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Abstract: This paper reviews recent advances in large-
scale computational electromagnetics using frequency
domain integral equations. It gives a brief history of
methods to solve Maxwell’s equations, followed by a de-
scription of various historical ages in solution technique
developments. Then it describes computational electro-
magnetics followed by a brief description of how fast in-
tegral equation solvers such as the multilevel fast mul-
tipole algorithm (MLFMA) is constructed using the tree
network. Some examples of large scale computing using
MLFMA are given. Ray physics used to further acceler-
ate the speed of MLFMA. The parallel implementation
of MLFMA in a code called ScaleME is reviewed, and
some example calculations and scaling studies are given.
Finally, we review the recent development of the fast in-
homogeneous plane wave algorithm (FIPWA) for layered
media for large scale computing.

1 Introduction

Electromagnetic analysis has always played a central
role in electrical engineering due to the importance of
Maxwell’s theory and related applications. The inter-
action of electromagnetic fields with complex bodies is
an intricate phenomenon which cannot be understood
or predicted easily unless solutions of Maxwell’s the-
ory are used to enhance its understanding. In the begin-
ning, it was the solutionsof Maxwell’s equations for sim-
ple shapes that were used to understand electromagnetic
phenomena. This was the age of simple shapes around
early 1900. However, due to the need for solutions of
more complex shapes, mathematicians, scientists and en-
gineers sought approximate methods to solve Maxwell’s
equations. These theories included perturbation theory
or asymptotic theory. They greatly expanded the type
of problems that could be solved approximately in elec-
tromagnetics. It was the age of approximations around
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1950s. More recently, the advent of computer technol-
ogy has called for solutions of complex objects of arbi-
trary shapes using numerical methods. This is the age of
numerical methods, which began around 1960s [Chew,
Jin, Michielssen and Song (2001)].

There are two main classes of numerical methods to
solve Maxwell’s equations, one class involves differ-
ential equation solvers, where Maxwell’s equations are
solved directly using the finite element method, or the
finite difference method [Jin (1993), Taflove (1995)].
Another class involves integral equation solvers where
Maxwell’s equations are first converted to integral equa-
tions using Green’s function. Then the integral equation
can be converted into a matrix equation using a projec-
tion method such as the method of moments [Harrington
(1982)]. The ensuing matrix equation can then be solved
numerically on a computer.

An advantage of differential equation solvers is that they
are relatively easy to implement. Moreover, they give
rise to a sparse matrix system that is economical to solve
and store. However, the unknowns are the fields, and
in general, the space around a scatterer has to be dis-
cretized as well, yielding a large number of unknowns.
Also, grid dispersion error is an important issue, as the
fields propagate on a numerical grid. However, there has
been much research recently to reduce the grid dispersion
error in differential equation solvers [Yang, Gottlieb and
Hesthaven (1997), Liu (1998), Forgy and Chew (2002)].

A distinct advantage of integral equation solvers is that
they generally entail a smaller number of unknowns since
the currents are the unknowns. Since currents occupy a
finite support in space, only that part of space needs to
be discretized to solve for the current unknowns, which
is significantly smaller than the number of unknowns
for differential equation solvers. The disadvantage of
integral-equation solvers is that they are relatively dif-
ficult to implement, and the resultant matrix is dense and
expensive to store and solve. However, the recent advent
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of fast integral equation solvers will popularize their us-
age in electromagnetic analysis [Chew, Jin, Michielssen
and Song (2001)]. The fast solvers are matrix free,
and they use memory efficiently. Consequently, the re-
sources needed to solve electromagnetic problems of the
same size are a lot more economical for integral equation
solvers compared to differential equation solvers. When
scattering by bulk material occurs, it is efficient to solve
the scattering problem with differential equation solvers.
In this case, the boundary integral method can be used to
truncate the solution domain, and fast integral equation
solvers can be used to solve the pertinent integral equa-
tion [Chew, Jin, Michielssen and Song (2001), Chap. 13,
Liu and Jin (2001)].

2 Solving an Integral Equation

When solving an integral equation, one seeks a set of
sources that cooperate with each other to produce a
field or a potential that satisfies the boundary condition.
Hence, these sources have to know how to interact with
each other, and they do so through the integral equation
via the Green’s function. An integral equation is first
converted to a matrix equation in order to seek its so-
lution. One way a solution can be sought for a matrix
equation is to perform a series of matrix-vector products.
These matrix vector products generate information about
the scatterer, and eventually, a solution to the scattering
problem can be gotten by using information embedded in
these matrix-vector products. The space spanned by the
vectors so generated is called the Krylov space [Hestenes
and Stiefel (1952)]. We shall illustrate a matrix-vector
product with the telephone network analogy.

3 Telephone Network Analogy

A matrix-vector product is physically equivalent to cal-
culating the field at every source point due to all other
source points in the scatterer. Hence, every source ele-
ment “talks” to every other source element. This is like
havingN telephones, where each telephone is connected
to every other telephone by a direct line. Consequently,
there areO

(
N2

)
links needed to connectN telephones

together. However, the telephone companies know bet-
ter. Telephones in close proximity to each other are con-
nected to a hub, and in turn, the hubs are connected to
each other (see Figure 1). In this manner, the number of
telephone links needed is greatly reduced.

Figure 1 : A telephone network analogy of how the
sources talk to each other through the fast multipole
method.

In order to facilitate a two-level matrix-vector multiply,
it is necessary to factorize elements of the matrixA.
[Rokhlin (1990)]

Ai j = Vt
il ·Tll′ ·Vl′ j (1)

In the above, the matrixAi j transmits information from
current elementj to current elementi. The factorized
form facilitates the three-stage transmission of informa-
tion from elementj to elementi, namely, first from ele-
ment j to hubl ′, from hubl′ to hubl, and then from hubl
to elementi. The above factorization can be achieved via
the use of the translational addition theorem. A logical
extension of the idea is to extend the two-level network
to a multilevel network, giving rise to a multilevel algo-
rithm as shown in Figure 2. (In computer science, this
network is known as an inverted tree or just tree, where
the top of the tree is the root, and the bottom part of the
tree is the leafy nodes.)

In order to facilitate the transfer of information in a mul-
tilevel tree, a matrix element has to be factorized as:

Ai j

= Vt
il1 ·βl1l2 ·βl2l3 · · ·βlL−1lL ·βll′ ·βlLlL−1

· · ·βl3l2 ·βl2l1 ·Vl′ j

In this manner, a multi-stage manner of information
transfer is possible. Again, the above factorization is pos-
sible via the use of the translational addition theorem.

Therefore in using the multilevel fast multipole algo-
rithm (MLFMA) [Lu and Chew (1994), Song and Chew
(1995)] to solve scattering problems, the scatterer is first
facetized into elements and enclosed in a cube. The
cube is then recursively subdivided into eight smaller
cubes until the smallest cube contains about several el-
ements. An abstract communication network is con-
structed in the computer using an oct-tree structure. The
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currents induced on each element can then communi-
cate with each other via this abstract communication net-
work. Consequently, a matrix-vector product can be per-
formed inO(N logN) operations rather than the conven-
tional O

(
N2

)
. When this ability is used in an iterative

solver such as the conjugate gradient method, an integral
equation withN unknowns can be solved incNiterN logN
operations. There are more details than what meets the
eyes here, and interested readers should consult reference
[Chew, Jin, Michielssen and Song (2001)].

Figure 2 : A multilevel algorithm emulates a multilevel
telephone network. When a large number of telephones
are involved, the multilevel network greatly reduces the
number of links needed to connect all the telephones to-
gether.

4 Some Examples

As a result of reduced computational complexity, scat-
tering solutions from objects of unprecedented sizes can
be solved by MLFMA [Song, Lu, Chew and Lee (1998),
Song and Chew (2000)]. The algorithm for fast matrix-
vector products, MLFMA, has been incorporated into
FISC (Fast Illinois Solver Code), and used to solve large-
scale problems. Figure 4 shows the induced currents cal-
culated by FISC on a fictitious aircraft, VFY 218. An
advantage of computer simulation is the ability to color-
code currents that are not visible even in experiments.
Figure 5 shows a simulation of a car where the body is
modeled by a perfect electric conductor (PEC), the wind-
shields are modeled by the thin dielectric sheets (TDS),
and the tires are modeled by impedance boundary condi-
tions (IBC).

Figures 6 and 7 show some tour-de-force computation
with the Fast Illinois Solver Code (FISC) where close

Figure 3 : In using the multilevel fast multipole algo-
rithm (MLFMA) for scattering, an object is first enclosed
inside a cube. The cube is then recursively subdivided
into eight smaller cubes until the smallest cube contains
a few current elements. The current elements then can
communicate efficiently with each other via the abstract
oct-tree network.

Figure 4 : Induced current on a full-size fictitious air-
craft VFY-218 illuminated by a vertically polarized plane
wave at 2 GHz. The calculation was done by FISC (Fast
Illinois Solver Code), the first to employ MLFMA.
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Figure 5 : Irradiation of an ’83 Camaro at 1 GHz by a
Hertzian dipole. The calculation was done by FISC. The
geometry file was derived from VRML (virtual reality
modeling language) and an automatic mesh refinement
was performed on the geometry file before the calcula-
tion.

Figure 6 : Scattering solution of a sphere whose diame-
ter is 120 wavelengths. We used 32 nodes of Origin2000,
26.7 GB of memory, 1.5 hours for filling matrix, 13.0
hours for 43 iterations in GMRES (15 to reach 0.01 resid-
ual error), and 3 minutes for 1800 points of RCS.

Figure 7 : Bistatic radar cross section (RCS) of the VFY
218 at 8 GHz for horizontal polarization. The number
of unknowns is 9,990,918. We used 126 nodes of a
128-node Origin2000, dedicated mode, with 45.5 GB of
memory, 0.4 hour for filling matrix, 11.9 hours for 43 it-
erations in GMRES (15 to reach 0.01 residual error), and
6 minutes for 3,600 RCS points.

to 10 million unknowns were needed [Song and Chew
(2000)]. The size of the VFY 218 being solved in Figure
7 is about 412 wavelengths long, 237 wavelengths wide,
and 109 wavelengths tall. Had a differential equation
solver such as an FDTD been used in solving the prob-
lem, it would have entailed over 40 billions unknowns.
Over 400 copies of FISC have been distributed together
with XPATCH by SAIC/DEMACO.

FISC can also be used to generate time-domain responses
of a complex scatterer such as an aircraft. Figure 8 shows
the use of FISC to synthesize the time-domain response
from the VFY 218 up to the frequency of 1.2 GHz [Song
and Chew (2002)]. In principle, it can be used to solve
for scattering solution of a time domain pulse having fre-
quency content up to 8 GHz. Open inlet contributes most
responses comparing with the aircraft with closed inlet
as shown in Figure 9.

5 Ray Physics for Acceleration

When the frequency is high, and the wavelength short,
the behavior of electromagnetic waves is quite differ-
ent from its low frequency counterpart. Currents start
to form beams, and rays account for the interaction be-
tween two groups of sources far apart. We have used ray
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Figure 8 : Time-domain computation with the FISC. The computation was done over many frequency points-294
points from 28 MHz to 1.2 GHz with a center frequency of 530 MHz. A second-order Blackman-Harris pulse is
synthesized for the incident wave. The plot for the VV polarization is shifted by 3 units for clarity.

Figure 9 : Time domain scattering from a VFY 218 with opened and closed engine inlets.
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physics to speed up the calculation of inter-group interac-
tion in MLFMA [Warnick and Chew (2001), Chew, Cui
and Song (2002), Cui, Chew, Chen and Song (2002)].

In MLFMA, in order to send the field (information) from
the source group to the destination group, the outgoing
far field pattern (radiation pattern) of the source group
is first computed. This far field pattern is stored as a
row vector. We call the generation of a far field pattern
where the field emanates from a point, the aggregation
stage. Then the translator converts the outgoing far field
pattern to incoming far field pattern (incoming pattern)
at the destination group, which is termed the translation
stage. The incoming pattern is again stored as a row vec-
tor. A final disaggregation stage is used to generate the
field at the destination source points. Since the translator
is a diagonal matrix, it is represented by a column vector,
and it is a function of angle as shown in Figure 10.

RRaaddiiaattiioonn PPaatttteerrnn IInnccoommiinngg PPaatttteerrnn

AAggggrreeggaattiioonn TTrraannssllaattiioonn DDiissaaggggrreeggaattiioonn

SSoouurrccee FFiieelldd

Figure 10 : The aggregation stage, translation stage, and
the disaggregation stage in the fast multipole algorithm.

When ray physics becomes dominant, the translation
function (or translator in short) becomes a sharp peak
function reminiscent of a ray that dominates the inter-
action between two groups. Hence, by proper design,
this ray physics behavior can be enhanced in the transla-
tor. We have found that by proper windowing of the se-
ries that generates the translation function, a sharp peak
translator will result. The equation for the translator in
3D scattering is given by

Tmn

(∧
k · ∧

r
mn

)
=

L

∑
l=0

il (2l +1)h(1)
l (krmn)Pl

(∧
k · ∧

r
mn

)
wmn

(2)

whereh(1)
l (krmn) is a spherical Hankel function of the

first kind, andr̂mn is a unit vector that points from the
center for groupm to groupn, and k̂ is the direction
of the plane wave that emanates from the source group.
The above summation is divergent for increasingL, and
the translator should be regarded as a distribution. If
wmn is chosen to be unity, the translator exhibits Gibbs
phenomenon typical of an abruptly truncated Fourier se-
ries. This is shown in Figure 11 corresponding to the un-
windowed function. When a proper window is assumed,
a sharper translator ensues.

Figure 11 : The plot of the translator as a function ofϑ ,
the angle between̂k and r̂mn. A sharply peaked transla-
tor results when the function is windowed in the spectral
space. Here,rmn, the distance between the two group
centers, is 20λ

Figure 12 shows the windowed and un-windowed trans-
lators for different group separations. The effect of the
ray physics becomes more pronounced when the group
separation becomes larger. This physics can be used to
reduce the computational load in MLFMA. We have hy-
bridized MLFMA with the fast far field approximation
(FAFFA) where FAFFA is used to calculate the interac-
tion when two groups are very far apart. When the group
separations are moderately large, we use the ray prop-
agation fast multipole algorithm (RPFMA) to account
for the interaction. The performance of the hybrid algo-
rithm (MLFMA-RPFMA-FAFFA) is shown in Table 1.
As much as 40.3% saving in CPU time is possible, along
with 12.8% saving in memory requirements.
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Figure 12 : The translator function windowed and un-windowed for two different group separations. (on the left)
r̂mn = 100λ, (on the right)̂rmn = 100λ.

Method Top Level g Memory (MB) CPU  time (s) 

Conventional MLFMA 2 100 4436.55 33821.85

MLFMA-RPFMA-FAFFA 3 1.5 3977.20 (10.4%) 29344.25 (13.2%) 

MLFMA-RPFMA –FAFFA 4 2.0 3910.10 (11.9%) 21214.76 (37.3%) 

MLFMA-RPFMA-FAFFA 5 2.0 3867.30 (12.8%) 20185.36 (40.3%) 

MLFMA-RPFMA-FAFFA 5 3.0 3867.30 (12.8%) 22751.87 (32.7%) 

Table 1 : Comparison of the CPU and memory requirements of the hybrid algorithm (MLFMA-RPFMA-FAFFA)
compared to conventional MLFMA. The parameter g controls the degree of switching over to the ray-physics al-
gorithm (RPFMA-FAFFA). When g is large, conventional MLFMA is used, but the smaller g is, the more the
ray-physics algorithm is used. In this simulation, the frequency is 2 GHz, with 2,067,798 unknowns involved, and
9-level algorithms are used.

Figure 13 : The bistatic RCS of the VFY 218 for the sample calculation in Table 1. No noticeable degradation of
the RCS occurs with the use of RPFMA-FAFFA-MLFMA.
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6 Parallelization

The ability to create an efficient parallel computation al-
gorithm is extremely important for large-scale comput-
ing. Parallel algorithms allow us to harness the power of
multiprocessor supercomputers, and if done efficiently,
will permit us to solve problems of unprecedented sizes.
Due to the advent of MLFMA, a matrix-vector prod-
uct can be performed inO(N logN) operations, mak-
ing the solution of scattering problems via integral equa-
tion solvers highly attractive compared to differential
equation solvers. However, differential equation solvers
can be easily parallelized via the domain-decomposition
method, and hence, the size of the problem that can be
solved is limited only by the availability of computational
resource.

Due to the complexity of MLFMA, some researchers
thought that it is not parallelizable due to the increased
communication cost. If this had been the case, it would
have spelled the end of truly large-scale computing
for MLFMA. Fortunately enough, we have parallelized
MLFMA even for very large scale problems through a
code called ScaleME [Velamparambil, Song and Chew
(1999), Velamparambil, Chew and Hastriter (2002)].

Figure 14 : The swelling of information occurs at the
top of the tree. Hence if the tree is large, huge amount of
information can flow through the ”links” at the top of the
tree.

The exorbitant communication cost in MLFMA comes
about because of the physical nature of Helmholtz field
[Chew (2002)]. A matrix-vector product transports in-
formation in a Helmholtz field through long distances if
the scatterer is large. But the information content in a
Helmholtz field does not diminish with distance. Hence,
swelling of information occurs at the top of the inverted

tree in Figure 14, very much like the case of a telephone
trunk line with the links near the top of the tree carrying
more information than the links near the bottom of the
tree. A simple way to parallelize MLFMA is to split the
workload according to the nodes of the tree [Rankine and
Board (1994)]. For example, the workload of nodes 2, 4,
5, 8, 9, 10, 11 can be assigned to one processor, while
the rest can be assigned to another processor. While this
method works for Laplacian fields, it does not work well
for Helmholtz fields. A large communcation cost arises
because the information from node 2 to node 1 has to be
sent across processors and this information can be rather
large. Instead, we have adopted another strategy—a two-
pronged approach as shown in Figure 15. Near the bot-
tom of the tree, we split the workload according to the
workload on each node. But near the top of the tree, the
tree is replicated in each processor. However, each pro-
cessor has only part of the radiation pattern of the nodes.
Since each processor has all the nodes near the top of
the tree, node-to-node information transfer occurs with-
out any communication cost. Moreover, each processor
is responsible for part of the information transfer process,
amortizing the workload over different processors. By so
doing, the communication cost is greatly reduced. We
call the levels near the top part of the tree the shared lev-
els, while those near the bottom of the tree, are called dis-
tributed levels. Figure 16 shows the parallel efficiency of
ScaleME versus the number of processors when the scat-
tering solution for a pencil-shaped target is being com-
puted.

7 Fast Algorithm for Layered Media

The scattering of an object laying on top of a layered
medium or embedded in a layered medium is a prob-
lem of great interest. The integral equation for scatter-
ing can be formulated in terms of the layered medium
Green’s function. However, an analytic closed form lay-
ered medium Green’s function does not exist, and the so-
lution is in terms of Sommerfeld integrals, which are nu-
merically expensive to evaluate. Despite this complexity,
we have successfully developed a fast algorithm called
the fast inhomogeneous plane wave algorithm (FIPWA)
to solve for the scattering solution of an object on top of a
layered medium as well as below a layered medium [Hu
and Chew (2000), Hu and Chew (2001)].

Figure 19 shows the current distribution on a tank when
the tank is hanging in free space, and when it is sitting on
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Figure 15 : The splitting of a tree into shared levels and distributed levels. The shared level portion of the tree is
replicated in each processor, while the distributed levels are split according to the workload at each node. In this
manner, the swelling of information near the top of the tree does not cause exorbitant communication cost.
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Figure 16 : A 3 m long pencil-shape target solved with ScaleME with different shared levels. The number of
unknowns is 291,774, and the number of MLFMA levels is 9.

Figure 17 : A tour-de-force computation with ScaleME on a VFY 218 at 8 GHz. The scaleable code computes a
matrix-vector product about 7 times faster than FISC for this scattering problem.



370 Copyright c© 2004 Tech Science Press cmes, vol.5, no.4, pp.361-372, 2004

Figure 18 : Scattering of a large object on top of a layered medium. This is a relatively more difficult problem
because the Green’s function is expressed in terms of Sommerfeld integrals.

Figure 19 : Scattering solution of a full-size tank with 1,210,458 unknowns at 1.2 GHz using the fast inhomogeneous
plane wave algorithm (FIPWA). Eight levels were used in this multilevel algorithm. The figure shows the current
distribution on the tank when it is unaffected by the ground (left), and when it is sitting on the ground (right).
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Figure 20 : The bistatic RCS of an underground bunker for vertical polarization. The incident angles are(
θinc,ϕinc

)
= (60◦.−90◦) . The first strong peak corresponds to specular reflection, while the second weaker peak

is back scattering. The frequency is 900 MHz, with 1,074,588 unknowns. Eight level FIPWA has been used.
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SSoolluuttiioonn ttiimmee MMeemmoorryy

FIPWA 18 hours (SGI Origin 2000) 3.94 GB 

FFuullll mmaattrriixx ((eesstt..)) ~~1111 yyeeaarrss ~~99..33TTBB

Table 2 : The resource for solving the buried bunker problem compared to traditional method for solving integral
equation.

a ground. There is a noticeable difference in the current
distribution on the caterpillar wheels of the tank for these
two cases.

Figure 20 shows the application of FIPWA for the scat-
tering solution of a buried bunker simulated with over 1
million unknowns. Table 2 shows the resources required
by FIPWA compared to traditional method. It is clear
that without fast integral equation solvers, simulation of
problems of this size is not possible. Moreover, FIPWA
for layered media is quite efficient. It consumes about 13
percent more memory and 10 percent more CPU time for
the layered medium compared to free-space calculations.

In addition to the aforementioned works, it is to be noted
that much work is ongoing in using global basis func-
tion to accelerate integral equation solution [Mittra and
Prakash (2004)]. In addition, some activities are in the
area of scaleable large scale computing [Namburu, Mark,
and Clarke (2004)], as well as applications of fast solvers
to other arena [Volakis, Sertel, Jørgensen, and Kindt
(2004)].

8 Conclusions

Computational electromagnetics is itself a science that is
a mélange of electromagnetics, mathematics, and com-
puter science. Since electromagnetics is very central to
electrical engineering and many of its associated tech-
nologies, computers will replace pencils and papers as
the new age analysis tools. This is especially true due
to the rapid progress in computer hardware and compu-
tational electromagnetics algorithms. Though solving a
ten-million-unknown problem is in the realm of super-
computing presently, it will be a routine practice in the
future, as we know that the supercomputers of today will
become the desktop computers of tomorrow.

Engineers have insatiable appetites for high-resolution
computing. Hence, in the future, we would like to see the
development of even faster algorithms. Then advances in
computer hardware technology will also amplify our ca-

pability to solve larger and more complex problems.

Many computational electromagnetics codes are run to
study trends in computer-aided design. Even though
high-accuracy computing is very important in certain
critical technologies, low-accuracy and fast computing,
which is also robust, is very important in the engineering
design world. Hence, the role of approximate computing
will also become important in the future.

While high-accuracy computing will demand mathemat-
ical rigor, approximate computing calls for engineering
and physical intuition. Both problems are equally diffi-
cult and important.
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