we
include edge diffraction only. In more general prob-
lems involving curved surface diffraction, it will be
necessary to supplement the Ansatz with additional
terms containing suitable exponential factors with
complex wave vectors. Examples of such terms
are discussed in [Altman, Mittra, Hashimoto and
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Michielssen (1996), Kwon, Burkholder and Pathak
(2001)] in the context of numerical methods of
Ansatz construction.

One may also observe that, except for the simplest
geometries, analytical construction of an Ansatz in-
cluding multiple reflection and diffraction contribu-
tions becomes a prohibitively complex task. Here,
the wavefront evolution approach, discussed in Sec-
tion 2, renders itself as a natural numerical tool for
providing the fast oscillating Ansatz terms due to
surface currents created by distinct rays.

• Discretization and construction of the impedance ma-
trix. The impedance matrix is constructed according
to the Galerkin method. The matrix is expected to
be partly sparse, due to the suppression of matrix el-
ements involving highly oscillatory integrands, and
the dominance of stationary-point contributions. It
is possible to predict which matrix elements will be
negligible, and thus reduce the storage and compu-
tational time requirements.

• Matrix compression. For large problems (in the sense
of a large number of the “HF unknowns”, indepen-
dent of the wavelength) it will be necessary to de-
velop matrix compression methods.

• Solution procedure. The linear system arising from
the discretization will be solved by means of an
iterative, minimum-residual type, method, using
fast matrix-vector multiplication associated with the
matrix compression.

We describe below the main elements of the approach.

3.1 Discretization and basis functions

The general idea of the HFIE method is to represent sur-
face currents on the scatterer as linear combinations of
known rapidly oscillating functions (associated with the
incident, reflected, or diffracted waves), and unknown
smooth functions.

Here we propose a specific implementation of this idea,
in the spirit of the Galerkin method. We start with par-
titioning the object surface S into patches, say, Π α , of
sizes that may be large compared to the wavelength λ,
and, asymptotically, independent of λ. The only excep-
tion from this rule would occur in some small regions
(such as the vicinity of the shadow boundary on a smooth

surface). In these regions a denser discretization is re-
quired, and thus the patches will be smaller (down to the
size of the fraction of λ).

We then parameterize the current J(r) as

J(r) = ∑
α

M(α)

∑
m=1

jαmΨΨΨαm(r) (2)

where the basis functions ΨΨΨ are supported on the patches
Πα . To every patch Πα there correspond M(α) basis
functions, each including a different oscillatory function.
The basis functions ΨΨΨ depend, in general, on the incident
wave.

As follows from the representation (2), the sizes and dis-
tribution of the patches should be such as to ensure that
the expected variation of the smooth functions is cor-
rectly reproduced. Thus on large smooth areas of the
scatterer the patches Πα will be large, while in regions
rich in geometrical detail the patch sizes will have to be
controlled by the size of the details and the resulting vari-
ation of the solution (the rapid variation of the solution in
this case is unrelated to the wavelength).

Various ways of constructing the basis functions ΨΨΨαm are
possible:

• A simple parameterization of ΨΨΨαm, for each m,
would be a product of a “relatively smooth” func-
tion ΦΦΦα(r) and an exponential exp(ikαm·r). Here
the functions ΦΦΦα might be, say, piecewise linear
(rooftop-type), to ensure a reasonable continuity of
the solution in the absence of the oscillatory factors.
In the exponentials the wave vectors kαm are those
of the appropriate incident, reflected, or diffracted
waves illuminating the patch Π α (hence, in general,
they depend on α).

• The functions ΦΦΦα could be made more smooth (per-
haps C∞), and could be constructed according to
the “partition of unity” concept (such that their sum
would be equal to unity). In this case the patches
Πα would partly overlap. This modification would
reduce (to exponentially small) sizes of the matrix
elements that are already small due to rapid oscilla-
tions of the functions ΨΨΨ (as we discuss below).

• The functions ΦΦΦα might include non-oscillatory, but
rapid variation of the solution, such as the behavior
of currents near the boundaries of a surface. Such
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factors would automatically arise from the diffrac-
tion terms in the approximate HF solutions (ob-
tained from UTD). An alternative possibility would
be to use a denser discretization (smaller patches) in
the regions of rapid non-oscillatory variation of the
solution.

• The use of a quadratic, rather than linear, phase fac-
tor might be appropriate, in situations where the
rapidly oscillating factor in the solution deviates sig-
nificantly from a plane waves e.g., in the vicinity of
a diffraction source, or near a reflection point on a
strongly curved surface.

The number M(α) of basis functions associated with the
given patch will depend on the geometry, on the inci-
dent wave, and on the required accuracy. In principle,
all nonzero contributions of reflected waves should be
kept along with the incident wave, since they are of the
same order in 1/k. Terms due to diffraction should be in-
cluded hierarchically, depending on the diffraction type
and order (with edge diffraction suppressed by 1/

√
k, tip

diffraction suppressed by 1/k, etc.). Also, combinations
of a given diffraction process and reflection are, again in
principle, equally important as the diffraction alone.

A practical method of constructing the basis functions
ΨΨΨαm would be as follows:

1. Partition the object into patches Π α , and select
smooth “characteristic functions” χα of the patches.

2. Using wavefront (WF) evolution or sufficiently ad-
vanced ray tracing methods, combined with UTD,
compute approximate asymptotic current Jas on the
object. More precisely, for every patch Πα and for
every segment m of the WF incident on the patch,
find the smooth amplitude Aαm of the current, and
the wave vector kαm (or, more generally, param-
eters of the quadratic approximation to the WF).
Using UTD takes care of possible discontinuities
of the current at shadow boundaries, but does not
eliminate infinities due to caustics. It is an open
question how to best handle these. However, we
should remember that we are concerned here only
with finding the correct rapidly varying functions.
The smooth coefficients multiplying these functions
do not have to be accurate; they will be corrected by
solving the integral equations.

3. Construct the basis functions as

ΨΨΨαm(r) = χα(r)Aαm(r)eikαm·r . (3)

Before solving the HFIEs, or even computing the ma-
trix elements, we can easily test the validity of the con-
structed Ansatz in cases where an exact solution J ex(r)
to the scattering problem is available (it can be obtained,
e.g., from a rigorous MoM computation). The test con-
sists in verifying how well the known solution can be
approximated by using the set of HF basis functions of
Eq.(2). In other words we can compute the error of the
least-squares approximation

Jex(r) �∑
α

M(α)

∑
m=1

jαmΨΨΨαm(r) . (4)

The least-squares problem is defined by minimizing the
error

E =
∫

dr

∣∣∣∣∣Jex(r)−∑
α

M(α)

∑
m=1

jαmΨΨΨαm(r)

∣∣∣∣∣
2

, (5)

which leads to the linear system of equations

∑
βn

(
ΨΨΨ∗

αm, ΨΨΨβn

)
jβn =

(
ΨΨΨ∗

αm, Jex

)
. (6)

Alternatively, we can simply solve the over-determined
system

∑
α

M(α)

∑
m=1

ΨΨΨαm(r) jαm = Jex(r) for r ∈ discretizationset

(7)

by performing the QR factorization of the rectangular
matrix involved. In any case, having determined the solu-
tion j, we substitute the solution elements j αm back into
Eq.(5), and thus find the error E .

3.2 Solution procedure

Having defined the basis functions ΨΨΨαm, we can proceed
as in the conventional Galerkin method with the number
of unknowns equal to

NHF = ∑
α

M(α) . (8)

The matrix elements are then given simply by

Aαm,βn =
∫

dr1 dr2ΨΨΨ∗
αm(r1)G(r1−r2)ΨΨΨβn(r2) (9)
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where G is the Green function. (The complex conjuga-
tion in applying ΨΨΨ as testing functions is essential, as
discussed below.)

A straightforward computation of the matrix elements (9)
may be nontrivial and expensive, considering the rapidly
oscillating factors in the basis functions. This problem
requires further investigation, also in connection with the
partial sparsity of the matrix, and possible compression
methods.

3.3 Properties of matrix elements

As we just mentioned, the factors in the integrands defin-
ing matrix elements (9) are rapidly oscillating, and there-
fore many of the matrix elements will be small, or will
receive contributions only from limited regions (station-
ary points).

We note that, in general, there may even be a continuum
of stationary points for a given integral. As an exam-
ple, we consider a one-dimensional current distribution
depending on the coordinate x, and take both the basis
functions ΨΨΨαm and ΨΨΨβn proportional to exp(ikx). In this
case the integral

∫
dx1 dx2ΨΨΨ∗

αm(x1)G(x1−x2)ΨΨΨβn(x2) (10)

leads to the expression

∫
dx1 dx2 e−ikx1 eik |x1−x2| eikx2 · (smooth functions) , (11)

which receives large contributions from the region x 1 >

x2; this region of integration corresponds to the basis
function ΨΨΨαm located to the right of ΨΨΨβn, i.e., to xα > xβ,

where xα and xβ are centers of the supports of the basis
functions.

This example also shows why it is essential to complex-
conjugate the testing basis functions: without complex
conjugation we would not be able to construct any large
matrix element (such as Eq. (10)), unless in the set of
considered basis functions ΨΨΨ there would be a basis func-
tion proportional to exp(−ikx), and this is by no means
guaranteed. In other words, the original (not conjugate)
basis functions ΨΨΨ are not good testing functions for the
same set of trial functions ΨΨΨ.

In general, many integrals defining matrix elements will
have no stationary points, and will be therefore small,

leading to a sparse matrix A. The degree of suppres-
sion of such matrix elements will depend on the proper-
ties of the smooth functions appearing in the basis func-
tions. In particular, if these functions are in the class C ∞,
the small matrix elements are exponentially small, i.e.,
smaller than any inverse power of k.

On the other hand, as we have seen in the one-
dimensional example mentioned above, contributions
to the matrix elements may come not only from iso-
lated stationary points, but from continuous extended re-
gions. For this reason, we cannot, in general, expect the
impedance matrix to be entirely sparse (i.e., to have only
a finite number of elements per row or columns, for the
growing matrix size).

In any case, however, having a parameterization of basis
functions such as Eq.(3), it is relatively easy to predict
which matrix elements will be negligibly small, and cre-
ate only the nonzero part of the matrix.

3.4 Compression of the impedance matrix

While partial matrix sparsity is helpful, it will not be suf-
ficient to handle many large realistic problems, for which
even the reduced number of HF unknowns, NHF, may be
of the order of tens of thousand, or more. Therefore,
impedance matrix compression will be necessary, and
development of a new compression scheme will be re-
quired, since none of the known compression techniques
is applicable here.

A possible approach is to use plane-wave representations
of currents and fields, such as those underlying FMM.
In this context, we have initiated developing a version of
FMM, which might be called a “sparse FMM”.

In the conventional FMM the fields radiated by the given
distributions of currents are parameterized in terms of
signature function, i.e., distributions of fields at quadra-
ture points on the unit sphere, representing directions
of the emitted field. For surface problems, the number
of these quadrature points is of the order of the num-
ber of the current elements in the original current dis-
tribution, counting about 10 current elements per wave-
length. Therefore, the cost of constructing, storing, and
using such signature functions in unacceptably high in
the high-frequency asymptotics.

On the other hand, in the high-frequency limit, the radi-
ated field distributions are expected to be strongly colli-
mated about the directions related to the directions of the
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wave vectors kαm appearing in the basis functions such as
in Eq.(3) (in practice, many basis functions may share the
same wave vector). It might be thus possible to parame-
terize the signature functions in a more economical way
just by specifying the field distributions in the narrow
cones about the wave vectors’ directions. The required
number of parameters would then not exceed O(NHF),
where NHF is the number of the HF unknowns (Eq.(8)).
In this sense, we build a “sparse” HF representation of
the signature function.

Further, in computing interactions between distant clus-
ters, the fields associated with given wave-vector direc-
tions will propagate only if the directions match. This
criterion corresponds to the stationary-point criteria in
the computation of matrix elements.

Several problems remain to be analyzed and solved: for
example, an efficient algorithm for converting between
the current representation (2) and the signature func-
tions, and an efficient parameterization and computation
of translation operators. In view of these uncertainties,
the development of HFIE matrix compression should be
considered highly innovative, but also high-risk.

4 Validity tests of the HFIE Ansatz for currents;
multiple reflection, diffraction, and surface wave
contributions

In order to provide more information on the feasibility
of the proposed HFIE solution scheme and to verify its
ability of capturing effects associated with diffraction
and surface waves, we have carried out several numeri-
cal validations for suitably selected non-trivial scattering
problems involving a square plate, a strip, a dihedral, and
a trihedral.

The results of our analysis, presented in the following
two sections, demonstrate that it is possible to construct
sufficiently simple and numerically efficient representa-
tions of currents in the form of a HF Ansatz which would
accurately capture diffraction and surface wave contribu-
tions at a significantly lower cost than the corresponding
Method of Moments approaches (with matrix compres-
sion enhancements). In all calculations we use an Ansatz
given as a superposition of terms associated with sin-
gle, double, and multiple reflections, and edge-diffracted
wave contributions.

4.1 Least-squares computations with an analytical
Ansatz

As the first example, we analyze the HF Ansatz construc-
tion for a plate illuminated by a plane wave (Fig. 18). We
take into account only the lowest order (1/

√
k) diffrac-

tion effects, i.e., only first-order edge diffraction.

k0
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x

y
α
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Figure 18 : A plate, with indicated projection k 0 of
the incident wave vector ki on the plate plane, and
the “diffraction cones” generated on the four edges of
the plate. The wave vectors associated with the waves
diffracted from sides 1, 2, 3, 4 of the plate are denoted by
k1 to k4.

In this approximation the Ansatz will consist of (a) the di-
rectly incident wave, and (b) four diffracted waves origi-
nating from the four sides of the plate.

In this case the HF basis functions ΨΨΨαm(r) associated
with a given surface patch Πα are

ΨΨΨαm(r) = χα(r) p̂m eikm·r , (m = 0,1,2,3,4) . (12)

The term m = 0 is due to the incident wave, and k0
is the projection of the incident wave vector k i on the
plate. The remaining four components are due to waves
diffracted on the four edges of the plate. Each of the wave
vectors km has length |km| = |ki| (m = 1,2,3,4), and lies
on the intersection of the plate with the relevant diffrac-
tion cone associated with the plate side m. The angle α
marked in Fig. 13 is the angle between the incident wave
vector ki (not its projection k0), and the upper edge of
the plate (parallel to the x-axis in Fig. 18). Finally, the
polarization vectors p̂m (m = 0,1,2,3,4) are unit vectors
defining the direction of the electric current. They are
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determined from the condition that the electric current is
related to the magnetic field jump ∆H across the scat-
terer surface by J = n̂ ×∆H, where n̂ is the normal to
the surface. Hence, denoting by ĥm the direction of the
magnetic field associated with the m-th wave vector km,
we have

p̂m = n̂× ĥm . (13)

For an arbitrary illumination angle, the diffracted waves
(contained within the diffraction cones associated with
the respective edges) will illuminate only parts of the
plate. We could incorporate those conditions in the
Ansatz by setting to zero the basis functions located in
the shadow region. In our computation, however, we use
the full sets of HF basis functions for all patches, expect-
ing that the corresponding coefficients resulting from the
solution of the equations will be practically zero in the
shadow region. This option has the advantage of being
simpler (although computationally somewhat more ex-
pensive), and allowing a smooth transition for the cur-
rent at the relevant shadow boundaries (thus potentially
reducing the approximation error).

We applied the Ansatz constructed above to scattering on
a square, 10λ ×10λ and 20λ ×20λ, perfectly conduct-
ing plates, and on a 20λ×4λ perfectly conducting strip.
For definiteness, we align the geometries with the (x,y)
coordinate system, and take the electric field of the inci-
dent wave along the y-axis.

We have carried out a numerical verification of the pro-
posed Ansatz, by performing a least-squares fit of the
known currents (obtained from the accurate MoM solu-
tion) as linear combinations of the basis functions (12).
According to procedure described above, we divided the
plate into rectangular patches, assigned to them the ba-
sis functions listed above, and solved the least-squares
problem directly by QR factorization.

Representative results for the surface current on the
10λ × 10λ square plate in the case of a normally inci-
dent plane wave are shown in Fig. 19. The plate was
divided into 10× 10 patches of unequal sizes, allowing
for a denser discretization near the edges of the plate;
effectively, the interior of the plate was discretized with
only 4×4 patches. The exact currents and currents ob-
tained using the Ansatz form of the solution are almost
identical.

However, a more detailed error analysis shows that the
error due to the approximation of the exact current with

Re Jy  (exact) Re Jy  (Ansatz)

Figure 19 : Comparison of the exact current and the ap-
proximate current of Eq.(4) in the case of a normally in-
cident plane wave.

the linear combination (4) comes almost entirely from
the edges of the plate, i.e., from the regions where the
current is singular (due to the “edge behavior” ∼ 1/

√
x,

where x is the distance from the edge). This result sug-
gests that the accuracy of the expansion (4) can be further
improved by taking the edge behavior into account when
constructing the HF basis functions.

In Fig. 20 we compare the bi-static cross-sections for the
vertical polarization, obtained from the exact (i.e., MoM)
and the Ansatz solutions, again for the 10λ ×10λ plate,
discretized with NLF = 29,800 MoM unknowns. The
least-squares fit to the current with five HF basis func-
tions on each of 10× 10 = 100 rectangular patches re-
quired NHF = 500 unknowns. For comparison, we also
present the PO solution. It is seen that the full Ansatz is
able to reproduce the exact result almost ideally, while
the PO solution shows large deviations near 90 ◦.
In Fig. 21 we compare back scattering cross-sections for
the vertical polarization computed using the exact cur-
rent, the full Ansatz current, and the PO approximation.
For comparison, we also present a fit with only one basis
function per patch, corresponding to the incident wave,
included in the Ansatz (using the same number of NHF
unknowns). It is seen that while the full Ansatz is able
to reproduce the exact result almost ideally, the limited
Ansatz gives a result deteriorating at angles closer to 90 ◦,
and the PO approximation starts to deviate significantly
from the correct result already at relatively small angles.

The cross-sections in Fig. 21 suggest a typical behavior
associated with surface waves – a significant enhance-
ment of the actual cross-section, compared to the PO
approximation, at about 10◦ to 20◦ off the grazing inci-
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Figure 20 : Comparison of the bi-static cross-sections
for the exact and approximate currents for a plate illumi-
nated with a normally incident plane wave.

dence. As a more prominent case exhibiting the surface-
wave behavior, we analyzed, as the second example, a
20λ × 4λ strip. The results for the exact and approxi-
mate cross-sections, analogous to Fig. 21, are shown in
Fig. 22. Again, the exact cross-section is reproduced very
well by the full Ansatz (including the incident wave and
diffracted waves). On the other hand, neither a single-
term Ansatz associated with the incident wave, nor the
PO solution, were able to reproduce the exact cross-
section.

Results of Fig. 22 indicate that the full HF Ansatz is
able to accurately describe the current behavior giving
rise to surface waves. We emphasize that the Ansatz pa-
rameterization is highly economical: the considered case
requires NLF = 23,760 unknowns for the LF MoM so-
lution, and 8,241 current sampling points (i.e., 16,482
current variables); at the same time, the full Ansatz is
specified by means of HF basis functions on only 10×4
patches, giving rise to the total of NHF = 200 unknowns
(the strip HF discretization is also shown in Fig. 22).

As a further illustration of the behavior of the HF cur-
rents we show below, in Figs. 23 and 24, results of the
MoM computation of currents for a larger plate, of size
20λ×20λ, for the incident wave at the 45◦ elevation an-
gle, with the wave vector in the (x, z) plane, and with the
electric field along the y axis. It is evident that the fea-
tures of these current distributions can be reproduced by
an Ansatz involving the incident and diffracted waves,
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Figure 21 : Comparison of the back-scattering cross-
sections for the plate using the exact current, approx-
imate currents obtained with the full Ansatz and the
Ansatz with the incident wave only, and the PO current.

with the wave vectors indicated in the figures.

As the subsequent example of the proposed HF solu-
tion Ansatz, we consider scattering on a dihedral consist-
ing of two 10λ ×10λ, perfectly conducting plates. The
purpose of this calculation is to demonstrate the HFIE
method’s ability to capture accurately multiple scatter-
ing and cross-polarization effects.

In this case there are 19 terms in the Ansatz for a single
quadrilateral patch. These terms represent plane wave
contributions associated with single reflection, double
reflection, single diffraction, and reflection-diffraction
terms. Again we find that the HFIE Ansatz (involving
a rather nontrivial interplay of various multiple scatter-
ing and diffraction terms) is able to reproduce very accu-
rately the numerically exact MoM predictions, including
cross polarization effects.

Fig. 25 shows the dihedral geometry, and the rigor-
ous MoM results for hh and vh back-scattering cross-
sections, which indicate the large size, in some angu-
lar ranges, of the cross-polarized (vh) term. The Ansatz
least-squares fits were computed for a set of selected in-
cidence angles. The results for the currents are shown
in Figs. 26 and 27, and the cross-sections for these cases
agree with the MoM result within about 1 dB.

It can be seen that the Ansatz we have chosen is able
to reproduce a rather nontrivial behavior of the current
(Figs. 26 and 27). In particular, the z-component of the
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Figure 22 : Comparison of the back-scattering v-
polarization cross-sections for a perfectly conducting
20λ ×4λ strip. Partition of the strip into patches for the
HFIE computation is also shown.

current (see Fig. 27), which strongly contributes to the
cross-polarization term in the cross section, is very well
reproduced by the Ansatz despite the fact that its magni-
tude is significantly smaller than that of the y-component.

4.2 Approximate computations with a numerical
Ansatz

As the final example we consider scattering on a trihe-
dral (Fig. 28). Our calculations for the trihedral apply
to the case of the interior illuminated by a plane wave of
wave vector ki. In a generic configuration, and to the first
order in diffraction processes, each of the three faces is
illuminated by:

1. The incident wave.

2. The geometrical reflections of the incident wave
from the other face(s); these are either singly or dou-
bly reflected waves.

3. Diffracted waves due to the incident wave illuminat-
ing any of the nine edges present in the problem.

x

y

Θ = 45o                              Re Jx

Figure 23 : The distribution of the x-component of
the current for incidence at 45◦. The arrows indicate
the wave vectors appearing in the Ansatz, due to edge
diffraction.

4. Diffracted waves due to any of the reflected waves
illuminating any of the nine edges.

5. Geometrical reflections of any of the diffracted
waves generated in processes 3. and 4.

We stress that contributions from all combinations of ge-
ometrical reflections accompanying diffraction should be
included in the Ansatz, since, as we discussed before,
they are of the same order as diffraction itself.

Construction of the explicit expression for all the basis
functions appearing in the Ansatz for the trihedral geom-
etry constitutes already a relatively complex task. There
are close to a hundred of basis functions for each face
of the trihedral, and they have complicated dependencies
on the incident wave vector (just to mention the fact that,
in general, only parts of the faces are illuminated by the
incident wave reflected from other faces; or the fact that,
generally, the diffracted waves illuminate also only parts
of the faces, and waves reflected from these faces illumi-
nate even more complex regions of other faces).

We think that a practical method of determining the com-
plete set of basis functions would be a numerical one,
based on the construction of a relevant set of WFs. In
the considered approximation the WFs will be due only
to reflections and to single edge diffraction. From the in-
formation contained in the WFs and the associated fields
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Figure 24 : The distribution of the y-component of the
current for incidence at 45◦. The heavy arrow shows the
direction of the incident wave vector projection.

(computed using UTD), we would determine the ampli-
tudes and wave vectors associated with the basis func-
tions defined on the individual patches of the surface.

In the meantime, however, in order to verify, at least ap-
proximately, the relative importance of terms associated
with different physical processes which contribute to the
Ansatz, we carried out a comparison of (a) our “zero-th”
order HFIE code version (described below), and (b) our
rigorous LF code with matrix compression.

The preliminary zero-th order version of the HFIE
method constructs the Ansatz based only on Geometri-
cal Optics (GO). In this approach the scatterer surface is
triangulated and the solution is represented in the form of
Eq.(2), with the HF basis functions of the type of Eq.(3),

ΨΨΨαm(r) = χα(r)Aαm eikαm·r , (14)

with constant amplitudes Aαm. This representation is
constructed by accumulating contributions of all the rays
(incident or reflected) illuminating the given patch α, and
the index m refers to GO reflection order of the ray. The
coefficients jαm in Eq.(2), as well as the amplitudes Aαm
and the wave vectors kαm, are determined from the po-
larization and the incidence angles of the ray incident on
the patch; these parameters, in turn, are computed from
the GO laws governing the behavior of the rays. In the
present zero-th order version of the HFIE method diffrac-
tion contributions were not yet included. (The results ob-
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dihedral geometry, HFIE discretization, 2 x 9 x 9 patches, nonuniform

0 10 20 30 40 50 60 70 80 90
φi

−30

−20

−10

0

10

20

30

40

50

60

σ

hh (MoM)
vh (MoM)
hh (Ansatz)
vh (Ansatz)

Figure 25 : Backscattering cross-section for a dihedral
consisting of two 10λ×10λ perfectly conducting plates
for hh and vh (cross-polarization). The curves show the
exact (MoM) results, the points show the Ansatz least-
squares fits.

tained with the zero-th order version of the HFIE method
are similar to what could have been obtained with ray
shooting and bouncing methods.)

In simple terms, the main difference between the fully
developed, planned version of the HFIE method and its
zeroth-order version is that, while both algorithms use
the similar form and the identical number of terms in
the Ansatz, the coefficients jαm in Eq.(2) differ: While
in the case of the full HFIE method these coefficients
need to be determined by solving a suitable system of
linear equations, in the case of the zero-th order version
of HFIE they are to have the values following from the
PO prescription for a plane wave associated with a mul-
tiply reflected ray incident on a given triangular facet.
Another difference is that in the full implementation the
Ansatz would include additional terms due to diffraction,
calculated, e.g., using the Physical Theory of Diffraction
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(PTD) [Ufimtsev (1971)].

In order to assess, at least approximately, the relative im-
portance of terms associated with different physical pro-
cesses which contribute to the Ansatz, we carried out a
comparison of (a) our zero-th order HFIE code version,
and (b) our rigorous LF code with matrix compression.
The results are presented in Figs. 28 – 30. In Fig. 28
we display surface current distribution for 10 GHz plane
wave illumination. In Figs. 29 and 30 we display compar-
isons between the mono-static cross-sections computed
with our HF research code module for the trihedral ge-
ometry at 30 and 90 GHz with and without the multiple
scattering contributions. In both cases the incident wave
was horizontally polarized, and incident at θ i = 80◦.
The results of our analysis for the trihedral at several fre-
quencies, demonstrate that the inclusion of multiple scat-
tering terms is critical for obtaining a satisfactory agree-
ment of the HFIE predictions with the numerically exact
LF method. The calculations employing only the single-
scattering HF method (being equivalent to the conven-
tional PO method) are simply inadequate. The full cal-
culations, on the other hand, give us confidence in the
ability of the HFIE method of capturing the key physics
of the interactions of EM waves with geometries leading
to significant multi-bounce signatures.

We note that zero-th order HFIE code without diffraction
terms reproduces relatively well the qualitative and quan-
titative features of the angular distribution of the mono-
static cross-section predicted by the rigorous LF calcu-
lations at 30 GHz. (For comparison, in the same graph
we display the conventional single-scattering (equivalent
to physical optics solution) whose failure, in this case, is
evident.) The calculations (requiring 900,201 unknowns)
confirm the trend of the angular pattern and give us confi-
dence that our HFIE approach reproduces the qualitative
features of the exact calculations relatively well.

We have also carried out HF calculations for the mono-
static cross-section for a trihedral at 90 GHz. We have
not performed, at this moment, the comparison with the
results of a LF MoM code with matrix compression. The
calculation would require about 10,000,000 unknowns.

To summarize, our preliminary numerical experiments
indicate that the Ansatz provided by the approximate
zero-th order version of the HFIE method is capable of
successfully capturing the leading multiple scattering ef-
fects which dominate the corner reflector RCS.
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Figure 26 : Distribution of the y-component of the cur-
rent on a dihedral consisting of two 10λ×10λ perfectly
conducting plates for a horizontally polarized plane wave
incident at the angles θ = 70◦ and φ= 30◦.
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Figure 27 : Distribution of the z-component of the cur-
rent on a dihedral consisting of two 10λ×10λ perfectly
conducting plates, for the same incident wave angles
θ = 80◦ and φ= 80◦.

5 Computational cost estimates

The essence of the HF methods is that their computa-
tional cost should be independent of the wavelength, and
should be only a function of the scatterer geometry. The
complexity estimate of the HFIE method is similar to that
of the MoM (with matrix compression), but with the dra-
matically reduced number of unknowns, NHF, indepen-
dent of the frequency.

The “geometrical” HF methods used to generate the so-
lution Ansatz are expected to scale as O(NHF). The cost
(per iteration) of the iterative solution of the HFIEs them-
selves ranges from O(N2

HF) with no compression and no
(geometry-dependent) matrix sparseness, to the expected
complexity O(NHF logNHF) with compression.
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Figure 28 : Trihedral geometry used the calculations.
We also show distribution of one of the current compo-
nents for 10 GHz plane wave illumination.

These estimates should be compared with the cost of the
iterative LF solution, which, with matrix compression, is
O(NLF logNLF) per iteration, and the relevant number of
unknowns scales as NLF ∼ (L/λ)2, where L is the scat-
terer size.

There remains, however, the question of the number
of HF unknowns, NHF, which, although frequency-
independent, remains strongly dependent on the scatterer
geometry. We recall that a simple procedure for con-
structing the HF basis functions is to specify patches on
the scatterer’s surface (of sizes independent on the fre-
quency), and construct (by interpolation) all rays passing
through a selected “observation point” on the patch. Each
of these rays provides then an approximate local plane-
wave contribution to the field, and to the current, on the
patch. Therefore, the number of basis functions associ-
ated with a given patch is equal to the number of distinct
rays passing through the observation point on the patch.
These rays include the ray due to the incident wave as
well as to reflected and diffracted rays.

For complex geometries the number of such (multiply)
reflected and (possibly multiply) diffracted rays may
grow rapidly with the geometry complexity. It is, there-
fore, necessary, to formulate criteria according to which
only the relevant rays will be selected.
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Figure 29 : Mono-static cross-sections at 30 GHz
for the trihedral, computed with the zeroth-order HFIE
code with and without multiple reflection contributions.
Diffraction terms were not included yet. Results of
the exact LF MoM calculation (requiring 900,201 un-
knowns) are represented with cross symbols.

A simple criterion can be based on introducing a thresh-
old to eliminate rays and basis functions considered
unimportant. With this prescription we use a ray-tracing
or a wavefront algorithm to generate a possibly large
number of rays incident at the observation point, due to
various reflection and diffraction processes. For each ray
we compute the (approximate) field value, i.e., the ampli-
tude appearing in the plane-wave representation for the
ray. We then select only those rays for which the ampli-
tudes are larger than a certain fraction of the maximum
amplitude.

The above prescription supposes that the approximate
fields obtained from the HF solution are reasonable ap-
proximations to the actual fields, computed eventually
by solving the integral equations for the currents. In
some cases this presumption may not hold, and more in-
sight into the properties of the expected solutions may be
needed.

By using selection criteria such as the above, we expect
to be able to achieve a reasonable balance between the ac-
curacy and the computational cost of the solution. We ex-
pect that the hierarchy of the approximations will approx-
imately reflect the asymptotic HF expansion, the simplest
approximation being the zero-th order Geometrical Op-
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Figure 30 : Mono-static cross-sections at 90 GHz for the
trihedral, computed with the HF module with and with-
out multiple reflection contributions. Diffraction terms
were not included yet.

tics, with the consecutive approximations corresponding
to increasing orders of diffraction contributions.

6 Summary

We described key elements of two new approaches ap-
plicable to electromagnetic scattering at high frequen-
cies: (a) wavefront propagation method and (b) high fre-
quency integral equation approach. While both meth-
ods are based on quite different formulations, they share
two common desirable features. Their complexity is fre-
quency independent and the required object discretization
is determined not by the wavelength but by the geomet-
rical complexity of the scatterer.

Our discussion of the wavefront evolution technique, fo-
cussed mainly on the essential features of its practical
implementation associated with the computation and in-
terpolation of fields, which provide definite advantages
compared to the conventional ray-tracing approach. Two
new elements of the wavefront method were addressed
in detail: (i) construction of the edge diffraction contri-
butions, and (ii) procedure for constructing field and cur-
rents on the scatterer surface.

As for the HFIE approach, the main emphasis of our pre-
sentation was the construction of the solution Ansatz,
and verification of its validity for several representative

problems sensitive to such nontrivial phenomena as mul-
tiple reflections, diffraction, surface waves, and cross-
polarization effects. While the form of the Ansatz is
relatively straightforward for simple geometries, it be-
comes quite complicated for complex objects. We have
described a general numerical procedure for the Ansatz
construction, in which we determine the rapidly oscillat-
ing components of the Ansatz from fields generated by a
sequence of wavefronts corresponding to physically rel-
evant multiple reflection and diffraction processes.

The results we presented in the context of our discussion
of the HFIE method demonstrate that it is possible to con-
struct sufficiently simple and numerically efficient repre-
sentations of currents in the form of a HF Ansatz which
accurately capture diffraction and surface wave contribu-
tions at a significantly lower cost than the corresponding
Method of Moments approaches (with matrix compres-
sion enhancements).

Finally, we note that both approaches considered here are
in an early development stage and they will require sub-
stantial effort before they can be used to solve engineer-
ing problems of practical interest.
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