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Review of L arge Scale Computing in Electromagneticswith Fast | ntegral
Equation Solvers

W.C. Chew?!, J.M. Song!, T.J. Cuil, S. Velamparambil!, M.L. Hastriter!, and B. Hu!

Abstract:  This paper reviews recent advances in larg@950s. More recently, the advent of computer technol-
scale computational electromagnetics using frequermyy has called for solutions of complex objects of arbi-
domain integral equations. It gives a brief history dfary shapes using numerical methods. This is the age of
methods to solve Maxwell’'s equations, followed by a dewumerical methods, which began around 1960s [Chew,
scription of various historical ages in solution techniqudn, Michielssen and Song (2001)].

developments. Then it describes computational electithere are two main classes of numerical methods to
magnetics followed by a brief description of how fast insolye Maxwell's equations, one class involves differ-

tegral equation solvers such as the multilevel fast Mintial equation solvers, where Maxwell's equations are
tipole algorithm (MLFMA) is constructed using the tregg|ved directly using the finite element method, or the
network. Some examples of large scale computing usifigite difference method [Jin (1993), Taflove (1995)].

MLFMA are given. Ray physics used to further accelefnother class involves integral equation solvers where
ate the speed of MLFMA. The parallel implementatiogaxwell’s equations are first converted to integral equa-
of MLFMA in a code called ScaleME is reviewed, angjons using Green’s function. Then the integral equation
some example calculations and scaling studies are givVe&n be converted into a matrix equation using a projec-
Finally, we review the recent development of the fast ifipn method such as the method of moments [Harrington
homogeneous plane wave algorithm (FIPWA) for layergggg?)]. The ensuing matrix equation can then be solved

media for large scale computing. numerically on a computer.
_ An advantage of differential equation solvers is that they
1 Introduction are relatively easy to implement. Moreover, they give

Electromagnetic analysis has always played a cential to a sparse matrix system thatis economlc_al to solve
d store. However, the unknowns are the fields, and

role in electrical engineering due to the importance )
, o .___In general, the space around a scatterer has to be dis-
Maxwell’s theory and related applications. The inter- = S
retized as well, yielding a large number of unknowns.

action of electromagnetic fields with complex bodies | | id dispersion error is an important issue. as the
an intricate phenomenon which cannot be understofcl) 0.9 SPersion erroris a portant 1Ssue,

or predicted easily unless solutions of Maxwell’s thet%e dr?rzrophagate ornr?rnumneilr |ctalrgr(;d. H?;]N ev:;(rj, é?;r:rzi?n
ory are used to enhance its understanding. In the beg o1 much research recently foreduce i€ g P

ning, itwas the solutions of Maxwell's equations for simerrorin differential equation solvers [Yang, Gottlieb and

ple shapes that were used to understand electromagn'é'faiéth"’wen (1997), Liu (1998), Forgy and Chew (2002)].
phenomena. This was the age of simple shapes arofindlistinct advantage of integral equation solvers is that
early 1900. However, due to the need for solutions #tey generally entail a smaller number of unknowns since
more complex shapes, mathematicians, scientists andt8g-currents are the unknowns. Since currents occupy a
gineers sought approximate methods to solve Maxwelfigite support in space, only that part of space needs to
equations. These theories included perturbation the®§ discretized to solve for the current unknowns, which
or asymptotic theory. They greatly expanded the tyrjﬁa significantly smaller than the number of unknowns
of problems that could be solved approximately in elefr differential equation solvers. The disadvantage of

tromagnetics. It was the age of approximations arouliiegral-equation solvers is that they are relatively dif-
ficult to implement, and the resultant matrix is dense and

1Center for Computational Electromagnetics and Electromagnet@gpensive to store and solve. However, the recent advent
Laboratory University of lllinois Urbana, IL 61801
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of fast integral equation solvers will popularize their us-
age in electromagnetic analysis [Chew, Jin, Michielssen
and Song (2001)]. The fast solvers are matrix free,
and they use memory efficiently. Consequently, the re-
sources needed to solve electromagnetic problems of th
same size are a lot more economical for integral equatic
solvers compared to differential equation solvers. Wheo
scattering by bulk material occurs, it is efficient to solve
the scattering problem with differential equation solverkigure 1 : A telephone network analogy of how the
In this case, the boundary integral method can be usedtmrces talk to each other through the fast multipole
truncate the solution domain, and fast integral equatiorethod.

solvers can be used to solve the pertinent integral equa-

tion [Chew, Jin, Michielssen and Song (2001), Chap. 13, B . _
Liu and Jin (2001)]. In order to facilitate a two-level matrix-vector multiply,

it is necessary to factorize elements of the matix
[Rokhlin (1990)]

_ _ _ A=V TV (1)
When solving an integral equation, one seeks a set o%
sources that cooperate with each other to producdnghe above, the matriR;j transmits information from
field or a potential that satisfies the boundary conditiogurrent elemenf to current element. The factorized
Hence, these sources have to know how to interact wigym facilitates the three-stage transmission of informa-
each other, and they do so through the integral equatfé#n from element to element, namely, first from ele-
via the Green’s function. An integral equation is firshentj to hubl’, from hubl’ to hubl, and then from hub
converted to a matrix equation in order to seek its st element. The above factorization can be achieved via
lution. One way a solution can be sought for a matrife use of the translational addition theorem. A logical
equation is to perform a series of matrix-vector produc@_(tension of the idea is to extend the two-level network
These matrix vector products generate information abdata multilevel network, giving rise to a multilevel algo-
the scatterer, and eventually, a solution to the scatteriiigm as shown in Figure 2. (In computer science, this
problem can be gotten by using information embeddedngtwork is known as an inverted tree or just tree, where
these matrix-vector products. The space spanned by e top of the tree is the root, and the bottom part of the
vectors so generated is called the Krylov space [Hesteti@g is the leafy nodes.)
and Stiefel (1952)]. We shall illustrate a matrix-vectdn order to facilitate the transfer of information in a mul-
product with the telephone network analogy. tilevel tree, a matrix element has to be factorized as:
Aij
= Vi, -Biy, - Brats  Bro_at B Broaey + Bragt, - Braty - Virj
A matrix-vector product is physically equivalent to cal-
culating the field at every source point due to all othéf this manner, a multi-stage manner of information
source points in the scatterer. Hence, every source df@nsferis possible. Again, the above factorization is pos-
ment “talks” to every other source element. This is likgible via the use of the translational addition theorem.
havingN telephones, where each telephone is connect@erefore in using the multilevel fast multipole algo-
to every other telephone by a direct line. Consequentiithm (MLFMA) [Lu and Chew (1994), Song and Chew
there areO(NZ) links needed to conne®l telephones (1995)] to solve scattering problems, the scatterer is first
together. However, the telephone companies know bfgteetized into elements and enclosed in a cube. The
ter. Telephones in close proximity to each other are cazube is then recursively subdivided into eight smaller
nected to a hub, and in turn, the hubs are connectecctbes until the smallest cube contains about several el-
each other (see Figure 1). In this manner, the numberofients. An abstract communication network is con-
telephone links needed is greatly reduced. structed in the computer using an oct-tree structure. The
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currents induced on each element can then communi-

cate with each other via this abstract communication net-

work. Consequently, a matrix-vector product can be per-

formed inO(NlogN) operations rather than the conven-

tional O (N?). When this ability is used in an iterative / /
solver such as the conjugate gradient method, an integral
equation withiN unknowns can be solved @i NlogN
operations. There are more details than what meets the mi /

eyes here, and interested readers should consultreference
[Chew, Jin, Michielssen and Song (2001)].

Figure 3 : In using the multilevel fast multipole algo-
rithm (MLFMA) for scattering, an object is first enclosed
inside a cube. The cube is then recursively subdivided
into eight smaller cubes until the smallest cube contains
a few current elements. The current elements then can

Figure 2: A multilevel algorithm emulates a multilevel ., ., 1 nicate efficiently with each other via the abstract
telephone network. When a large number of telephor}?& tree network.

are involved, the multilevel network greatly reduces the
number of links needed to connect all the telephones to-
gether.

by ba Sgy S

4 Some Examples

As a result of reduced computational complexity, scat
tering solutions from objects of unprecedented sizes ce
be solved by MLFMA [Song, Lu, Chew and Lee (1998)
Song and Chew (2000)]. The algorithm for fast matrix- ‘\\\\\\
vector products, MLFMA, has been incorporated intc
FISC (Fast lllinois Solver Code), and used to solve large i
scale problems. Figure 4 shows the induced currents ci
culated by FISC on a fictitious aircraft, VFY 218. An
advantage of computer simulation is the ability to color-
code currents that are not visible even in experiments.

Figure 5 shows a simulation of a car where the bodylj'-ggure 4 : Induced current on a full-size fictitious air-
modeled by a perfect electric conductor (PEC), the wingfaft VFY-218 illuminated by a vertically polarized plane
shields are modeled by the thin dielectric sheets (TD®Jave at 2 GHz. The calculation was done by FISC (Fast
and the tires are modeled by impedance boundary corfHioois Solver Code), the first to employ MLFMA.

tions (IBC).

Figures 6 and 7 show some tour-de-force computation

with the Fast lllinois Solver Code (FISC) where close
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Figure 5 : Irradiation of an '83 Camaro at 1 GHz by a
Hertzian dipole. The calculation was done by FISC. Thegure 7 : Bistatic radar cross section (RCS) of the VFY
geometry file was derived from VRML (virtual reality218 at 8 GHz for horizontal polarization. The number
modeling language) and an automatic mesh refinemeftunknowns is 9,990,918. We used 126 nodes of a
was performed on the geometry file before the calcutt28-node Origin2000, dedicated mode, with 45.5 GB of
tion. memory, 0.4 hour for filling matrix, 11.9 hours for 43 it-
erations in GMRES (15 to reach 0.01 residual error), and
6 minutes for 3,600 RCS points.

to 10 million unknowns were needed [Song and Chew
(2000)]. The size of the VFY 218 being solved in Figure

. . . 7 is about 412 wavelengths long, 237 wavelengths wide,
Mie Series — and 109 wavelengths tall. Had a differential equation
S0t FISC ----4 solver such as an FDTD been used in solving the prob-
lem, it would have entailed over 40 billions unknowns.
Over 400 copies of FISC have been distributed together
with XPATCH by SAIC/DEMACO.

FISC can also be used to generate time-domain responses
of a complex scatterer such as an aircraft. Figure 8 shows
the use of FISC to synthesize the time-domain response
from the VFY 218 up to the frequency of 1.2 GHz [Song
and Chew (2002)]. In principle, it can be used to solve
90 70 B0 30 10 10 30 50 70 9o [orscattering solutionofatime domain pulse -having fre-
EL (90-8) (degrees) guency content up 'Fo 8 G_Hz. Ope_n inlet C(_)ntrlbutes r_nost
responses comparing with the aircraft with closed inlet

, . , .___as shownin Figure 9.
Figure 6 : Scattering solution of a sphere whose diame- g

ter is 120 wavelengths. We used 32 nodes of OriginZO?, Ray Physicsfor Acceleration

26.7 GB of memory, 1.5 hours for filling matrix, 13.

hours for 43 iterations in GMRES (15 to reach 0.01 resitlvhen the frequency is high, and the wavelength short,

ual error), and 3 minutes for 1800 points of RCS. the behavior of electromagnetic waves is quite differ-
ent from its low frequency counterpart. Currents start
to form beams, and rays account for the interaction be-
tween two groups of sources far apart. We have used ray
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Figure 8 : Time-domain computation with the FISC. The computation was done over many frequency points-294
points from 28 MHz to 1.2 GHz with a center frequency of 530 MHz. A second-order Blackman-Harris pulse is
synthesized for the incident wave. The plot for the VV polarization is shifted by 3 units for clarity.
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Figure9: Time domain scattering from a VFY 218 with opened and closed engine inlets.
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physics to speed up the calculation ofinter-groupinteranherehl(l) (krmn) is a spherical Hankel function of the
tion in MLFMA [Warnick and Chew (2001), Chew, Cuifirst kind, andfyy, is a unit vector that points from the
and Song (2002), Cui, Chew, Chen and Song (2002)].center for groupm to groupn, andk is the direction

In MLFMA, in order to send the field (information) fromof the plane wave that emanates from the source group.
the source group to the destination group, the outgoih§€ above summation is divergent for increasingnd

far field pattern (radiation pattern) of the source grodpe translator should be regarded as a distribution. If
is first computed. This far field pattern is stored asV%m is chosen to be unity, the translator exhibits Gibbs
row vector. We call the generation of a far field patteffhenomenon typical of an abruptly truncated Fourier se-
where the field emanates from a point, the aggregatid@s. Thisis shown in Figure 11 corresponding to the un-
stage. Then the translator converts the outgoing far figkindowed function. When a proper window is assumed,
pattern to incoming far field pattern (incoming patterrf) sharper translator ensues.

at the destination group, which is termed the translation

stage. The incoming pattern is again stored as a row ve  y¢° _

tor. A final disaggregation stage is used to generate t ?

field at the destination source points. Since the translat
is a diagonal matrix, it is represented by a column vectc

i

o . - ] = 5 Without Window Function It
and it is a function of angle as shown in Figure 10. g ol | - '
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Figure 11: The plot of the translator as a function®f
the angle betweek andf,. A sharply peaked transla-
tor results when the function is windowed in the spectral
Figure 10 : The aggregation stage, translation stage, af@ace. Hererm, the distance between the two group
the disaggregation stage in the fast multipole algorithnfenters, is 20

.Firgure 12 shows the windowed and un-windowed trans-

Whe’.‘ ray physics bet_:omes dominant, the translaﬂP tors for different group separations. The effect of the
function (or translator in short) becomes a sharp pea

: . . T hysi mes more pronoun when the grou
function reminiscent of a ray that dominates the intersy PNYSICS becomes more p onou cgd group
separation becomes larger. This physics can be used to

ac?tlon betwgen two groups. Hence, by proper desi quce the computational load in MLFMA. We have hy-
this ray physics behavior can be enhanced in the transoa-

tor. We have found that by proper windowing of the s ridized MLFMA with the fast far field approximation

) . . i:ﬁFFA) where FAFFA is used to calculate the interac-
ries that generates the translation function, a sharp p Ak hen two groups are very far apart. When the group

translator will result. The equation for the translator in :
3D scattering is given by sepqratlons are r.noderatelyllarge, we use the ray prop-
agation fast multipole algorithm (RPFMA) to account
. for the interaction. The performance of the hybrid algo-
Tm (Q ?) =yi'@+1) h™ (Krn) P (ﬁ ?>Wmn rithm (MLFMA-RPFMA-FAFFA) is shown in Table 1.
m (= m As much as 40.3% saving in CPU time is possible, along
(2) with 12.8% saving in memory requirements.
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Figure 12 : The translator function windowed and un-windowed for two different group separations. (on the left)
Frmn = 10QA, (on the rightf iy, = 100\.

Method Top Level g Memory (MB) CPU time (s)
Conventional MLFMA 2 100 4436.55 33821.85

MLFMA-RPFMA-FAFFA 1.5 | 3977.20(10.4%) | 29344.25 (13.2%)
MLFMA-RPFMA _FAFFA 2.0 | 3910.10(11.9%) | 21214.76 (37.3%)
MLFMA-RPFMA-FAFFA 2.0 | 3867.30(12.8%) | 20185.36 (40.3%)
MLFMA-RPFMA-FAFFA 3.0 | 3867.30 (12.8%) | 22751.87 (32.7%)

DNl W

Table 1 : Comparison of the CPU and memory requirements of the hybrid algorithm (MLFMA-RPFMA-FAFFA)
compared to conventional MLFMA. The parameter g controls the degree of switching over to the ray-physics al-
gorithm (RPFMA-FAFFA). When g is large, conventional MLFMA is used, but the smaller g is, the more the
ray-physics algorithm is used. In this simulation, the frequency is 2 GHz, with 2,067,798 unknowns involved, and
9-level algorithms are used.

[ Conventional MLFMA (L=2) ||
60! RPFMA-FAFFA-MLFMA (L =3) |
_ RPFMA-FAFFA-MLFMA (Lc-4)f

Bistatic RCS (dBsm)

50 100 150 200 250 300 350
0 (Degrees)

Figure 13 : The bistatic RCS of the VFY 218 for the sample calculation in Table 1. No noticeable degradation of
the RCS occurs with the use of RPFMA-FAFFA-MLFMA.
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6 Parallelization tree in Figure 14, very much like the case of a telephone
unk line with the links near the top of the tree carrying

. . . r
The ability to create an efficient parallel computation aiﬁore information than the links near the bottom of the

gorithm is extremely important for large-scale compu{l; e. A simple way to parallelize MLFMA is to split the

mgi _ParaIIeI algorithms allow us to hgr_r;e;s the ?fQWert orkload according to the nodes of the tree [Rankine and
multiprocessor supercomputers, and it done efiicien bard (1994)]. For example, the workload of nodes 2, 4,

will permit us to solve problems of unprecedented siz -8, 9, 10, 11 can be assigned to one processor, while

Due to the advent of MLFMA’ a matrlx-yector prOd-the rest can be assigned to another processor. While this
.UCt can be performed @(NIOQN) ope_rat_lons, mak- method works for Laplacian fields, it does not work well
ing the solution of scattering problems via integral €AUBr Helmnholtz fields. A large communcation cost arises
tion solvers highly attractive .compa}red o o!ifferenti ecause the information from node 2 to node 1 has to be
equation sqlvers. Hoyvever,_ differential _equatlon SOI\.’%%nt across processors and this information can be rather
can be easily parallelized via the domaln-decomposmp e. Instead, we have adopted another strategy—a two-
method, and hence, the size of the problem that can nged apprc’)ach as shown in Figure 15. Near the bot-
solved is limited only by the availability of computationa om of the tree, we split the workload according to the
resource. workload on each node. But near the top of the tree, the
Due to the complexity of MLFMA, some researchefgee is replicated in each processor. However, each pro-
thought that it is not parallelizable due to the increase@ssor has only part of the radiation pattern of the nodes.
communication cost. If this had been the case, it woullince each processor has all the nodes near the top of
have spelled the end of truly large-scale computiRle tree, node-to-node information transfer occurs with-
for MLFMA. Fortunately enough, we have parallelizegyt any communication cost. Moreover, each processor
MLFMA even for very large scale problems through & responsible for part of the information transfer process,
code called ScaleME [Velamparambil, Song and Cheynortizing the workload over different processors. By so
(1999), Velamparambil, Chew and Hastriter (2002)]. doing, the communication cost is greatly reduced. We
call the levels near the top part of the tree the shared lev-

-1 els, while those near the bottom of the tree, are called dis-
¥ B tributed levels. Figure 16 shows the parallel efficiency of
/// "’\\ ScaleME versus the number of processors when the scat-
o . tering solution for a pencil-shaped target is being com-
‘ = ‘ 2 puted.

/,\4. /\5 K ./’\—,.- 7 Fast Algorithm for Layered Media
The scattering of an object laying on top of a layered
= 9 10 Td. = 13 14 15

medium or embedded in a layered medium is a prob-

_ _ _ _ lem of great interest. The integral equation for scatter-
Figure 14 : The swelling of information occurs at th§ can be formulated in terms of the layered medium
top of the tree. Hence if the tree is large, huge amount@?een’s function. However, an analytic closed form lay-

information can flow through the "links” at the top of the, e medium Green’s function does not exist, and the so-
tree. lution is in terms of Sommerfeld integrals, which are nu-
merically expensive to evaluate. Despite this complexity,

The exorbitant communication cost in MLFMA come¥e have successfully developed a fast algorithm called
about because of the physical nature of Helmholtz fielge fast inhomogeneous plane wave algorithm (FIPWA)
[Chew (2002)]. A matrix-vector product transports int® solve for the scattering solution of an object on top of a
formation in a Helmholtz field through long distances #gyered medium as well as below a layered medium [Hu
the scatterer is large. But the information content in@d Chew (2000), Hu and Chew (2001)].

Helmholtz field does not diminish with distance. Hencésigure 19 shows the current distribution on a tank when
swelling of information occurs at the top of the invertethe tank is hanging in free space, and when it is sitting on
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SRR G Touer

Processor 1 Processor 2

Figure 15 : The splitting of a tree into shared levels and distributed levels. The shared level portion of the tree is
replicated in each processor, while the distributed levels are split according to the workload at each node. In this
manner, the swelling of information near the top of the tree does not cause exorbitant communication cost.

Impact of Shared Levels

120
> 3
% 100 —— Shared Level =0
;Lg 80 —— Shared Level =2
o 60 B
g 40 Shared Level =3
§ 20 Shared Level =4
(=¥
0 : : ‘
0 10 20 30
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Figure 16 : A 3 m long pencil-shape target solved with ScaleME with different shared levels. The number of
unknowns is 291,774, and the number of MLFMA levels is 9.

VFY-218 at B GHz - BISTATIC Broadside lllumination - ¥V and HH Polarizations

N = 10,186,446

Sllfe= VV Polarization
---- HH Polarization

50

0 50 100 150 200 250 300 350
Azimuth Angle - 0 (nose), 90 (incident direction), 180 (tail), 270 (forward scatter)

Figure 17 : A tour-de-force computation with ScaleME on a VFY 218 at 8 GHz. The scaleable code computes a
matrix-vector product about 7 times faster than FISC for this scattering problem.
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Figure 18 : Scattering of a large object on top of a layered medium. This is a relatively more difficult problem
because the Green’s function is expressed in terms of Sommerfeld integrals.

H-pol, 8™=60°, ¢™=0" H=pal, 87607, ¢™=0"

Figure19: Scattering solution of a full-size tank with 1,210,458 unknowns at 1.2 GHz using the fastinhomogeneous
plane wave algorithm (FIPWA). Eight levels were used in this multilevel algorithm. The figure shows the current
distribution on the tank when it is unaffected by the ground (left), and when it is sitting on the ground (right).

bistatic AICS (0B}
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- I ! M

£, =(33,03) oLt} ; . LI ]
& 5 200 250 300 350 400

Figure 20 : The bistatic RCS of an underground bunker for vertical polarization. The incident angles are
(8", ¢'"°) = (60°. —90°) . The first strong peak corresponds to specular reflection, while the second weaker peak
is back scattering. The frequency is 900 MHz, with 1,074,588 unknowns. Eight level FIPWA has been used.
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Solution time Memory
FIPWA 18 hours (SGI Origin 2000) 3.94 GB
Full matrix (est.) ~11 years ~9.3TB

Table 2 : The resource for solving the buried bunker problem compared to traditional method for solving integral
equation.

a ground. There is a noticeable difference in the currgrability to solve larger and more complex problems.

distribution on the caterpillar wheels of thetankforthesmany computational electromagnetics codes are run to
two cases. study trends in computer-aided design. Even though
Figure 20 shows the application of FIPWA for the scahigh-accuracy computing is very important in certain

tering solution of a buried bunker simulated with over tritical technologies, low-accuracy and fast computing,
million unknowns. Table 2 shows the resources requiradich is also robust, is very important in the engineering

by FIPWA compared to traditional method. It is cleadesign world. Hence, the role of approximate computing
that without fast integral equation solvers, simulation afill also become important in the future.

problems of this size is not possible. Moreover, FIPWyhile high-accuracy computing will demand mathemat-
for layered media is quite efficient. It consumes about ) rigor, approximate computing calls for engineering
percent more memory and 10 percent more CPU time fg{d physical intuition. Both problems are equally diffi-

the layered medium compared to free-space calculatiofft and important.

In addition to the aforementioned works, it is to be noted

that much work is ongoing in using global basis funqreferences

tion to accelerate integral equation solution [Mittra and

Prakash (2004)]. In addition, some activities are in ttfehew, W. C. (2002): Computational Electromagnetics —
area of scaleable large scale computing [Namburu, MafiRe Physics of Smooth Kernel Versus Oscillatory Ker-
and Clarke (2004)], as well as applications of fast solve§!, and Wavelets Versus Fast Multipole, ACES Digest,
to other arena [Volakis, Sertel, Jargensen, and Kiféivited plenary lecture).

(2004)]. Chew, W. C.; Cui, T. J.; Song, J. M. (2002): A FAFFA-
MLFMA algorithm for electromagnetic scatterind;EE

8 Conclusions Trans. on Antennas and Propagation, accepted for pub-
lication.

Computational electromagnetics is itself a science tha@ﬁew W. C.: Jin, J. M.; Michielssen, E.. Song, J.

a mlange of elef:tromagnetlcs, matherr_maﬂcs, and CO: (editors) (2001): Fast and Efficient Algorithms in
puter science. Since electromagnetics is very Centr""'dBmputational Electromagnetics, Artech House, Boston,

electrical engineering and many of its associated teq\lnA J. M. Jin. The Einite Element Method in Electro-
nologies, computers will replace pencils and papers r‘ﬁsagnetics ’

the new age analysis tools. This is especially true due T 3 Chew. W. C.: Chen. G- So M. (2002):
to the rapid progress in computer hardware and comp Ui, T. J.; Chew, W. C.; Chen, G.; Song, J. M. ( ):

tational electromagnetics algorithms. Though solving% FAFFA-RPFMA-MLFMA algorithm for largescale

ten-million-unknown problem is in the realm of Superglectromagnetlc scatterl_ngE_EE Trans. Antennas Prop-
at., submitted for publication.

computing presently, it will be a routine practice in th&Y

future, as we know that the supercomputers of today wiPray, E. A.; Chew, W. C. (2002): A time-domain
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