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Computation of Short Wave Equation Pulses Using Nonlinear Solitary Waves

Meng Fan', Lesong Wang? and John Steinhoff3

Abstract: A new method is described that has the pd- Introduction

tential to greatly extend the range of application of cur-

rent Eulerian time domain electromagnetic or acousti®iere are many important problems where thin, concen-
computational methods for certain problems. trated pulses must be numerically convected over long

The method involves adding a simple, nonlinear term fhstances. Examples include acoustic and EM pulses
the discretized wave equation. As such, it does not R&attered or produced by aircraft, rotorcraft and sub-
quire major restructuring of methods or codes that hafé"ines. Often, for these cases, the main interest is in
already been developed. Researchers and engineers WRdar field, where the integrated amplitude through the
are solving problems for scattering or propagation 8!/S€ at each point along the pulse surface and the mo-
short pulses should be able to use the new techniquel!#f of the centroid surface are important, rather than the
many cases as a simple “add on” or callable subroutifg!ails of the intemal structure. In general, these pulse
to allow the propagation of short pulses over long di§Hrfaces can originate in many places, multiply scatter,
tances, even if their solver is low order and the grid RfoPagate through varying index of refraction, and have
coarse compared to the pulse width (which it must beGPMPIex topology. Accordingly, we consider Eulerian
the distances are large). The method has many of fRgthods where very general topologies can be treated.
advantages of Green’s Function based integral equatWfthin this scope, there have been many efforts over
schemes for long distance propagation. However, Wgcades to discretize and solve the time dependent wave
like these schemes, since it is an Eulerian finite diffeequations. Elaborate codes have been developed to treat
ence technique, and allows short pulses to automaticaliymplex geometries, such as entire aircraft (we have
propagate through regions of varying index of refractidgh mind codes developed by M. Visbal of WPAFB, V.
and undergo multiple scattering. Shankar of Hypercomp Inc. and others). The application

The new method, “Confinement”, is based on an earligf, these is, of course, limited by the requirement that a
very successful technique, “Vorticity Confinement”, thaufficient number of grid cells must span the pulse to ac-
can also be thought of an “add on”, which allows thg!rately solve the equations.

propagation of thin, concentrated vortices over arbitrariy new method has been developed that has the potential
long distances, yet keeps the Eulerian finite different@greatly extend the range of application of these com-

property of the original fluid dynamic solution method. putational methods for certain problems. The goal of this

In the paper the application of Confinement to the scaffort is that researchers and engineers who are solving

wave equation in 1, 2 & 3 dimensions, including scatteP—rObIemS for scattering or propagation of pulses should
ing will be described. be able to use the new technique, in many cases as a sim-

ple “add on” or callable subroutine, to allow the propa-
keyword: Numerical analysis, wave equation, comp[gation of short pulses over long distances, even if their
tational acoustics, computational electromagnetics, véelver is low order and the grid is coarse compared to the
ticity confinement. pulse width (which it must be if the distances are large).
The new method has many of the advantages of Green’s
! Research Scientist, University of Tennessee Space Institute, Telinction based integral equation schemes for long dis-
lahoma, TN, U.S.A. tance propagation. However, unlike these schemes, since

2 . . . .
Research Assistant, University of Tennessee Space Institute, Tul- . .. . .
lahoma. TN. U.S.A Y P it'is an Eulerian finite difference technique, and allows

3professor, University of Tennessee Space Institute, Tullahon®f0rt pulses to automatically propagate through regions
TN, U.S.A. of varying index of refraction and undergo multiple scat-
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tering. guency limit. The main difference is that they use a sys-

The new method, “Confinement”, is based on an earlitgm of coupled rays and we use an Eulerian approach.
very successful technique, “Vorticity Confinement”, thA\lso, they are already treating diffractive effects, which
can also be thought of as an “add on”, and which alloW¥ are now starting to do.

the propagation of thin, concentrated vortices over arbi-

trarily long distances, yet keeps the Eulerian finite dip Current Methods

ference property of the original fluid dynamic solution _
method. Conventional Eulerian approaches to the wave equation

Confinement involves treating a thin feature, such a§50blem involve, of course, formulating governing pde’s,

pulse, as a type of weak solution of the governing partigiSCretizing them and solving them as accurately as pos-
differential equation (pde). Within the feature, a nor?—Ible on feaS|pIe computational grids, assuming smooth
linear difference equation, as opposed fioite difference enough solutions. For smooth, non-thin pulses, these

equation, is solved that does not necessarily represeﬁ?%thOds are well known to converge to the correct so-

Taylor expansion discretization of the pde. The approaléwon as the number of points across the pulse, N, be-

is similar to shock capturing [Lax(1957)], where consefomes large: Error estimates are asymptotic in N. For ac-

vation laws are satisfied, so that integral quantities suEWate Tﬁ Iu(;mtns,_evlelz n hlgh_er oNr(;IerE) coTIpI:;dlschtlza-
as total amplitude and centroid motion are accurat |9n methods typically require IV fo be at feast or.
that the error obeys the large N estimate and is small

S
computed for the feature. A more general approach’ : )
needed, however, than for shocks, as discussed belb _bal and Gaitonde (1998)]. Even then, solutions de-

Basically, we treat the features as multi-dimensional nog]r__ade over long convection di_stances (thousapds 0].: pulse
linear discrete solitary waves that “live” on the comput _-'F“hs)- As a result, con_ventlonal methods will be mgf-
tional lattice. These obey a “confinement” relation that iclent (or not even feasible) for thin pulses convecting

a generalization to multiple dimensions of some earli@’®’ Ion.g distances. Further, ada_lptl\_/_e, unstructured_ g_rlds
1-D contact discontinuity capturing schemes cannot improve the resolution significantly for realistic

_ _ _ problems with many thin, time dependent pulse surfaces.
Differences between Confinement and conventional 1-D

shock capturing, are that:

First, unlike shocks, characteristics do not point into th3e Confinement Approach

feature, and extra terms must be designed to prevent it

from spreading due to numerical effects in the conveg- pagic Features

tion. (Harten [Harten(1978)] developed such a scheme,

but for contact discontinuities in 1-D compressible flowfyor the above reasons, for the problems considered, it

Second, thin wave equation pulses, vortex filaments 'gdmportant to have 0”|¥ very few (2 or 3) grid points to _
thin streams of passive scalars, are intrinsically mulf€Presentthe cross section of a pulse surface at each point
dimensional: A concatenation of 1-D “capturing” operdond the surface and to propagate it with no numerical
ators along separate grid axes will not, generally, gi\%_)readmg. Thls small number of grid pomts is con5|s_t_ent
smooth solutions. Due to the multidimensional nature, Yfith the desire to only compute a few integral quantities
seems necessary to pay some attention to the (modef¥dfSS the pulse, such as total amplitude and centroid po-

structure within the feature, even though it is sampled §ffion @nd perhaps width or a small number of moments.
only a few grid cells in the cross-section. Then, the difference scheme can, effectively, serve as a

First, a short critique of conventional methods for thesjézmple’ implicit*solitary wave” model thaepresentsthe
problems will be given. The basic new method will then ~ o _

be described. Initial results in 1, 2 & 3D will finally be/N Important point is that both the _solltary wave pulse
presented. thickness and the physical pulse thickness (they may be

o different) are assumed to be small compared to the other
The method presented has a similar goal to that oﬁ ) P

. ) ) . scales in the region where the method is used. Thus,
[Bleszynsk, Bleszyns_k| and Jaroszewicz (.2004)] N th ?e pulse will propagate according to geometrical optics
they propagate a continuous wave surface in the high ffﬁi-gh frequency limit) in the region
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The basic idea is that we want to propagate the minimuyste, when a pulse scatters from an aircraft wing, propa-
amount of information necessary to describe the pulgmtes many pulse widths, and scatters again from a tail
When it is thick, compared to other dimensions, suebhere fine details must be resolved. Further, multiple

as the nearby details of the scatterer, we may choosetattering in inlets for short pulses should provide an im-

use a fine grid and represent the full physical pulse proertant application.

file. As it propagates away, we may just be interested, as

explained, in integral quantities at each point along t%e2 Approach

pulse surface, i.e., along a ray normal to the surface. fige governing equation discussed here is the discretized
the pulse propagates away, we may have to use a COagi&far wave equation, with an added Confinement term:

grid that may even have cells larger than the physiq@le approach also works for vectors or tensors, such as
pulse thickness, while retaining this information in ou{;5xwell’s equations.)

“representative” solitary wave.

An important point is that, when the pulse thickness i@ 0?2+ h_zmzat [p— £ @)
much less than the radius of curvature of the pulse sur- At
face, itis more efficient to describe the pulse profile by ah

number of “moment fields”. The resolution of the thick < C @ 15 the scalar amplitude; is the index of refrac-

tion, W is a diffusion coefficient that includes numerical

ness profil_e then de_pends Iin_early on th? number_of theg%?ects (we assume physical diffusion is much smaller)
moment fields, which only increases linearly with th nd the discretized grid cell sizefisand time stepAt.

resolution. This is then also true of computational stof : ) -
the last termg®, € is a numerical coefficient that,

age and work requirements. This should be contras!:e%r i . .
with conventional discrete Eulerian schemes, where t ether with, controls the thickness and time scales of

cell size is determined by the required resolution. Thellcjeq,e propagating pulseb will be defined below. For this

f : . reason, we refer to the two terms in the brackets as “Con-
or general configurations of surfaces, the number of grj tterms”. Wi 0 ventional. not necessar
nodes (and computer storage) in 3-D increases like l|f Er}]rinﬁn rs rdsi - re?i;z:t?(;]nseafg used for tr;e differential
third power of the resolution and, (including time stegy gh order disc

changes), the work increases like the fourth power. perators.

As explained in the next section, when the grid is coarsvél,e have found that, at least in tests involving propaga-

the Confinement method allows pulse surfaces to pré )n through regions of constant index of refraction, the

agate over arbitrarily long distances while treating the: sutl_ts argz S.Imltl.a r tp plotltadblz aflc?r:acé’HVéhe;hg ' or( ln)ot
as nonlinear solitary waves, spread ove® grid cells, € ime derivative 1S included on the ot =a. '

thus allowing information to be accurately propagateH.owever’ since the time derivative enforces a relaxation

On the other hand, when the grid is fine and details net dthe desired pulse shape (as explained below), we be-

to be resolved, the Confinement term automatically b“ee-ve it should be included in general.
come small and the method can automatically becorh@e basic idea is that we want the computed thin pulses
to conventional computational acoustics (or electroma§-maintain their profile and total amplitude as their cen-
netics). Further, if a pulse propagates through a smo#iid surfaces are propagated through the field. (We want
medium as a solitary wave and then encounters a s same for separate pulse fields representing moments.)
terer where details must be resolved, the pulse can Bt requirement that they relax to their profile in a small
“reconstituted” on the (new) fine grid, if necessary, ugtimber of time steps and have a support of a small num-
ing additional moments. This reconstitution will requir®er of grid cells determines the two parametersind

a “pulse shaping” step. This can easily be effected sintle, Also, we assume that the index of refraction field in

in addition to the common positive numerical diffusionvhich the pulse is propagating is slowly varying in time
with confinement, we can have a stalietal negative and space compared to these scales (this is required any-
diffusion, as explained below. Thus, the fine grid puls@ay if the grid cell size and time step are to resolve this
can be expanded or contracted until its moments agfédd). We then have a two-scale problem with the thin
with the correct values (this is a subject of current workjulse obeying a “fast” dynamics.

This feature will be important in many cases, for exam-
D% (np—e®) ~ 0, )
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Thin pulses are then propagated through the field by taed Dietz (2003)]). Eg. (4) is related to the harmonic
“slow” variable,o. Exactly the same type of discussiomean.

applies to the convection of passive scalars, as descrilpggl example, in 2-D, except for convecting scalars, the

in [SteinhOﬁ, Fan, Wang and Dietz (2003)] form used in this Study is

In general, the integrals that we are interested in are not =

sensitive to the parametezsaandpi over a wide range of El El (EW _ )‘1

values, as long as the computed pulses are thin. n o |oa=—1p=1 +a.i+p ©)
An important feature of the Confinement method is that,’ N

since it is a second derivative in space and first in time,
the total amplitude and centroid of the surface are not
changed by the added confinement terms, even under diBere the number of terms in the sum is N=9. Here, we
cretization. assumeayg’ > 0. Negative values can also be accommo-

dated with a small extension. Bogiande are positive.

3.3 Formulation An important feature is that all terms are homogeneous

The formulation for Confinement will first be describe@f degree 1in Eq. (4). This is important because the con-
for a stationary pulsea(= 0), for clarity. The scalar finement should not depend on the scale of the quantity
formulation presented here is related to that presenf&ing confined. Another important feature is the nonlin-
in [Steinhoff, Wenren, Underhill and Puskas (1995), aifity. It is easy to show that a linear combination of
Steinhoff, Puskas, Babu, Wenren and Underhill (1992§rms, for example of second and fourth order, cannot
in 1-D. This “fast” dynamics will be realized in a wavdead to a stable confinement for any finite range of coef-
equation computation in the limit of small time step, oficients.

if a separate “Confinement” iteration is done each tinf@r smoothgp fields (long wavelengths), the last term in
step. Excellent results are found with convection and &eg. (1) represents a diffusion. jif< ¢, the totaldiffusion
shown in [Steinhoff, Fan, Wang and Dietz (2003)] fofin the long wavelength limit) is negative. However, the

vorticity as well as convecting passive scalars. iteration of Eq. (3) is still not divergent and has been
For this case, we have an iteration for a non-negatigserved to converge for valuesgdeveral times that of
scalar,@: u (depending on value qf).
gt = @'+ ph?’ 02" — eh?0%0" (3) 34 Analysis of Small Time Step Form
(Sections 3.4 and 3.5 are close to part of [Steinhoff, Fan,

where Wang and Dietz (2003)]).

5Ci (@)1 -1 Stability of the iteration a& — o can easily be shown
o — | (4) [Steinhoff and Lynn (2002)] for a range of values jof

G andg, includingp < €. We only have to start with a non-

! negative initial (@°) field and show that, for the and

€ values,@' remains non-negative. Since the sumqof

~ values is conserved, there is thus an upper bound.

¢ =19"+3 (5) .
Assuming convergence as— o, we have

where the sum is over a set of grid nodes near and incltﬁb(wp_ £d) =0 @)

ing the node wheré is computed, the absolute value is

taken and, a small positive cpqstan&(l_q ) is added If @ (and hencebd) vanishes in the far field, away from

to prevent problems due to finite precision. The coeffi, pulse, we havep— £®

cients,C;, can depend oh but good results are obtaineollf th . ’t o th, labdl — 0 then h

by simply setting them all to 1 for the wave equation e point (i, j) is given the labdl = 0, we then have

(different values are used for passive scalar convectiom | “1_p )

to avoid using downwind values [Steinhoff, Fan, Wan80 eN Z(p' N
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There are many solutions of this equation. The onesfedr conservative discretization, the total amplitude
importance to us are of the form
Q= Z of (14)
1]

@ = Ased[a(z—29)] 9)
is independent ofi. If we define the centroid

noe
A, a, 7, 6 constant, and wherg = ih, y; = jh, his <X== %X” cpﬂ/Q (15)
the grid cell size, and we use the form corresponding to

C = 1in Eq. (4). This converges to a straight pulse (ind the weighted mean velocity

2-D) concentrated about a line at an§ldt is easy to see

Z=X;cosB+y;sind

g <g>"=%Yadi/Q 16
thata satisfies q %q”qﬂ/ (16)
€ .
0 [1+2ch(ahcosB) + 2ch(ahsin6)] /5 (11) wherex;; is the (fixed) position vector of node (i, j), and
@; andg;; are the scalar value and the velocity at that
forN=5. node, then the centroid evolves according to:
An important point is that we obtain close to the same X >"1=< X >" +At < g >" (17)

invariance properties as the original pde: The solution
is translationally invariantz, is arbitrary) and close to Since we are, at this point, only interested in the “expec-
rotationally invariant @ is arbitrary with a width, given tation values” for thin pulses and that the pulses remain

by a in Eqg.(11), having some dependencefn compact, spread over only a few cells, this Ehrenfest-
type relation is exactly what we need. Only the variables
3.5 Convection of Passive Scalar of importance are, effectively, solved for. This shows

Since the wav tion is. of loselv relat dt?at the pulses, when isolated, evolve as surfaces with
ce the wave equation IS, of course, closely relate gsentially no internal dynamics (assuming they remain

the conyectio_n c qu_ation, we present some analysis forﬁb%fined as thin surfaces). However, we keep the very
Iattler, since 'f[ 'S s_tlr:nfhler. Th|hst adnaIyS|s sh(l)w_st thathtn%portant Eulerian feature that the number of pulses is
puise convects with the weighte me_zar: velocty, W ©hot fixed. We could, for example, create additional soli-
the pulge amplitude is the weight. This Ehrenfest typ%ry waves by inserting a source: No additional com-
of relation §hould extend to the full wave equation. Pputational markers need be created, as in Lagrangian
The following argument assumes, for each convectigehemes. For this study, we show that pulses, for exam-

step (1), there is at least one confinement step so that thg reflect and thereby increase automatically in number.
feature remains compact. ¢frepresents a confined pasrhis will be seen in the results of Sec. 4.
sive scalar, then, using a conservative convection routine,

we have the following relationships for the dynamics of Results

the convecting solitary wave (we describe the 2-D case
for simplicity): For the scalar wave equation, a simple second-order cen-

tered difference method was used for the discretization
of Eg. (1). We solve it through two steps: the first is a

We have a discretization of

o= 0. (G9) + hZDZ(p(p—etD)/At (12) conventional wave equation solver step, and the second
is the confinement step

assumingl-g=0. Then, ¢ =2¢" — @+ 0% (A Tgige @ (18)
@ = ¢ + PP 0 8, (e —£®") (19)

@ = @ — MtOgise. - (G9) + W0 (Mp—€®)  (13) where[?,, and3, are the second-order centered differ-
ence approximation for the Laplac# operator and the
where discrete operators are labeled. backward difference operatorim
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For the 1-D and 2-D result plots, axes are labeled with
grid node location. For the 2-D and 3-D results, plots of
amplitude are made using dense contours.

4.1 1-D Wave Equation

We start a single pulse in the center of a 256 cell grid
with periodic boundary conditions. This pulse has an ini-
tial amplitude of 2 at the single, central grid point and
is zero at all other points. The resulting two opposite
moving waves are shown in Fig. 1 for no Confinement
(1a) and Confinement (1b). A minimal diffusion neces-
sary for stability,u = 0.025, withe = 0 was used in 1a
while in 1b p= 0.1, € = 0.8. The rapid diffusion can be
seen in 1a,b, while in 1c,d the bulk of the pulses remain
confined to~3 grid cells and have no diffusion. Other
tests show that they continue unaltered for up to about
10° time steps, and beyond if double precision is used.
This was also shown with an earlier Confinement form
in [Steinhoff, Wenren, Underhill and Puskas (1995)].

It should be noted that even though the Confinement
is nonlinear, there is virtually no interaction when the
waves pass through each other. This was shown in de-
tail in [Steinhoff, Wenren, Underhill and Puskas (1995)].

4.2 2-D Wave Propagation

Waves were propagated oii28)? cell grid with reflect-

ing boundary conditions. Confinement values used were
p=0.08,& =0.6. Of course, the actual wave equation
exhibits a “tail” behind a pulse in 2-D. This can be seen
to be suppressed by the Confinement, and, effectively,
only the steep pulse front is accurately computed. The
tail, since it is smooth, could be computed with no Con-
finement. The main interest, however, is in 3-D and this
was not done.

4.2.1 Convex Wave

An outward propagating, initially circular pulse surface
(diameter 64 cells) was computed. It can be seenin Fig.2
that it remains sharply confined, even after many reflec-
tions. Again, asin 1-D, there is no discernable interaction
between intersecting waves.

4.2.2 Concave and Convex \Waves

The same computation was done as in 4.2.1, but with an
initially 2:1 elliptical surface, with 64 cell major axis.
Both inward and outward moving waves were formed.
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Figurel1: 1D pulse propagation
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Figure 2: 2D circle wave propagation
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The inward moving wave can be seen to form cusps and
“swallowtails”. These are only initially resolved, be-
cause of the coarseness of the grid. The basic discrete
wave equation method, without Confinement, would, of
course, not do better. It is well known that refinement
is needed in such regions for direct application of finite
difference schemes [Benamou and Solliec (2000)].

4.3 3-D Convex Wave Propagation

An expanding, initially spherical pulse surface was com-
puted on a coarsé64)2 cell grid with reflecting bound-
ary conditions. The initial diameter was 32 cells. Con-
finement values used wepe= 0.05 ance = 0.4. Asinthe

2-D case, the pulse remains completely confined, even
after many reflections.

5 Conclusion

A new Eulerian technique is introduced for solving the
wave equation for short pulses. The method, “Confine-
ment”, reduces to standard Eulerian ones for smooth,
long wavelength pulses. However, unlike conventional
schemes, it does not diffuse short pulses. Instead, they
are “Confined” and propagate as nonlinear solitary waves
that “live” on the computational lattice. As such, they can
be propagated over indefinitely long distances, while re-
maining only 2-3 cells thick. These pulsespresent the
short physical pulses and accurately propagate integral
guantities at each point along the pulse surface, such as
total amplitude, centroid position, pulse width and other
desired moments. It is argued that, for thin pulses, the
method can easily be implemented in existing codes, al-
lowing them to be extended to treat much higher wave-
lengths/shorter pulses, without extensive reformulation.
Examples are shown in 1-D, 2-D and 3-D.
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Figure 3: 2D convex and concave wave propagation: Cusp Formulation
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Figure4: 3D convex wave propagation
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