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Reflection in a Level Set Framework for Geometric Optics !

Li-Tien Cheng,?® Myungjoo Kang,* Stanley Osher,* Hyeseon Shim,* Yen-Hsi Tsai®

Abstract: Geometric optics makes its impact both ifield and the geometric optics setting provides a simpli-
mathematics and real world applications related to réigd framework for characterizing them. Thus this ap-
tracing, migration, and tomography. Of special impoproximation is fundamentally applied to numerous ap-
tance in these problems are the wavefronts, or pointspitations such as modern seismic data processing (see,
constant traveltime away from sources, in the mediumg., [Beylkin (1985); Beylkin and Burridge (1990); Bur-
Previously in [Osher, Cheng, Kang, Shim, and Tsddge, de Hoop, Miller, and Spencer (1998); Bleszynski,
(2002)], we initiated a level set approach for the comleszynski, and Jaroszewicz (2004); de Hoop and Bleis-
struction of wavefronts in isotropic media that handleigin (1997); Symes and Carazzone (1991)]). The alter-
the two major algorithmic issues involved with this probrative and equivalent description of ray tracing is also
lem: resolution and multivalued solutions. This approackidely seen and used (see, e.g., [Lax (1957)]).

was quite general and we were able to construct waygne quantity of interest with respect to the traveltime is
fronts in the presence of refraction, reflection, highgie wavefront. These are simply points, forming hyper-
dimensions, and, in [Qian, Cheng, and Osher (2003){;ifaces, of constant traveltime away from the sources
anisotropy as well. However, the technique proposed fgf the waves. Thus many numerical approaches seek to
handling reflections of waves off objects, an importagbnstruct wavefronts to piece together the traveltime if
phenomenon involved in all applications of geometrigy gesired. These approaches will often use instead a
optics, was inefficient and unwieldy to the point of beingme dependent eikonal equation whose solution at time
unusable, especially in the presence of multiple reflaczontains the wavefront of traveltinteaway from the
tions. We introduce here an alternative approach basgfirces. Our interest and emphasis will mainly be on the
on the foundation presented in [Osher, Cheng, Kangnstruction of wavefronts in a time dependent setting
Shim, and Tsai (2002)]. This reworking allows the levaby jsotropic wave propagations. Note in isotropic me-
set method to be considered for realistic applications igi, the ray directions considered in ray tracing are equal

volving reflecting surfaces in geometric optics. to the local phase directions and are orthogonal to the
wavefronts.
1 Introduction The main difficulty encountered by numerical ap-

. . . L . proaches in the construction of wavefronts in the geo-
Geometric optics consists of an approximation to hlq%] . : . Lo : .
etric optics or ray tracing setting lies in a choice of ei-

frequency wave propagation that reduces the wave equa: . . . .
) ) ) . ) . _fher ease in resolution or generation of multivalued solu-
tion to a static Hamilton-Jacobi equation, the elkonﬁl

: . ons. Multivaluedness in wavefronts occur when wave-
equation, for the phase, or traveltime, and transport equa- . o
: : " ronts cross and more than one ray occupies a point in
tions for the amplitude. These two quantities, phase )
. . space. The well known phenomenon of the formation of
and amplitude, compose the singular parts of the wave ~ - ) . .
caustics originates from this. Solutions obtained follow-
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resolve all wavefronts over an underlying uniform gri@002)], operating on bicharacteristic strips, but used in-
in space but encounter difficulties in representing mulitead the level set method [Osher and Sethian (1988)]
valued wavefronts. Much work has been devoted to bipr the Eulerian framework in phase space. The advan-
passing these difficulties and the papers [Vinje, Iversaage in this was especially in simplicity. This allowed the
Astebol, and ystdal (1996a,b); Vinje, Iversen, and ystlgorithm to handle complicated wavefront evolutions
dal (1993)], for Lagrangian approaches, and [Abgrall amdthout additional effort and furthermore nicely gener-
Benamou (1999); Benamou (to appear, 1996, 1999); Badized to higher dimensions. The level set approach in-
nier and Corrias (1996); Engquist, Fatemi, and Oshealves representing the higher codimensional bicharac-
(1995); Engquist and Runborg (1995); Engquist, Rureristic strips at timeé by the zero level set at that time of
borg, and Tornberg (2002); Steinhoff, Fan, and Wargvector valued time dependent level set function existing
(2000); Fomel and Sethian (2001); Osher, Cheng, Karg phase space. The Liouville equation on each compo-
Shim, and Tsai (2002); Ruuth, Merriman, and Osheent, written as

(2000); Symes (1996)] for Eulerian approaches, can be

consulted with respect to this. U +V-Uxpu=0,

However, it was pointed out in [Engquist, Runborg, anghereu is such a component andcomes from the ray
Tornberg (2002)] that by viewing wavefronts in phasgaing directions or, equivalently, the characteristics of
spape instead of spatial space, both difficulties could FP‘?e eikonal equation, can then be used to generate the
avoided at the cost of operating on higher codimensiofianaracteristic strips and, ultimately, the wavefronts of
objects in a higher dimensional space. Phase space GRfisrest. It will be useful to note that for two dimensional
sists of the set ofx, p), wherex € R", p ¢ R". Here, geometric optics, where we can operate in reduced phase

X represents location in space apdhe local phase di- space, the two componengsandy, of the vector valued
rection. A traveltime: wavefront can be represented ifuye| set function satisfy the system

this space as the set of bicharacteristic strips, which form

a Lagrangian submanifold of codimensiorand hence @+V-Oxe@ = O,
are smooth (see, e.g., [Arnol'd (1992); Arnol'd, GuseinqJt fv-OgglW = O
Zade, and Varchenko (1986); Duistermaat (1974); Izu- " ’

miya (1993)]). Thus operating on bicharacteristic strigghere denotes the phase angles given by
has the advantage of operating with a smooth manifold,

regardless of whether the projection to spatial space, c(x) cosH
which gives back the wavefronts, is multivalued or not. ~ V(X,8) = c(x) sin@ ;
Furthermore, an Eulerian approach to the construction Cx, (X) SINB — Cx, (X) cOB

of these bicharacteristic strips set in phase space WOUIdd 0'is the di local locit itted i
nicely resolve them and hence the wavefronts down ¢ > 715 Ihe given local wave veloclty permitted in

spatial space. In more detail, the time dependent eiko ¥ rgedlum.bAIsol ncg[e thesettvlvo Xar:rs]port eqtgtatlor}g n
equation is replaced by the Liouville equation for thi§ an  can be so ved separately. As the quantites ot in-
{erest are now redefined into phase space, or the reduced

construction. In addition, for two dimensional geomet="" """ fixed i id be placed th
ric optics, phase space can be reduced to involve just gsion, a fixed, uniform grid can be placed there over

phase angle rather than the local phase direction. In [I'—l%-iCh lie the numerical solutions. This grid provides the

gquist, Runborg, and Tornberg (2002)], the Eulerian ap+ 0Matic resolution desired.

proach that was used involved representing bicharactéhus the steps of the algorithm for constructing the trav-
istic strips with the segment projection method, leadirgftime t wavefront involve producing the vector valued

to a fast and efficient algorithm for the construction devel set function that corresponds to the given initial
wavefronts. wavefront, solving the Liouville partial differential equa-

tions (PDE’s) up to timé, and outputting the projection

of the zero level set to spatial space. Herein lies the sim-
plicity of the approach. We note that additional steps are
In [Osher, Cheng, Kang, Shim, and Tsai (2002)], wesually taken during the solution step of the PDE’s in a
followed the lead of [Engquist, Runborg, and Tornbengrocess called reinitialization to enforce a stable form for

2 Levd Set Formulation
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the vector valued level set function. This, though, is igiven and no waves can exist in their interiors. As op-
general not needed for a medium of constant index mbsed to our previous work, this time our approach is
refraction, i.e., whert is constant. We refer to [Osherto use one vector valued level set function to represent
Cheng, Kang, Shim, and Tsai (2002)] for details of thal wavefronts, reflected or not. The reflecting objects,
and the algorithm in general as we are concerned hedgich can be given in spatial space through a level set

with other aspects. function p(x) as {p < 0}, are extended to phase space
and represented bip < 0}, wherep(x, p) = p(x). We
3 Reéflections can in fact require thap andp are distance functions

with respect to their zero level sets in their respective

In fact, our interest lies in the case where there are g aces. Furthermore, we will frequently refer to both

metric objects in the medium that can reflect wavefron

: . = 0} in spatial space anfp = 0} in phase space, or
As an example of the philosophy behind the wavefro duce}d phase space, as gEject {)oundaries. Away from
point of view and the importance of reflection in ge; '

) o ) the objects, wavefront evolution is as before, satisfying
ometric opjucs n recenF research, we (.:Ite the work e relevant Liouville equations. The interesting behav-
[B_Ieszynskl, _Bleszynsk|, and Jaroszewicz (2004)]. Iigr happens, of course, near the objects. At the boundary,
this paper, light rays are treat.ed as a pa_rt of a Wa\¥e wish to pose boundary conditions that will enforce
front surface rather than considered individually. Th flection.
connectivity information allows for ease in the adding o o i ) ]
light rays, both for resolution and to enforce reflectior;,0" SIMPlicity, we first consider the case of geometric op-
near the surfaces of reflecting objects. We note that {#fg? In two dimensions in a medium of constant index of
goal of [Bleszynski, Bleszynski, and Jaroszewicz (2004 fragtlon_ and dls:cuss generallzatlpns later. This means
goes beyond this, demonstrating the uses of wavefrdfi¢ Liouville PDE’s take the abbreviated form
cqnstru_ctio_n and the geometric optics a_pprOXimationm+(ccose)(pxl+(csin9)(p)(2 — 0
Diffraction is added, surface currents considered, and a§-

proximate solutions generated for a more complete pi i+ (CCOD) Py, +(CSINB) Uy, = O,

ture of electromagnetic scattering. We on the other hagf derivatives in the-direction are absent. We will use
concentrate solely on wavefront evolution and reflectiog formula that relates an incoming ray that strikes the ob-
considering the numerical aspects of resolution and m}gct to the subsequent reflected ray. Bebe the angle of
tivaluedness both near and away from reflecting objectge ray that strikes the object. Also B denote the out-
Reflection was considered in [Osher, Cheng, Kangard normal of the object boundaries, which are curves,
Shim, and Tsai (2002)] but the approach introduced theaethe point of striking. Then the angle, going counter-
could become unreasonably inefficient when multiple relockwise, from the incoming ray to the normal at the in-
flections occur. This is because the approach consistsasface, denoted by, is equal tdBg — 6,. Newton’s law
creating more vector valued level set functions to repr®r reflection says that iBg furthermore denotes the an-
sent wavefronts each time they are reflected. Further gke from the reflected ray to the normal at the interface,
tails include interface boundary conditions on the objettien3; = 11— Br. Thus we get thaBg should equal to
surface to enforce Newton’s law of reflection. Needless- (6g—6)). In terms of the anglég of the reflected ray,

to say, dealing with all these level set functions, whiclve havelgr = 8g — 8r and s®Bg = 265 — 6, — 1T Note this
can add up without bound, can be unwieldy. This is@ndition was also used in [Osher, Cheng, Kang, Shim,
major drawback as reflections of waves occur all the timed Tsai (2002)] to link together the different vector val-
in the real world and serve an important role in numerougd level set functions.

applications such as ray tracing and scattering (see, e1g..yse this in our level set framework, we notice that
[Bleszynski, Bleszynski, and Jaroszewicz (2004); Brurghce we are considering isotropic media, the valuess of

(2002)]). Thus, our goal here is, building upon the estagn picharacteristic strips give the angles of the normals
lished level set framework for geometric optics, to intrqg the corresponding wavefronts, which are exactly the
duce and implement a technique that handles reflecticgp§J|eS of the ray directions. According to our analysis,
in a more realistic and efficient way. given x in spatial space lying on the object boundaries
We consider the model problem where the objects amd anyd, the value of our vector valued level set func-
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tion at (x,0) for any timet should equal to the value atthrough finite differencing for the derivatives and inter-
(x,20g — 6 — 11), whereBg is the angle of the normal ofpolation over the grid. Note also that the formula for
the object boundaries &t Note that one of these pointsnormals, and thus aldds, exists at all point in space.
has an incoming ray, in terms of the characteristics of thefact, this expression produces the normal of the partic-
Liouville PDE’s, and the other has a reflected ray. Thear level set surface passing through the pririinally,

one with the incoming ray will get its value from the Li-the location of the object boundaries can be accurately
ouville PDE, which should then be copied to the oth@omputed through interpolation to find the zeropaind
point to enforce reflection. Thus especially, if the bichathe interior and exterior of the objects are determined by
acteristic strips of interest, which are a part of the vecttire sign ofp.

valued level set function, hit the object boundaries, rehs |eads us to the discretization of the Liouville PDE’s
flected bicharacteristic strips will be created in the fungg arrive at the vector valued level set function at a desired
tion moving in the correct direction and manner. We Wifjme, The spatial discretization involved needs to adapt
later write down a criterion for determining which pointghe correct boundary conditions at the object boundaries.
get their information from incoming rays, i.e., from thghe time discretization, however, may be the same ev-
Liouville PDE, and which from reflected rays, i.e., fronérywhere and Total Variation Diminishing Runge-Kutta
reflection boundary conditions. So the evolution step gfethods [Shu and Osher (1988)] (TVD-RK), or even
the algorithm consists of solving the Liouville PDE’s instrong Stability Preserving Runge-Kutta methods [Spi-
the region in reduced phase space exterior to the objegd$, and Ruuth (2002)] (SSP-RK), of high order can be
i.e., {p > 0}, which we term the computational regionysed. In our simulations, we simply employ Forward
with the above serving as boundary conditions on the obgler since our current spatial discretization, which is

ject boundaries, i.e{p = 0}. discussed below, is first order accurate anyway. For the
_ _ o spatial discretization in reduced phase space, away from
4 Numerical Discretization object boundaries, we may use high order upwind meth-

pds such as Essentially Non Oscillatory [Shu and Osher

In the implementation of this approach, since we a ] s ’
bU||d|ng upon the framework of [OSher, Cheng, Kan§}988)] (ENO) and We|ghted Essentlally Non Oscilla-

Shim, and Tsai (2002)], we employ the same numeridgY [Jiang and Peng (2000)] (WENO) schemes, as in

setting. Thus, we operate on a uniform grid in three d@Sher, €heng, Kang, Shim, and Tsai (2002)]. However,

mensional reduced phase space. As mentioned befSHace We will, for simplicity, be modifying first order up-
this grid, along with the properties of self interpolatio?“"nd'ng near the object boundaries, we use first order

afforded by a PDE approach, allows for automatic res1(5pwinding away from object boundaries as well. Though
lution of wavefronts this only allows first order accuracy, the advantage is in

. simplicity and fast computations. We do note that we are

Before we consider the technique for numerically So""%rrently working on achieving higher order accuracy.
the relevant Liouville PDE’s, we first clarify some points

and present the discretization of certain basic quantitie®” 9"1d points next to object boundaries, first order up-
that will be used later. First, an initial vector valued levéiNding is attempted but needs to be modified according
set function is chosen that not only represents the initi@ the availability of information. We illustrate the dis-
given wavefronts but also satisfies the boundary con§f€tization in an example with a one dimensional spatial
tions on the object boundaries. These boundary congacel0; ) with a reflecting wall occupying0,a], for

tions will be preserved under the evolution of the levgPmea > 0. Notice there can only be two phase angles,

set function. For the second point, we note that the cofh= 0:7t  Given a uniform grid over spatial space de-

putation of the quantit@s can be determined from thd0ted by the collection of 8 xo < x1 <xp <... with
well known formula for outward normals in a level seft€PSiZ&AX, the grid over reduced phase space consists
framework D_p:) giving of (x;,0j), |-:-0, 1, 23 ...andj=0,1, Whereeo =0and
'|opl 81 = 1 This is a slight abuse of notation aswas pre-
P viously used to denote coordinates of a spatial prjnt
B = arctanz—. however, there is no confusion for this example. ket

p : L )
. N . denote the grid point in spatial space closestto but greater
The actual value for this expression can be computed
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than or equal t@. Furthermore, consider the nontrivialn this case, instead of xi_1,0,t), we can use(a,0,t),
case wherea does not lie on the gricky # a. Thus there which should be derivable from the reflection boundary
exists 0< u < 1 such thatxy —a = pAx. See Figures condition. In an alternate description, this is because for
1 and 2 for clarification. We start with a functiory de- 6 =T, the ray at, and als@, is an incoming ray and so
fined in reduced phase space in the computational regioriprmation passed from the region should be used. But

X € (a,), and consider the model equation for 8 = 0, the rays akx anda come from reflected rays
and so information passed from the boundary should be
U + (ccosB)ux =0, used. Note a#, g = 0 and so, as expected, an incoming

ith hus the f . i | h ray with anglert reflects to the angle-2m, which is the
:let fu =Upatt =0. :; us the_: ur;]ctlon ;?”_ trq\llle tﬁ the same as 0. Thug(a, 0,t) can be obtained from the value
eft for & = 1 and when it hits the wall, it will reflect, of uatx =aand6 = 1. This information is provided

reappearing ab = 0 gnd moving to the right. No'FEl by the incoming ray from within the region. The value
and the model equation take the placapair | and its of u at this boundary location can be obtained from ex-

corresponding Liouville equation. trapolation on the values at the nearby poimxtg 1) and

(Xk+17 T[)'
H X ray direction A final note in this example is in terms of. efficiency. If
T «—— g=1 Uxatd=0andx= X is discretized using first order up-

| | wind differencing and the information @ the result-
| I ! ! ing algorithm will be restricted by the stability condition
0 X, a X Xoi Xy At < pAx when using Forward Euler in time, whefs

‘ denotes the time step. This can be unduly restrictive if
pis small. Thus we modify the approach so that when
M> % we keep this discretization, but whenc % we
Figure1: This diagram shows thg= Ttslice and labels skip xx and computes at xx. 1 with a first order upwind
the reflecting wall, ray direction, and grid points near theethod usingy..1 and the point on the walh, which are
wall. separated by more thdx. Note this is still a first order
accurate approximation of the derivative. Then if a value
for uis actually needed &, it can be computed from in-

As we mer_mo_ned before, at g.”d pqlnts away franirst terpolation or extrapolation once the valueudias been
order upwinding can be applied without difficulty to the .

. o determined elsewhere, for example, from the values at
discretization ofuy. However, atx, care must be taken

e . AX .
sincexy_1 is in the interior of the reflecting wall and thug%+2 anda. The CFL condition is thuat < 5, which

u has no real value there. The valuexatq, though, is does not depend quand is not overly stringent.

possibly not used depending on the what the correct U two dimensional spatial space, we follow the same
winding direction is. Note, & = T, first order upwind- Philosophy. For grid points next to the object bound-
ing usesu(xy, T,t) and (X1, T t), Which are defined. aries, if first order upwind differencing does not involve
However, ab = 0, first order upwinding over the grid at-differencing across the object boundaries, then this ap-

tempts to usel(xy, 0,t) and, unfortunately(x,_1,0,t). Proximation is used since the information at that point
comes from an incoming ray. On the other hand, at grid

points where differencing is attempted across the object

boundaries, boundary points are used instead in the ap-

proximation, as in the one dimensional case. However, in

this case, the boundary points involved may get their val-

| ‘ : : : ues from incoming rays rather than only from the reflec-

0 X, ax X X tlpn bpundary condition (see Figure 3). We may use the
! * k2 direction of the outward normal vectdrlp, and the ray

Figure 2 : This diagram shows th@= 0 slice with grid direction considered, which has andleat the boundary
points and ray direction. point to determine where it gets its value. The condition

reflecting wall Ax

ray direction
——0=0
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of interest. See [Burchard, Cheng, Merriman, and Os-
_ her (2001)] and [Osher, Cheng, Kang, Shim, and Tsai
reflecting wall (2002)] for more details on this.

T

ray direction

5 Numerical Simulations

Currently, we have mainly applied our algorithm to the
case of reflecting walls at square boundaries. Thus if

Figure 3 : This diagram shows a slice in reduced pha¥¢ée are working in the domaip-1,1] x [-1,1] in spatial
space of a grid point of interest surrounded by its spat?ace, then the reflecting walls are located at a choice of
neighbors. The phase angle of the slice is shown agia= £1 andx; = +1. This simplifies many of our pre-
ray direction. First order upwinding at this point willvious calculations. Figure 4 shows an expanding circle
attempt to use values at the neighboring points to the 18fta medium of index of refraction 1 in such a setting
and above it, even though the ray here is an incominfh four reflecting walls using our algorithm. As time

ray and the point above the point of interest is within tHecreases, more and more reflections take place, lead-
reflecting wall to the right. ing to wavefronts that almost fill up spatial space. Note

our approach not only handles the multiple reflections,
which lead to complicated multivalued solutions, but re-
solves the wavefronts which have grown tremendously in
length. Figure 5 shows the continuation of the previous
simulation up to even larger time. Multiple reflections,

multivalued solutions, and resolution are handled with

the dot product between the ray and normal directiorise- Figures 6,7, and 8 show the bicharacteristic strips
is greater than or less than zero. If it is less than zetB reduced phase space computed at different times. No-
then the ray there is an incoming ray. Thus, the value dably, the simple curve of Figure 6 shows the bicharacter-
be gathered through extrapolation involving nearby grigtic strips that form the initial circle and Figures 6 and
points. If the above is greater than zero, however, théghow them for wavefronts that have undergone reflec-
the value at the point should come from the reflectidipn after reflection. Note though there are many curve
boundary conditions, i.e., from the value of the boun§&gments in the pictures, they are all smooth, even when
ary point at the same spatial location but with phase dRheir projection contains many intersections. Also, the
gle 25 — 6 — T which has an incoming ray and thus dgures are plotted with the phase anfiet, 1 mapped
determined value. A final detail is when searching féto [—1, 1] for simplification. Finally, for illustration, we

the correct angle of the incoming ray that will prescrib@ow the level set functions involved in Figures 6, 7, and
the reflection boundary condition at an object boundafyn Figures 9, 10, and 11, respectively.

point, this angle may not be one of the discrete valuBggure 12 shows an initially small growing ellipse in a
for the phase angle taken in the grid. This means ewvéomain with a single reflecting wall & = 1. The ellipse

if 0 is a discrete value of the phase angle of the griegixpands and reflects off the wall while passing through
20 — 6 —T1tmay not be. In this case, interpolation can kthe boundary ax, = —1. Note a sharp reflection wave-
used with nearby angles available in the grid to fill in thisont is generated and resolved without problems.
information. This forms the discretization we use for thejngly, Figure 13 considers a single reflecting wall at

Liouville PDE's of our level set functions. the left slanting from top left to bottom right that does

With this, we can solve the Liouville PDE’s fgrandy not align with the grid. The original wavefront, moving

up to any given time. To obtain the traveltimé wave- downwards, is the horizontal straight line at the top, link-
front, recalling our method of representation, we may usgy up with the corresponding reflected line at the wall.
interpolation techniques such as those related to [LoreFhese are drawn into the reflecting wall but those por-
son and Cline (1987)] to obtain the intersection of thi#ons can be ignored in the plot. In this case, we per-
zero level sets op andy. This gives the bicharacteristicformed a simplification as the incoming and reflected
strips which can be projected to arrive at the wavefromavefronts will always be straight lines with slopes pre-

to check is whether at the point,

Px, COH + Py, SING,
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1 1 1
0.5 0.5 0.5
O Q O O
-0.5 -0.5 -0.5
-1 -1 -1
- 0 1 -1 0 1 -1 0 1
time =0.0 time = 0.25 time = 0.5
1 1 1
0.5 0.5 0.5
0 0 0
-0.5 -0.5 -0.5
-1 -1 -1
-1 0 1 -1 0 1 -1 0 1
time =0.75 time=1.0 time =1.25
1 1 1
0.5 0.5 0.5
0 0 0
-0.5 -0.5 -0.5
-1 -1 -1
-1 0 1 -1 0 1 -1 0 1
time=1.5 time =1.75 time=2.0

Figure 4 : This figure shows an initially growing circular wavefront that subsequently reflects multiple times off
four walls forming a box.
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1 1 1
0.5 0.5 0.5
0 0 0
-0.5 -0.5 -0.5
-1 -1 -1
-1 0 1 -1 0 1 -1 0 1
time =2.25 time=2.5 time =2.75
1 1 1
0.5 0.5 0.5
0 0 0
-0.5 -0.5 -0.5
-1 -1 -1
-1 0 1 -1 0 1 -1 0 1
time =3.0 time = 3.25 time =3.5
1 1
0.5 0.5
0 0
-0.5 -0.5
-1 -1
-1 0 1 -1 0 1
time = 3.75 time =4.0 time = 4.25

Figure 5 : This figure continues that of Figure 4, showing even more reflections with a final wavefront taking up
much of the computational region.

served throughout the evolution. Thus, we consider juae are currently working on simulations involving more
two phase angles in reduced phase space, the ones cooBplicated object boundaries in a general setting. How-
sponding to the incoming and reflected wavefronts. Fuaver, the ones we have so far already show a vast im-
thermore, we just need one level set function and plot theovement over the previous approach found in [Osher,
projection into spatial space of the zero level sets at eacheng, Kang, Shim, and Tsai (2002)].

of the two phase angles to arrive at the wavefronts of in-

terest. As seen from the figure, our algorithm is able éo Generalizations

capture these wavefronts as they evolve and reflect. This

example still serves as a verification of our approach evéfe would of course like to generalize our approach to
though it has been simplified since many fundamental @hisotropic wave propagations, which were handled un-
ements, such as the discretization of the Liouville PDHer a level set approach in [Qian, Cheng, and Osher
are preserved in the simplification. (2003)], as well as variable indices of refraction, and
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0.5

-0.5

-1 -1

Figure 6 : This figure shows the bicharacteristic strips in reduced phase space associated to the initial circular
wavefront.

0.5

-0.5

Figure 7 : This figure shows the bicharacteristic strips in reduced phase space associated to the initial circular
wavefront at a later time, after reflections have occurred.
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o X

-0.5

Figure 8 : This figure shows the bicharacteristic strips in reduced phase space associated to the initial circular
wavefront at a later time. Note the bicharacteristic strips are smooth even after the multiple reflections involved.
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Figure9: This figure shows the zero level sets of the two components of the vector valued level set function involved
in Figure 6. The intersection of the two surfaces gives the bicharacteristic strips.
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Figure 10 : This figure shows the zero level sets of the two components of the vector valued level set function
involved in Figure 7.
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Figure 11 : This figure shows the zero level sets of the two components of the vector valued level set function
involved in Figure 8.
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Figure 12 : This figure shows an initially small growing ellipse reflecting off a wakat= 1.
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Figure 13 : This figure shows an initial downward moving horizontal wavefront with the corresponding reflected
portion in a medium with a slanted reflecting wall not aligned with the grid.
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three dimensional spatial space. Variable index of refradalsteinsson, D.; Sethian, J. (1995): A Fast Level Set
tion would not seem to present too many problems sinbethod for Propagating InterfacesJ. Comput. Phys,,
this would only include the term with tH&derivative in  vol. 118, pp. 269-277.
the Liouyille equatipns. Thgse qlerivatives should not %rnol'd, V. (1992):
hard to discretize since the interior and exterior of the erlag.

jects are determined by the spatial location only. Some

details need to be handled with respect to reinitializatigd nol’d, V.; Gusein-Zade, S.; Varchenko, A. (1986):
though and we plan to discuss this in future work. ~ Sngularitiesof Differential Maps. Birkhauser.

As for three dimensional spatial space, in [Osher, Chefiggnamou, J.-B. (to appear): An Eulerian Numerical
Kang, Shim, and Tsai (2002)], we wrote down a relatioMethod for Geometric Optics. To appear in COCV Proc.,
ship between incoming rays and reflected rays, namef.

that (B-A)A Benamou, J.-D. (1996): Big Ray Tracing: Multi-
C= —B+2W, Valued Travel Time Field Computation Using Viscosity
Solutions of the Eikonal Equation.J. Comput. Phys.,
whereA is the normal vector to the interface at the poirnol. 128, pp. 463—-474.

of reflection, B is the incoming ray, and is the re- Benamou, J.-D. (1999): Direct Solution of Multi-

flected ray. Incorporating this would form the ﬁrStSter\?alued Phase-Space Solutions for Hamilton-Jacobi
for an algorithm for three dimensions. Care, howev quations. Comm. Pure Appl. Math., vol. 52

would need to be taken in terms of efficiency, possibly
with local level set methods (see, e.g., [Adalsteinsson dRgylkin, G. (1985): Imaging of Discontinuities in the
Sethian (1995); Burchard, Cheng, Merriman, and dgverse Scattering Problem by Inversion of a Causal Gen-
her (2001); Osher, Cheng, Kang, Shim, and Tsai (200g)alized Radon TransformJ. Math. Phys., vol. 26, pp.
Peng, Merriman, Osher, Zhao, and Kang (1999)]), sine@-108.

Catastrophe Theory. Springer-

phase space in this case is six dimensional. Beylkin, G.; Burridge, R. (1990): Linearized Inverse
Scattering Problem of Acoustics and Elasticity\ave
7 Conclusion Motion, vol. 12, pp. 15-22.

Building upon the setting of [Osher, Cheng, Kang, Shirfs!€s2ynski, E.; Bleszynski, M .; Jaroszewicz, T. (2004):
and Tsai (2002)], we are able to introduce an approdgfvelopment of New Algorithms for High Frequency
that can handle reflections of waves in a reasonable &HgCctromagnetic ScatteringMES: Computer Modeling
efficient manner while preserving the benefits affordd@Engineering & Sciences, vol. 5, no. 4, pp. 295-318.

by the previous work, notably with respect to resolutioBrenier, Y.; Corrias, L. (1996): A Kinetic Formulation
and multivalued solutions. This is a great improvemefdr Multi-Branch Entropy Solutions of Scalar Conserva-
over the previous attempt found in [Osher, Cheng, Kangsn Laws. Ann. IHP Analyse non-lineaire.
Shim, and Tsai (2_002)] and is need.ed if realistic CasE?uno, 0. (2002):  New high-order, high-frequency
of wave propagation are to be considered. We are cir- . ) :

) - : integral methods in computational electromagnetism.
rently working on further generalizing our algorithm to
handle more complicated geometric reflecting surfac&jrchard, P.; Cheng, L.-T.; Merriman, B.; Osher, S.

anisotropy, variable indices of refraction, and a three q2001): Motion of Curves in Three Spatial Dimensions

mensional spatial space. Using a Level Set Approach. Comput. Phys., vol. 170,
no. 2, pp. 720-741.
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