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Computation of Short Wave Equation Pulses Using Nonlinear Solitary Waves

Meng Fan1, Lesong Wang2 and John Steinhoff3

Abstract: A new method is described that has the po-
tential to greatly extend the range of application of cur-
rent Eulerian time domain electromagnetic or acoustic
computational methods for certain problems.

The method involves adding a simple, nonlinear term to
the discretized wave equation. As such, it does not re-
quire major restructuring of methods or codes that have
already been developed. Researchers and engineers who
are solving problems for scattering or propagation of
short pulses should be able to use the new technique, in
many cases as a simple “add on” or callable subroutine,
to allow the propagation of short pulses over long dis-
tances, even if their solver is low order and the grid is
coarse compared to the pulse width (which it must be if
the distances are large). The method has many of the
advantages of Green’s Function based integral equation
schemes for long distance propagation. However, un-
like these schemes, since it is an Eulerian finite differ-
ence technique, and allows short pulses to automatically
propagate through regions of varying index of refraction
and undergo multiple scattering.

The new method, “Confinement”, is based on an earlier,
very successful technique, “Vorticity Confinement”, that
can also be thought of an “add on”, which allows the
propagation of thin, concentrated vortices over arbitrarily
long distances, yet keeps the Eulerian finite difference
property of the original fluid dynamic solution method.

In the paper the application of Confinement to the scalar
wave equation in 1, 2 & 3 dimensions, including scatter-
ing will be described.
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1 Introduction

There are many important problems where thin, concen-
trated pulses must be numerically convected over long
distances. Examples include acoustic and EM pulses
scattered or produced by aircraft, rotorcraft and sub-
marines. Often, for these cases, the main interest is in
the far field, where the integrated amplitude through the
pulse at each point along the pulse surface and the mo-
tion of the centroid surface are important, rather than the
details of the internal structure. In general, these pulse
surfaces can originate in many places, multiply scatter,
propagate through varying index of refraction, and have
complex topology. Accordingly, we consider Eulerian
methods where very general topologies can be treated.

Within this scope, there have been many efforts over
decades to discretize and solve the time dependent wave
equations. Elaborate codes have been developed to treat
complex geometries, such as entire aircraft (we have
in mind codes developed by M. Visbal of WPAFB, V.
Shankar of Hypercomp Inc. and others). The application
of these is, of course, limited by the requirement that a
sufficient number of grid cells must span the pulse to ac-
curately solve the equations.

A new method has been developed that has the potential
to greatly extend the range of application of these com-
putational methods for certain problems. The goal of this
effort is that researchers and engineers who are solving
problems for scattering or propagation of pulses should
be able to use the new technique, in many cases as a sim-
ple “add on” or callable subroutine, to allow the propa-
gation of short pulses over long distances, even if their
solver is low order and the grid is coarse compared to the
pulse width (which it must be if the distances are large).
The new method has many of the advantages of Green’s
Function based integral equation schemes for long dis-
tance propagation. However, unlike these schemes, since
it is an Eulerian finite difference technique, and allows
short pulses to automatically propagate through regions
of varying index of refraction and undergo multiple scat-
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tering.

The new method, “Confinement”, is based on an earlier,
very successful technique, “Vorticity Confinement”, that
can also be thought of as an “add on”, and which allows
the propagation of thin, concentrated vortices over arbi-
trarily long distances, yet keeps the Eulerian finite dif-
ference property of the original fluid dynamic solution
method.

Confinement involves treating a thin feature, such as a
pulse, as a type of weak solution of the governing partial
differential equation (pde). Within the feature, a non-
lineardifference equation, as opposed tofinite difference
equation, is solved that does not necessarily represent a
Taylor expansion discretization of the pde. The approach
is similar to shock capturing [Lax(1957)], where conser-
vation laws are satisfied, so that integral quantities such
as total amplitude and centroid motion are accurately
computed for the feature. A more general approach is
needed, however, than for shocks, as discussed below.
Basically, we treat the features as multi-dimensionalnon-
linear discrete solitary waves that “live” on the computa-
tional lattice. These obey a “confinement” relation that is
a generalization to multiple dimensions of some earlier
1-D contact discontinuity capturing schemes.

Differences between Confinement and conventional 1-D
shock capturing, are that:

First, unlike shocks, characteristics do not point into the
feature, and extra terms must be designed to prevent it
from spreading due to numerical effects in the convec-
tion. (Harten [Harten(1978)] developed such a scheme,
but for contact discontinuities in 1-D compressible flow.)

Second, thin wave equation pulses, vortex filaments or
thin streams of passive scalars, are intrinsically multi-
dimensional: A concatenation of 1-D “capturing” oper-
ators along separate grid axes will not, generally, give
smooth solutions. Due to the multidimensional nature, it
seems necessary to pay some attention to the (modeled)
structure within the feature, even though it is sampled on
only a few grid cells in the cross-section.

First, a short critique of conventional methods for these
problems will be given. The basic new method will then
be described. Initial results in 1, 2 & 3D will finally be
presented.

The method presented has a similar goal to that of
[Bleszynski, Bleszynski and Jaroszewicz (2004)] in that
they propagate a continuous wave surface in the high fre-

quency limit. The main difference is that they use a sys-
tem of coupled rays and we use an Eulerian approach.
Also, they are already treating diffractive effects, which
we are now starting to do.

2 Current Methods

Conventional Eulerian approaches to the wave equation
problem involve, of course, formulating governing pde’s,
discretizing them and solving them as accurately as pos-
sible on feasible computational grids, assuming smooth
enough solutions. For smooth, non-thin pulses, these
methods are well known to converge to the correct so-
lution as the number of points across the pulse, N, be-
comes large: Error estimates are asymptotic in N. For ac-
curate solutions, even higher order, complex discretiza-
tion methods typically require N to be at least∼8 or 10
so that the error obeys the large N estimate and is small
[Visbal and Gaitonde (1998)]. Even then, solutions de-
grade over long convection distances (thousands of pulse
widths). As a result, conventional methods will be inef-
ficient (or not even feasible) for thin pulses convecting
over long distances. Further, adaptive, unstructured grids
cannot improve the resolution significantly for realistic
problems with many thin, time dependent pulse surfaces.

3 Confinement Approach

3.1 Basic Features

For the above reasons, for the problems considered, it
is important to have only very few (2 or 3) grid points to
represent the cross section of a pulse surface at each point
along the surface and to propagate it with no numerical
spreading. This small number of grid points is consistent
with the desire to only compute a few integral quantities
across the pulse, such as total amplitude and centroid po-
sition, and perhaps width or a small number of moments.
Then, the difference scheme can, effectively, serve as a
simple, implicit “solitary wave” model thatrepresents the
wave.

An important point is that both the solitary wave pulse
thickness and the physical pulse thickness (they may be
different) are assumed to be small compared to the other
scales in the region where the method is used. Thus,
the pulse will propagate according to geometrical optics
(high frequency limit) in the region.
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The basic idea is that we want to propagate the minimum
amount of information necessary to describe the pulse.
When it is thick, compared to other dimensions, such
as the nearby details of the scatterer, we may choose to
use a fine grid and represent the full physical pulse pro-
file. As it propagates away, we may just be interested, as
explained, in integral quantities at each point along the
pulse surface, i.e., along a ray normal to the surface. As
the pulse propagates away, we may have to use a coarser
grid that may even have cells larger than the physical
pulse thickness, while retaining this information in our
“representative” solitary wave.

An important point is that, when the pulse thickness is
much less than the radius of curvature of the pulse sur-
face, it is more efficient to describe the pulse profile by a
number of “moment fields”. The resolution of the thick-
ness profile then depends linearly on the number of these
moment fields, which only increases linearly with the
resolution. This is then also true of computational stor-
age and work requirements. This should be contrasted
with conventional discrete Eulerian schemes, where the
cell size is determined by the required resolution. There,
for general configurations of surfaces, the number of grid
nodes (and computer storage) in 3-D increases like the
third power of the resolution and, (including time step
changes), the work increases like the fourth power.

As explained in the next section, when the grid is coarse,
the Confinement method allows pulse surfaces to prop-
agate over arbitrarily long distances while treating them
as nonlinear solitary waves, spread over∼ 2 grid cells,
thus allowing information to be accurately propagated.
On the other hand, when the grid is fine and details need
to be resolved, the Confinement term automatically be-
come small and the method can automatically become
to conventional computational acoustics (or electromag-
netics). Further, if a pulse propagates through a smooth
medium as a solitary wave and then encounters a scat-
terer where details must be resolved, the pulse can be
“reconstituted” on the (new) fine grid, if necessary, us-
ing additional moments. This reconstitution will require
a “pulse shaping” step. This can easily be effected since,
in addition to the common positive numerical diffusion,
with confinement, we can have a stable,total negative
diffusion, as explained below. Thus, the fine grid pulse
can be expanded or contracted until its moments agree
with the correct values (this is a subject of current work).
This feature will be important in many cases, for exam-

ple, when a pulse scatters from an aircraft wing, propa-
gates many pulse widths, and scatters again from a tail
where fine details must be resolved. Further, multiple
scattering in inlets for short pulses should provide an im-
portant application.

3.2 Approach

The governing equation discussed here is the discretized
scalar wave equation, with an added Confinement term:
(the approach also works for vectors or tensors, such as
Maxwell’s equations.)

∂2
t φ= σ2∇ 2φ+

h2

∆t
∇ 2∂t [µφ−εΦ] (1)

whereφ is the scalar amplitude,σ is the index of refrac-
tion, µ is a diffusion coefficient that includes numerical
effects (we assume physical diffusion is much smaller),
and the discretized grid cell size ish and time step,∆t.
For the last term,εΦ, ε is a numerical coefficient that,
together withµ, controls the thickness and time scales of
the propagating pulse.Φ will be defined below. For this
reason, we refer to the two terms in the brackets as “Con-
finement terms”. We assume conventional, not necessar-
ily high order discretizations are used for the differential
operators.

We have found that, at least in tests involving propaga-
tion through regions of constant index of refraction, the
results are similar to plottable accuracy, whether or not
the time derivative is included on the RHS of Eq. (1).
However, since the time derivative enforces a relaxation
to the desired pulse shape (as explained below), we be-
lieve it should be included in general.

The basic idea is that we want the computed thin pulses
to maintain their profile and total amplitude as their cen-
troid surfaces are propagated through the field. (We want
the same for separate pulse fields representing moments.)
The requirement that they relax to their profile in a small
number of time steps and have a support of a small num-
ber of grid cells determines the two parameters,ε and
µ. Also, we assume that the index of refraction field in
which the pulse is propagating is slowly varying in time
and space compared to these scales (this is required any-
way if the grid cell size and time step are to resolve this
field). We then have a two-scale problem with the thin
pulse obeying a “fast” dynamics.

∇ 2(µφ−εΦ)≈ 0, (2)
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Thin pulses are then propagated through the field by the
“slow” variable,σ. Exactly the same type of discussion
applies to the convection of passive scalars, as described
in [Steinhoff, Fan, Wang and Dietz (2003)].

In general, the integrals that we are interested in are not
sensitive to the parametersε andµ over a wide range of
values, as long as the computed pulses are thin.

An important feature of the Confinement method is that,
since it is a second derivative in space and first in time,
the total amplitude and centroid of the surface are not
changed by the added confinement terms, even under dis-
cretization.

3.3 Formulation

The formulation for Confinement will first be described
for a stationary pulse (σ = 0), for clarity. The scalar
formulation presented here is related to that presented
in [Steinhoff, Wenren, Underhill and Puskas (1995), and
Steinhoff, Puskas, Babu, Wenren and Underhill (1997)]
in 1-D. This “fast” dynamics will be realized in a wave
equation computation in the limit of small time step, or
if a separate “Confinement” iteration is done each time
step. Excellent results are found with convection and are
shown in [Steinhoff, Fan, Wang and Dietz (2003)] for
vorticity as well as convecting passive scalars.

For this case, we have an iteration for a non-negative
scalar,φ:

φn+1 = φn +µh2∇ 2φn−εh2∇ 2Φn (3)

where

Φn =




∑
l

Cl(φ̃n)−1

∑
l

Cl



−1

(4)

φ̃n = |φ|n +δ (5)

where the sum is over a set of grid nodes near and includ-
ing the node whereΦ is computed, the absolute value is
taken andδ, a small positive constant (∼ 10−8 ) is added
to prevent problems due to finite precision. The coeffi-
cients,Cl, can depend onl, but good results are obtained
by simply setting them all to 1 for the wave equation
(different values are used for passive scalar convection
to avoid using downwind values [Steinhoff, Fan, Wang

and Dietz (2003)]). Eq. (4) is related to the harmonic
mean.

For example, in 2-D, except for convecting scalars, the
form used in this study is

Φn
i j =




+1
∑

α=−1

+1
∑

β=−1

(
φ̃n

i+α, j+β

)−1

N




−1

(6)

where the number of terms in the sum is N=9. Here, we
assumeφn ≥ 0. Negative values can also be accommo-
dated with a small extension. Bothµ andε are positive.

An important feature is that all terms are homogeneous
of degree 1 in Eq. (4). This is important because the con-
finement should not depend on the scale of the quantity
being confined. Another important feature is the nonlin-
earity. It is easy to show that a linear combination of
terms, for example of second and fourth order, cannot
lead to a stable confinement for any finite range of coef-
ficients.

For smoothφ fields (long wavelengths), the last term in
Eq. (1) represents a diffusion. Ifµ≤ ε, the totaldiffusion
(in the long wavelength limit) is negative. However, the
iteration of Eq. (3) is still not divergent and has been
observed to converge for values ofε several times that of
µ (depending on value ofµ).

3.4 Analysis of Small Time Step Form

(Sections 3.4 and 3.5 are close to part of [Steinhoff, Fan,
Wang and Dietz (2003)]).

Stability of the iteration asn → ∞ can easily be shown
[Steinhoff and Lynn (2002)] for a range of values ofµ
andε, includingµ ≤ ε. We only have to start with a non-
negative initial (φ0) field and show that, for theµ and
ε values,φn remains non-negative. Since the sum ofφ
values is conserved, there is thus an upper bound.

Assuming convergence asn → ∞, we have

∇ 2(µφ−εΦ) = 0 (7)

If φ (and henceΦ) vanishes in the far field, away from
the pulse, we haveµφ= εΦ,

If the point (i, j) is given the labell = 0, we then have

φ−1
0 − µ

εN ∑
l

φ−1
l = 0 (8)
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There are many solutions of this equation. The ones of
importance to us are of the form

φi j = Asech[α(z− z0)] (9)

z = xi cosθ+y j sinθ (10)

A, α, z0, θ constant, and wherexi = ih, y j = jh, h is
the grid cell size, and we use the form corresponding to
Cl = 1 in Eq. (4). This converges to a straight pulse (in
2-D) concentrated about a line at angleθ. It is easy to see
thatα satisfies

ε
µ

= [1+2ch(αhcosθ)+2ch(αhsinθ)]/5 (11)

for N = 5 .

An important point is that we obtain close to the same
invariance properties as the original pde: The solution
is translationally invariant (z 0 is arbitrary) and close to
rotationally invariant (θ is arbitrary with a width, given
by α in Eq.(11), having some dependence onθ).

3.5 Convection of Passive Scalar

Since the wave equation is, of course, closely related to
the convection equation, we present some analysis for the
latter, since it is simpler. This analysis shows that the
pulse convects with the weighted mean velocity, where
the pulse amplitude is the weight. This “Ehrenfest” type
of relation should extend to the full wave equation.

The following argument assumes, for each convection
step (n), there is at least one confinement step so that the
feature remains compact. Ifφ represents a confined pas-
sive scalar, then, using a conservative convection routine,
we have the following relationships for the dynamics of
the convecting solitary wave (we describe the 2-D case
for simplicity):

We have a discretization of

∂tφ= −⇀

∇ · (⇀qφ)+h2∇ 2(µφ−εΦ)/∆t (12)

assuming
⇀

∇ ·⇀q = 0 . Then,

φn+1 = φn −∆t
⇀

∇ disc. · (⇀qφ)+h2∇ 2
disc.(µφ−εΦ) (13)

where discrete operators are labeled.

For conservative discretization, the total amplitude

Ω ≡∑
i j

φn
i j (14)

is independent ofn. If we define the centroid

<
⇀

X >n≡ ∑
i j

⇀xi j φn
i j/Ω (15)

and the weighted mean velocity

<
⇀q >n≡ ∑

i j

�qn
i jφ

n
i j/Ω (16)

where⇀xi j is the (fixed) position vector of node (i, j), and
φi j and ⇀

qi j are the scalar value and the velocity at that
node, then the centroid evolves according to:

<
⇀

X >n+1=<
⇀

X >n +∆t <
⇀q >n (17)

Since we are, at this point, only interested in the “expec-
tation values” for thin pulses and that the pulses remain
compact, spread over only a few cells, this Ehrenfest-
type relation is exactly what we need. Only the variables
of importance are, effectively, solved for. This shows
that the pulses, when isolated, evolve as surfaces with
essentially no internal dynamics (assuming they remain
confined as thin surfaces). However, we keep the very
important Eulerian feature that the number of pulses is
not fixed. We could, for example, create additional soli-
tary waves by inserting a source: No additional com-
putational markers need be created, as in Lagrangian
schemes. For this study, we show that pulses, for exam-
ple, reflect and thereby increase automatically in number.
This will be seen in the results of Sec. 4.

4 Results

For the scalar wave equation, a simple second-order cen-
tered difference method was used for the discretization
of Eq. (1). We solve it through two steps: the first is a
conventional wave equation solver step, and the second
is the confinement step

φ∗ = 2φn−φn−1 +σ2(∆t)2∇ 2
disc.φ

n (18)

φn+1 = φ∗ +h2∇ 2
disc.δ

−
n (µφ∗−εΦ∗) (19)

where∇ 2
disc. andδ−n are the second-order centered differ-

ence approximation for the Laplace∇ 2 operator and the
backward difference operator inn.
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For the 1-D and 2-D result plots, axes are labeled with
grid node location. For the 2-D and 3-D results, plots of
amplitude are made using dense contours.

4.1 1-D Wave Equation

We start a single pulse in the center of a 256 cell grid
with periodic boundary conditions. This pulse has an ini-
tial amplitude of 2 at the single, central grid point and
is zero at all other points. The resulting two opposite
moving waves are shown in Fig. 1 for no Confinement
(1a) and Confinement (1b). A minimal diffusion neces-
sary for stability,µ = 0.025, withε = 0 was used in 1a
while in 1b µ = 0.1, ε = 0.8. The rapid diffusion can be
seen in 1a,b, while in 1c,d the bulk of the pulses remain
confined to∼3 grid cells and have no diffusion. Other
tests show that they continue unaltered for up to about
106 time steps, and beyond if double precision is used.
This was also shown with an earlier Confinement form
in [Steinhoff, Wenren, Underhill and Puskas (1995)].

It should be noted that even though the Confinement
is nonlinear, there is virtually no interaction when the
waves pass through each other. This was shown in de-
tail in [Steinhoff, Wenren, Underhill and Puskas (1995)].

4.2 2-D Wave Propagation

Waves were propagated on a(128)2 cell grid with reflect-
ing boundary conditions. Confinement values used were
µ = 0.08, ε = 0.6. Of course, the actual wave equation
exhibits a “tail” behind a pulse in 2-D. This can be seen
to be suppressed by the Confinement, and, effectively,
only the steep pulse front is accurately computed. The
tail, since it is smooth, could be computed with no Con-
finement. The main interest, however, is in 3-D and this
was not done.

4.2.1 Convex Wave

An outward propagating, initially circular pulse surface
(diameter 64 cells) was computed. It can be seen in Fig.2
that it remains sharply confined, even after many reflec-
tions. Again, as in 1-D, there is no discernable interaction
between intersecting waves.

4.2.2 Concave and Convex Waves

The same computation was done as in 4.2.1, but with an
initially 2:1 elliptical surface, with 64 cell major axis.
Both inward and outward moving waves were formed.

(a) fifteenth pass

(no Confinement)

(b) fifteenth pass 

(with Confinement)

Figure 1 : 1D pulse propagation
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(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

(i) (j) 

Figure 2 : 2D circle wave propagation

The inward moving wave can be seen to form cusps and
“swallowtails”. These are only initially resolved, be-
cause of the coarseness of the grid. The basic discrete
wave equation method, without Confinement, would, of
course, not do better. It is well known that refinement
is needed in such regions for direct application of finite
difference schemes [Benamou and Solliec (2000)].

4.3 3-D Convex Wave Propagation

An expanding, initially spherical pulse surface was com-
puted on a coarse,(64)3 cell grid with reflecting bound-
ary conditions. The initial diameter was 32 cells. Con-
finement values used wereµ = 0.05 andε = 0.4. As in the
2-D case, the pulse remains completely confined, even
after many reflections.

5 Conclusion

A new Eulerian technique is introduced for solving the
wave equation for short pulses. The method, “Confine-
ment”, reduces to standard Eulerian ones for smooth,
long wavelength pulses. However, unlike conventional
schemes, it does not diffuse short pulses. Instead, they
are “Confined” and propagate as nonlinear solitary waves
that “live” on the computational lattice. As such, they can
be propagated over indefinitely long distances, while re-
maining only 2∼3 cells thick. These pulsesrepresent the
short physical pulses and accurately propagate integral
quantities at each point along the pulse surface, such as
total amplitude, centroid position, pulse width and other
desired moments. It is argued that, for thin pulses, the
method can easily be implemented in existing codes, al-
lowing them to be extended to treat much higher wave-
lengths/shorter pulses, without extensive reformulation.
Examples are shown in 1-D, 2-D and 3-D.
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 3 : 2D convex and concave wave propagation: Cusp Formulation
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 4 : 3D convex wave propagation
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