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Parallel 3D Time Domain Electromagnetic Scattering Simulations on
Unstructured Meshes
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Abstract: A numerical procedure for the simulation of
3D problems involving the scattering of electromagnetic
waves is presented. As practical problems of interest in
this area often involve domains of complex geometrical
shape, an unstructured mesh based method is adopted.
The solution algorithm employs an explicit finite element
procedure for the solution of Maxwell’s curl equations in
the time domain using unstructured tetrahedral meshes.
A PML absorbing layer is added at the artificial far field
boundary that is created by the truncation of the physi-
cal domain prior to the numerical solution. The complete
solution procedure is parallelised and several large scale
examples are included to demonstrate the computational
performance that may be achieved by the proposed ap-
proach.

keyword: Time domain EM scattering, finite element
method, tetrahedral meshes, parallelisation, large scale
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1 Introduction

The accurate simulation of 3D electromagnetic scatter-
ing problems of current industrial interest, in realistic
time scales, poses major computational challenges. We
will address some of these challenges in the context of
problems involving the interaction between waves, gen-
erated by a source in the far field, and a scatterer of
general shape. Difficulties associated with mesh gener-
ation are reduced by adopting the unstructured mesh ap-
proach, with a fully automatic unstructured mesh gener-
ation procedure [George (1991), Peraire, Peiró, and Mor-
gan (1999), Weatherill and Hassan (1994)]. This is con-
firmed by experiences in the aerospace industry, where
the unstructured mesh approach has already been widely
embraced, particularly in the area of computational aero-
dynamics [Hills (1996)]. Following this philosophy re-
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quires the identification of a suitable unstructured mesh
based solution algorithm and we employ a low order 3D
time domain procedure. Several algorithms of this type
have been proposed [Petitjean and Löhner (1992), Cioni,
Fezoui, and Steve (1993), Darve and Löhner (1997),
Morgan, Brookes, Hassan, and Weatherill (1998)], but
the method followed is based upon the application of
an explicit linear Taylor–Galerkin finite element proce-
dure [Donéa (1984)] to Maxwell’s curl equations. With
this method, both the electric and magnetic fields are as-
sumed to vary in a continuous piecewise linear fashion
[Morgan, Hassan, and Peraire (1994), Morgan, Hassan,
and Peraire (1996), Morgan, Hassan, Pegg, and Weather-
ill (2000)]. The non–reflective boundary condition, that
must be imposed at the truncated far field boundary that
is created to enable numerical simulation, is handled by
surrounding the computational domain by an artificial
perfectly matched layer (PML). The parameters in the
PML equations are defined in such a manner that the
amount of reflection from the far field boundary is de-
creased [Berenger (1994), Bonnet and Poupaud (1997)].
The use of the PML is found to lead to a significant re-
duction in computational costs compared to those associ-
ated with the use of traditional local absorbing boundary
condition approximations. It is recognised that, with an
algorithm of this type, care will need to be taken when
modelling problems involving singularities [Mur (1994),
Sun, Manges, Yaun, and Cendes (1995)] and that mesh-
ing requirements will need to take account of the possi-
ble effects of pollution error [Deraemaeker, Babuska, and
Bouillard (1999)].

To enable the solution of large scale problems on current
computer platforms, the complete simulation process is
parallelised. The computational performance that can be
achieved by the resulting capability is demonstrated by
including the results of a number of scattering simula-
tions involving plane single frequency incident waves.
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2 The Scattering Problem

2.1 The Governing Equations

Consider the simulation of scattering of single frequency
plane incident electromagnetic waves by an obstacle that
is surrounded by free space. It is assumed that the inci-
dent waves are produced by a general source located in
the far field. In three dimensions, Maxwell’s curl equa-
tions for a general linear isotropic material, of relative
permittivity ε and relative permeability µ, can be writ-
ten, using the summation convention, in the dimension-
less form

µ
∂Hj

∂t
= −ε jk�

∂E�

∂xk
ε
∂E j

∂t
= ε jk�

∂H�

∂xk
(1)

where the subscripts j,k, � can take the values 1,2,3,
the alternating tensor is denoted by ε jk� and E =
(E1,E2,E3)T and H = (H1,H2,H3)T denote the electric
and magnetic field intensity vectors respectively. The to-
tal E and H fields are split into incident and scattered
components according to
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substitution of equations (2) into equation (1). The re-
sulting equations may be combined to produce the single
equation
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It is apparent that S ≡ 0 in free space.

3 Numerical Solution Algorithm

An approximate solution to the scattering problem is
obtained by using a two–step finite element Taylor–
Galerkin procedure [Morgan, Hassan, and Peraire
(1994)]– [Morgan, Hassan, Pegg, and Weatherill (2000)].
This procedure is notionally second order accurate in
both time and space [Donéa (1984)].

3.1 Discretisation in time

The solution of equation (3) is advanced over one time
step, from time level t = tm to time level t = tm+1 = tm +
∆t, in a two step fashion. In the first step, the solution
at time tm+1/2 = tm +∆t/2 is obtained by employing the
forward difference approximation

U{∗}−U{m}

∆t/2
= S{m} − ∂Fk

∂xk

∣∣∣∣
{m}

(6)

where the superscript {m} denotes an evaluation at time
t = tm and the superscript {∗} denotes an evaluation at
time t = tm+1/2 . The second step determines the solution
at the end of the time step, by using the central difference
approximation

U{m+1}−U {m}

∆t
= S{∗}− ∂Fk

∂xk

∣∣∣∣
{∗}

(7)

The quantities required at time level tm+1/2 are to be com-
puted using the values obtained for U {∗} in the first step
of equation (6). In practice, following the spatial dis-
cretisation of the domain, equation (6) is applied directly,
while the solution of equation (7) is obtained from an ap-
proximate variational formulation.

3.2 Discretisation in space

The computational domain is discretised into a general
unstructured mesh of linear tetrahedral elements, using
a Delaunay generator [Weatherill and Hassan (1994)].
Over each element E in the mesh, the solution U {m}, the
fluxes Fk{m} and the source term S{m} are linearly inter-
polated, between the element nodal values, in the form

U{m}
E = ∑

J∈E
NJU{m}

J

Fk{m}
E = ∑

J∈E
NJFk{m}

J

S{m}
E = ∑

J∈E
NJS{m}

J

(8)
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Here NJ denotes the linear finite element shape function
associated with node J and the summations extend over
all nodes J of element E . In the computational imple-
mentation, equation (6) is used first to compute, for each
element E in the mesh, an approximate solution at time
t = tm+1/2 according to

U
{∗}
E −U{m}

E
∆t/2

= S{m}
E − ∂Fk

E
∂xk

∣∣∣∣∣
{m}

(9)

This results in a piecewise linear discontinuous approx-
imation to the solution at the time level t m+1/2. The
solution at the time level tm+1 is obtained following a
Galerkin approximate variational formulation [Morgan
and Peraire (1998)] of equation (7). At a general node
I, in a general material M , the resulting equation takes
the form

∑
J∈I

MIJ
(U{m+1}

J −U {m}
J )

∆t

=
∫
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S{∗}NIdΩ−

∫
ΓM

F
{∗}
n NIdΩ

+
∫

M
Fk{∗}∂NI

∂xk
dΩ

(10)

where the summation is restricted to nodes J ∈ M . Here
Fn denotes a normal flux on ΓM , which is computed
according to the boundary condition being simulated,
and MIJ denotes the entries in the consistent linear fi-
nite element mass matrix. Equation (10) may be readily
solved by either lumping this matrix or by explicit itera-
tion [Donéa and Giuliani (1981)].

3.3 Boundary conditions

3.3.1 Perfect Electrical Conductor and Material Inter-
faces

At the surface of a perfect electrical conductor (PEC), the
boundary condition that is imposed is that the tangential
component of the total electrical field should vanish. This
requirement may be expressed in the form

n∧Es = −n∧Ei (11)

Here ∧ denotes the vector product and n is the unit nor-
mal vector to the PEC surface.

Across a material interface, the tangential component of
the total electric and the total magnetic field must both be

continuous. These conditions can be expressed as

n∧ (Es
(∗∗)−Es

(∗)) = 0

n∧ (Hs
(∗∗)−Hs

(∗)) = 0

(12)

In these equations, the subscripts (∗) and (∗∗) denote the
field values on either side of the interface and n now rep-
resents the unit normal vector to the interface surface, in
the direction from (∗) to (∗∗).

Both the PEC and the material interface boundary con-
ditions are applied through the boundary integral term
in equation (10), which means that they are imposed in
a weak sense only. The approach that is adopted is to
determine the entries in the normal flux F n by employ-
ing a characteristic decomposition in the direction nor-
mal to the boundary [Morgan, Hassan, Pegg, and Weath-
erill (2000), Shankar, Hall, Mohammadian, and Rowell
(1993)].

3.3.2 Far Field Boundary and the PML

The incident wave is assumed to be generated by a source
in the far field. This means that, when the infinite phys-
ical domain is truncated to enable numerical simulation
of the scattering problem, the correct boundary condition
to be imposed at the outer computational boundary is the
requirement that the scattered field should only consist
of outgoing waves only. The modelling of this truncated
far field boundary condition is achieved by the addition
of a PML [Berenger (1994)] to the exterior of the com-
putational domain. In the examples presented here, the
truncated outer boundary is always taken to be a regular
hexahedron and the PML is discretised using a structured
mesh of tetrahedral elements. The formulation which is
implemented follows the work of Bonnet and Poupaud
[Bonnet and Poupaud (1997)], in which the governing
equations in the PML are considered in the form

ε
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The new variables, H j and E j for j = 1,2,3, are obtained
by the solution of the additional equations

ε
∂E

s
j
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s
[| j+1|]

∂x[| j+2|]
(15)

µ
∂Hs

j

∂t
= −σ[| j+2|]H

s
j +

∂E
s
[| j+1|]
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(16)

In these equations

[| j|] =
{

j for j = 1,2,3
j−3 for j = 4,5

(17)

Based upon the results of numerical testing, the variation
of the material parameter σ j through the PML is defined
as

σ j =
18X3

j

λ4 (18)

where Xj denotes the distance, in the x j direction, from
a point in the PML to the truncated far field boundary
and λ is the wavelength of the incident wave. Follow-
ing appropriate redefinition of the quantities U , F k and
S, the form of equation (3) remains valid and the solution
within the PML can again be obtained by using equa-
tions (9) and (10).

3.4 Computational details

This algorithm is stable provided that the selected time
step size satisfies a standard CFL type condition [Mor-
gan and Peraire (1998)]. For the single frequency inci-
dent waves considered here, the solution is advanced in
time through a prescribed number of cycles of the inci-
dent wave until steady periodic conditions are achieved.
A closed surface, completely enclosing the scatterer, is
constructed and a further cycle is then computed during
which time the variation of the solution at nodes lying
on this surface is monitored. The amplitude and phase
of the scattered electric and magnetic field components
at these nodes are recorded for use in the computation of
the radar cross section (RCS) [Balanis (1989), Morgan,
Hassan, and Peraire (1994)]. It should be noted that the
algorithm allows for the appearance of a spurious steady
non–zero mode, which can be removed by a simple post–
processing of the computed solution [Kangro and Nico-
laides (1997)].

4 Parallel Implementation

This basic algorithm has already been validated for a
number of different scattering problems. However, the
nature of the algorithm means that the required mesh
size will increase rapidly when the method is applied to
the solution of problems involving the electrically large
scatterers which arise when realistic frequencies and ge-
ometries are considered. Such simulations will require
the use of significant computational resources and, in this
case, the use of parallel computers becomes essential. It
should be noted that the success of this route will require
not only a parallel implementation of the basic Maxwell
equation solver but, in addition, the effective paralleli-
sation of the mesh generation and solution visualisation
stages.

4.1 Mesh generation

The approach adopted for parallel mesh generation
is based upon a geometrical partitioning of the do-
main [Weatherill, Hassan, Morgan, Jones, and Larwood
(2001)]. The complete domain is divided into a set of
smaller sub–domains and a mesh is generated indepen-
dently in each sub–domain. The combination of the sub–
domain meshes produces the mesh for the complete do-
main. A manager/worker model is employed in which
the initial work is performed by the manager, before dis-
tributing the mesh generation tasks to the workers. The
entire procedure can be divided into four separate stages:
[1] Starting from a surface triangulation, the domain
is partitioned using a geometrical partitioning scheme
into N sub–domains. [2] The sub–domain boundaries
are mapped into two dimensions and a 2D advancing
front generator is employed to mesh the mapped sur-
faces. The triangulations of the inter–domain boundaries
are mapped back to three dimensions. [3] A dynamic
load balancing scheme is employed to generate meshes
in each sub–domain. This scheme uses the fact that the
proposed strategy involves no communication between
processors so that more than one domain may be allo-
cated, in turn, to each available processor. The num-
ber of domains given to each processor depends on the
workload required for each sub–domain. [4] The mesh
is post–processed, by node smoothing on inter–domain
boundaries, and the inter–domain communication table
is constructed.

The structure of the parallel grid generator is a single pro-
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Figure 1 : Illustration of the parallel isotropic mesh gen-
eration process using four partitions

gram multiple data (SPMD) model. Sub–domain bound-
ary data has to be passed from the manager to worker
processors and sub–domain meshes passed back to the
manager. MPI is used as the message passing library.
Figure 1 illustrates the generation of an isotropic mesh
following the decomposition of a domain into four parti-
tions.

The structured mesh within the PML region is con-
structed using an advancing layer technique [Hassan,
Morgan, Probert, and Peraire (1996)], which is a vari-
ant of the advancing front method and which generates
successive layers of elements. For the first layer, the sur-
face mesh at the truncated far field boundary forms the
initial front. Lines normal to the surface are constructed
at each point in the front and new points are generated on
these lines. Tetrahedra are formed by connecting these
points to the surrounding triangular faces. For this par-
ticular geometrical configuration, it is apparent that no
checking for front intersection is required. Following the

generation of the first layer of elements, succeeding lay-
ers are then generated similarly. As the only information
required to generate a new element, and thus a new layer,
is the front, or the top surface of the previous layer, it is
prudent not to store the element connectivity matrix. This
allows the memory required to be reduced to simply that
corresponding to the size of the current front. Indeed,
with careful programming, it is possible to evaluate the
element connectivity, on the fly, by storing the node from
which each new node is generated. This implementation
ensures that there are no bottle necks in the process of
mesh generation.

4.2 Mesh Partitioning

There are a number of different approaches available for
serially decomposing a given unstructured mesh. How-
ever, for the current application, it is envisaged that the
mesh data sets will be too large to load onto one proces-
sor. Therefore, the partitioning process has to be par-
allelised and distributed amongst the processors at all
times. The present implementation utilises the ParMetis
library for the partitioning [Karypis and Kumar (1998)].
This procedure produces high quality partitions in a fast,
robust and parallel manner. However ParMetis operates
on an edge based data structure, which means that the
mesh had to be represented as a set of edges. One method
of doing this is to create the dual of the mesh, where
the nodes represent the elements and the edge (E1,E2)
is present if the two elements E1 and E2 are adjacent. An
alternative method is to create an edge based represen-
tation of the original element edges. Using the dual of
the mesh has the advantage of automatically producing
an element based partitioning, whereas the edge based
representation of the mesh produces elements split across
partitions. However, in the edge based representation, the
number of edges is approximately the same as the num-
ber of elements, whereas the mesh dual approach results
in approximately twice the number edges as elements.
For this reason, it is more efficient to use the edge based
representation in the partitioning process. This results in
a partition number being assigned to each node, with the
partition number for each element taken to be the lowest
partition number of the all the nodes of the element.

In order to minimise memory usage during the partition-
ing process, the elements are read from disk twice. The
first time is for the construction of the ParMetis edge
based data structure and the element information is dis-
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carded before ParMetis is executed. When ParMetis has
finished, the elements, vertices and boundary faces are
read from disk again and placed in their respective par-
titions. Before the equation solver is run on these data
sets, each processor performs a bandwidth minimisation
procedure on its sub–domain in order to improve cache
use and, hence, to increase the performance of the solver.
This is achieved by the application of a reverse Cuthill–
McKee procedure [Cuthill and McKee (1969)].

4.3 Parallel Solution Procedure

In the parallel implementation of the solution algorithm,
elements are owned by only one domain and are not
duplicated, while points are owned by one domain and
are duplicated. This strategy enables data locality to be
achieved during the gather process, from points to ele-
ments, and the scatter process, from elements to points,
and hence there is no need to communicate. For each
time step, the interface nodes obtain contributions from
more than one domain. One strategy for achieving this
is to form two groups of elements, the first group con-
taining all the interface elements and the second group
containing all the interior elements. The element contri-
butions from the first group are evaluated first. At the
end of this stage, communication of these contributions
takes place as the contributions from the elements in the
second group are evaluated. The updated solution is sent
back before the start of the next time step. However, for
large meshes, the element grouping will result in ineffi-
cient use of the cache. It is, therefore, deemed to be more
efficient to keep the elements in one group and to com-
municate the element contribution to the interface nodes
at the end of the element loop. In this case, the par-
allel implementation of the solver is broken down into
three main steps: [1] Compute the element contribution
to all nodes in the each sub–domain. [2] Initiate non–
blocking sends and receives to communicate the values
of the inter–domain nodes. [3] Compute the updated so-
lution for nodes in each sub–domain.

4.4 RCS Computation

The computation of the RCS requires that an integral
over a closed surface enclosing the scatterer be evalu-
ated for each viewing angle. In the present implemen-
tation, the surface is taken to be the surface of the scat-
terer and, consequently, only information on this surface
is required. Furthermore, the computation of the RCS for

one viewing angle is independent of the computation for
any other viewing angle, so that the RCS computation
can also be paralleized in the following manner: [1] Dis-
card the volume mesh and recombine the surface mesh

(a) The original partitioned volume mesh (b) The volume mesh is discarded leaving
only the original boundary faces

Processor 1 Processor 2

(c) The boundary mesh is then combined
onto one processor

Processor 1 Processor 2

(d) The boundary mesh is then distributed
broadcast across all the processors

Figure 2 : Illustration of the process of evaluating the
RCS in parallel

data into a global surface mesh. [2] Communicate the
recombined global surface mesh to each processor. [3]
The number of viewing angles required is then divided
equally between the available processors.

A schematic illustration of the major steps employed in
the process of performing the RCS computation in paral-
lel is given in Figure 2.

5 Numerical Examples

5.1 PEC Sphere

The first example involves the scattering of a plane sin-
gle frequency incident wave by a perfectly conducting
sphere of diameter D = 15λ. This case is used as a bench
mark to study the effect of mesh resolution, and the dis-
tance of the PML from the scatterer, on the quality of
the numerical results. In addition, the effect of utilising
an explicit iteration scheme to solve the discretised equa-
tion system is also studied. Table 1 provides details of
the various meshes employed for this example. In this
table, row a gives the number of nodes per wavelength
on the sphere for each mesh, while row b gives the corre-
sponding number of nodes per wavelength at the far field.
Rows c and d give, for each mesh, the distance, in wave-
lengths, of the PML from the sphere and the number of
layers in the PML respectively. Rows e and f indicate,
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Table 1 : Details of the meshes used for the simulation
of scattering of a plane wave by a perfectly conducting
sphere of diameter D = 15λ

Mesh Number

1 2 3 4 5 6 7 8

a 25 25 25 20 20 15 15 10

b 25 15 10 15 10 15 10 10

c 2 1 1 1 0.5 0.5 0.5 1

d 25 15 10 15 10 15 10 10

e 230 123 90 71 57 60 32 8

f 3.5 1.9 1.4 1.1 0.9 1. 0.7 0.6

in millions, the number of elements and the number of
nodes in each mesh. The solution was advanced through
30 cycles of the incident wave. Figure 3(a) shows the
domain used for the simulation and the computed con-
tours of Es

2 are displayed in Figure 3(b). A comparison
between the computed and the exact RCS distributions is
shown in Figure 4. This study indicates that, for this ge-
ometry and this frequency, a mesh spacing corresponding
to 15 nodes per wavelength at the surface of the scatterer

(a) (b)

Figure 3 : Scattering by a PEC sphere of diameter D =
15λ showing (a) the computational domain and (b) the
computed contours of E s

2

and varying linearly to a mesh spacing of 10 nodes per
wavelength at the inner surface of the PML, with a PML
region made of 10 layers and located at a distance of half
a wavelength from the scatterer, is adequate to obtain ex-

cellent agreement with the analytical solution. Further-
more, it can be seen in Figure 5 that the use of mass ma-
trix iteration provides a better quality solution than that
computed with the lumped mass form of the scheme on
a given mesh. For this reason, the remaining simulations
in this paper are performed using two mass matrix iter-
ations per time step. It should be noted, however, that
this iterative procedure imposes a more stringent stabil-
ity limitation which results in an increase in the execu-
tion time compared with the lumped mass implementa-
tion. For problems of this type, the PML is found to be
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Figure 4 : Scattering of a plane wave by a PEC sphere of
diameter D = 15λ showing the comparison between the
exact and the computed RCS distributions

considerably more efficient than methods based upon the
use of a traditional local absorbing boundary condition,
resulting here in a reduction, by about a factor of 5, in the
number of nodes required.

5.2 Coated PEC Sphere

The second example involves scattering of a plane single
frequency incident wave by a coated perfectly conduct-
ing sphere. The sphere diameter D = 3λ and the dielec-
tric coating is of thickness t = 0.25D. The coating is
characterised by the material properties ε = 2.56,µ = 1.
The mesh employed in the region between the sphere
and the far field boundary consists of 3296694 tetrahedra
and 599399 nodes. The structured PML region contains
820380 tetrahedra and 149160 nodes. A cut through this
mesh is shown in Figure 6(a). The solution is advanced
through 60 cycles of the incident wave and the computed
contours of Es

2 are displayed in Figure 6(b). The exact
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Figure 5 : Scattering by a PEC sphere of diameter
D = 15λ showing the comparison between the exact and
the computed RCS distributions achieved using both the
lumped mass and the mass matrix iteration schemes

and the computed distribution of the scattering width are
seen to be in very good agreement in Figure 7.

5.3 PEC Trihedral Object

To illustrate the predictive capability of the procedure,
two additional examples are considered. The first in-
volves the simulation of scattering by a PEC trihe-
dral object. Geometrically, the object dimensions are
1.36*0.6*0.2 m and the thickness of the walls is 0.01
m. This example has been used to evaluate the perfor-
mance of the parallel implementation of the system. Two
meshes were generated using various number of parti-
tions and various number of processors. The first mesh
is considered as being suitable for a 10GHz calculation
and consists of approximately 100 million elements and
18 million nodes. The mesh was generated using four
R14000 processors, with the domain divided initially into
8 partitions. The time taken to perform the complete
mesh generation was 4 hours with a peak memory re-
quirement of 1.5Gb. The mesh was generated again by
partitioning the domain into 16 partitions. For this case,
the time taken to generate the mesh was 1.4 hours with
a peak memory requirement of 0.8Gb. The second mesh
is considered as being suitable for a 20GHz simulation
and consists of approximately 980 million elements and
178 million nodes. The domain was split into 64 and
128 partitions and the mesh was generated using 16 pro-
cessors. The mesh generation required 8 hours and the

(a)

(b)

Figure 6 : Scattering of a plane wave by a coated PEC
sphere of diameter D = 3λ showing (a) a cut through the
mesh and (b) the computed contours of E s

2

maximum memory requirement was 1.8 Gb for the 64
partition mesh. With 128 partitions, the mesh generation
time was reduced to 6 hours and the maximum mem-
ory requirement was 1Gb. Since the main drive behind
the parallel implementation is to allow large meshes to
be generated on moderate computers, it can be seen that
the maximum amount of memory required for the gen-
eration is in fact decreased by increasing the number of
partitions.

A 10GHz simulation has been attempted and the solution
is advanced through 180 cycles of the incident wave. The
computed contours of H s

3 are shown in Figure 8 and the
computed distribution of the scattering width is displayed
in Figure 9. To evaluate the performance of the parallel
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Figure 7 : Scattering of a plane wave by a coated sphere
of diameter D = 3λ showing the comparison between the
exact and computed distributions of the scattering width

Figure 8 : Scattering of a 10Ghz plane wave by a PEC
trihedral object showing contours of H s

3

solution algorithm, the scalability of the implementation
on a CRAY T3E was investigated for this case, with the
number of processors utilised being gradually increased
from 64 to 1024. For each computation, the parallel pre-
processor and the solver were executed on the same num-
ber of processors. It can be seen from Figure 10 that
super linear speed up is achieved for the parallel solver.
However, for the preprocessor, the speed up achieved de-
grades when more than 256 processors are used. This
is due to the fact that the time required to partition the
mesh on a large number of processors is very small and
the process is then dominated by the I/O time.

5.4 PEC Aircraft

The final example uses the procedure to simulate the scat-
tering of a plane wave by a PEC aircraft. The aircraft
length is 10 wavelengths and the mesh employed consists
of approximately 7.2 million elements and 1.35 million
nodes. The PML is located at a distance of one half wave-
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Figure 9 : Scattering of a 10GHz plane wave by a PEC
trihedral object showing the predicted distribution of the
RCS
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Figure 10 : Performance of the parallel preprocessor and
the parallel solver on a CRAY T3E

length from the aircraft and has a total thickness equal to
one wavelength. The PML region, consisting of 10 layers
of elements, has approximately 1.4 million elements and
0.27 million nodes. The solution was advanced for 40
cycles and the computed contours of H s

3 on a cut through
the mesh and on the aircraft surface are shown in Fig-
ure 11. The computed distribution of the RCS is dis-
played in Figure 12.

6 Conclusions

A numerical procedure that enables the parallel sim-
ulation of three dimensional electromagnetic scatter-
ing problems using automatically generated unstructured
tetrahedra meshes has been presented. The solution al-
gorithm employs a scattered field formulation and a two
step Taylor–Galerkin time stepping scheme. The trun-
cated far field boundary condition is imposed by the addi-
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(a)

(b)

Figure 11 : Scattering of a plane wave by a PEC aircraft
showing computed contours of H s

3 on (a) a cut through
the mesh and (b) on the aircraft surface

tion of a PML. Parallel mesh generation is accomplished
by a Delaunay procedure, following a geometrical par-
titioning of the domain. A number of computationally
challenging examples have been included to demonstrate
the numerical performance of the proposed procedure.
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Figure 12 : Scattering of a plane wave by a PEC aircraft
showing the predicted distribution of the scattering width
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