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High-Order Accurate Methods for Time-domain Electromagnetics

J. S. Hesthaven! and T. Warburton?

Abstract:  We discuss the formulation, validation, andt best. This severely limits their ability to correctly rep-
parallel performance of a high-order accurate methmebent wave motion over long distances unless the grid
for the time-domain solution of the three-dimension& prohibitively fine. Furthermore, most standard tech-
Maxwell's equations on general unstructured grids. Atiques, i.e., the finite-difference time-domain method
tention is paid to the development of a general discontiffaflove (1995); Nambura, Mark and Clarke (2004)] in
uous element/penalty approximation to Maxwell’s equgarticular and the finite-volume/finite-element methods
tions and a locally divergence free form of this. We fufMohammadian, Shankar and Hall (1991); Rao (1999)]
ther discuss the motivation for using a nodal Lagrangiao a lesser extent, suffer from an inability to accurately
basis for the accurate and efficient representation of smd efficiently represent complex geometries. Several
lutions and operators. The performance of the scheneeent efforts have been aimed at addressing the short-
is illustrated by solving benchmark problems as well aomings of the classical FDTD schemes, e.g., embed-
large scale scattering applications. ding schemes to overcome staircasing [Ditkowski, Dridi,

and Hesthaven (2001)] and high-order finite difference
keyword: Time-domain CEM, Maxwell's equationsschemes [Turkel and Yefet (2000); Yefet and Petropou-
high-order accurate methods, unstructured grids, parajid (2001); Yefet and Turkel (2000); Xie, Chan and
computing. Zhang (2002)]. However, these techngiues largely re-
main experimental. In the context of finite element meth-
ods, recent years has seen a number of developments,
both of low [Hassan, Morgan, Jones, Larwood, and
The increasing interest in the modeling and design Wfeatherill (2004)] and high-order accuracy [Castillo,
emerging technologies such as very low observable ¥sning, Rieben, and White (2004)]. While these are
hicles, ground/foliage penetrating radars, and phase see!l suited to deal with complex geometries, they be-
sitive components, imposes requirements on the accame implicit, at higher than 2nd order accuracy. Ef-
racy and performance of the computational tools wélrts to address this by proposed fast and accurate time-
beyond that of existing techniques. The eminent neadvancement methods are discussed in [Jose, Kanapady,
to identify new approaches to electromagnetic modeliagd Tamma (2004)] and references therein.

and design is further emphasized by the requiremepts the accurate modeling of large scale scattering and
to accurately model the interaction of very broad bamgnetration applications the shortcomings of low order

signals with electrically large and geometrically commethods render them impractical. However, understand-
plex objects, often including regions of inhomogeneougg the source of the problems also suggest that a high-
anisotropic, lossy materials. order time-domain solution technique may offer the effi-

While frequency domain methods are less appealing faency and accuracy required for future large scale CEM
the modeling of such problems due to the complexity agodeling capabilities. High-order methods, with spec-

sociated with broad band applications and the inclusitial methods representing the ultimate limit, are charac-
of complex realistic multilayered material models, mo#grized by being able to accurately represent wave prop-
current time-domain methods remain 2nd order accuragation over very long distances, using only a few points
per wavelength and with an error accumulation rate that
Division of Applied Mathematics, Brown University, Providencejg significantly reduced as compared to 2nd order ac-
RI 02912. Email: 4N.HESTHAVEN@ BROWN.EDU curate schemes [Kreiss and Oliger (1972)]. For three-
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ico, Albuquerque, NM 87131. EmaitiMwar @uaTH.Unm.epu  dimensional large scale computations, this translates into
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dramatic reductions in the required computational re-
sources, i.e., memory and execution time, and promises i

to offer the ability to model problems of a realistic coms = — (e— si) aa—f +(c—0")E", 4)
plexity and size. _
Traditionally, the development of suitable high-order seg _ (=) oH' (5)

lution techniques has been held back by the difficulties o
associated with formulating stable and high-order acogheres! (x), pi(x), anda'(x) represent the permittivity,
rate schemes for solving wave-dominated problems garmeability, and conductivity of the media in which the

geometrically complex domains. The recent developrcident field,(E',H'), is a solution to Maxwell’s equa-
ment of stable discontinuous element/Penalty methagisns.

[_Cpckburn and Shu (2001); Hesthaven. (2000)]_ and §f; o) subsequent computations we assume that Egs.(1)-
ficient and accurate ways of representing SQIUUOnS are normalized such that the vacuum speed of light is
operators on simplices [Hesthaven and Gottlieb (199 ity i.e.,60 = 1o — 1, all lengths are scaled with respect

Hesthaven and Teng (2000); Hesthaven _and Warbw'a chosen length scale, and the electric fields are scaled
ton (2002)] has paved the way for overcoming these tih the yacuum intrinsic capacitance. We shall also as-
strictions associated with classical high-order methods o 14t that the incident field is a vacuum solution, i.e.

In contrast to high-order schemes based on classicalfi-_ i _ 1 4401 = 0

nite element techniques, the approach taken here Ieadglto the interf ¢ wo dielectric bodi
fully explicit schemes. ong the interface of any two dielectric bodies, en-

) o dowed with an outward pointing normal vectar, the
As we shall discuss further, the combination of these rt%'ngential field components remain continuous, i.e.

sults enables us to formulate and implement geometri-

cally flexible, high-order accurate and computationally

efficient and robust methods for the time-domain sol4-, (Es_ gs A s sy _

tion of Maxwell’s equations. Efforts of a similar ﬂa—H>< (Ei—E)=0, fx(Hi-H3) =0, ©)

vor, yet with several distinct differences are describ@derywhere. At a perfect electric conductor, on the other
in [Kopriva, Woodruff and Hussaini (2000); Kopriva,hand, the fields are unable to penetrate the body and the
Woodruff, and Hussaini (2002); Warburton (2000)]. conditions are

2 ThePhysical Problem _ _
_ _ . NAxE’=-AxE', A-H=-A-H' | (7)
We shall consider the solution of Maxwell’'s equations in
the general domair, in the scattered field formulationindicating that the total tangential electric and normal
magnetic field components must vanish to enforce no

JES penetration.
sa—:Dst—i—oEs—i—SE , 1)
t 3 The Computational Scheme

We shall seek approximate solutions to Maxwell’s equa-

OH* tions in a general domaif), containing a collection of

_ S
“T = -OxE+87, (2) scattering bodies. To facilitate the required geometric
flexibility, we represent the computational domain as the
union ofK non-overlapping body-conforming tetrahedra,
0-¢ES=p, O-H’=0, (3) D.

This decomposition introduces two issues that will need
whereES andHS signify the scattered electric and magattention, i.e., how to represent the fields and in which
netic fields, respectivelg,andy represents the local perway these approximate fields are required to satisfy
mittivity and permeability, ang is the space charge. TheMaxwell’s equations. In the following we shall discuss
source terms take the form this in more some detail, albeit in the reverse order.
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3.1 The Penalty Formulation Here ®; andW; represent sequences of N test functions,
. . - * signifies a numerical flux and i$ an outward point-
As is common, we assume that Eq.(3) is satisfied E ar . P
s L ) ) Mg unit vector defined at the boundary of the element.
the initial conditions and only consider the solution o . . . .
Egs.(1)-(2). In Sec. 3.1.1 we shall, however, retumn tfothe numerical flux is consistent, the scheme is clearly
th?s .issue ' L ' ’ consistent. On the other hand, boundary/interface condi-

_ _ tions are not imposed exactly but rather weakly through
Let us express Maxwell's equations, Egs.(1)-(2), in COfe penalizing surface integral. Within this multi-element

servation form context, the formulation is inherently discontinuous and
yields, through its very construction, a highly parallel lo-
aq i cal scheme.
Q(X)E +0-F(@=8d.x) , (8) Let us for simplicity assume that the materials can be
where we have introduced the state veaipand the flux t@ken to be constant on each element, i.e., Q is constant,
F(q) = [Fu(q), F2(q), Fs(q)]T, as and also that all sides of the tetrahedron are planar. In-
7 7 ’ troducing the operators
| E | —&xH
respectively. Heres “signifies the three Cartesian unit/ii :/Dlle‘Di dx , Sij :/DlIIJ j®idx (11)
vectors. We also have the material coefficient matrix,
Q = diag(e,£,¢, 1,1 1), and the sourceS = [SE, ST, F :f{ Wy dx | (12)
depending on the incident field! = [E',H']T. oD

To formulate the scheme, let us assume that there ext&@gsforms Eq.(10) into the explicit scheme

an approximate solutiongy € P, on the form
N QM= +S.F-MS=FA-[F—F"] . (13)
TKED DAt =Nt = i;qi OW). ®) whered represents the 6N-vector of coefficients &gy,

and similarly forE, S andF~ for the flux, the source,

within each tetrahedron. Similarly, we assume that d the numerical flux, respectively.

andSy are polynomial representations of the flux and gfn _ _ . n
the source, respectively. In choosing®;, W; and the numerical flux-*, one has

a large degree of freedom in designing schemes suit-
‘?ble for solving conservation laws. Here we focus on
. We Galerkin formulation in which casi;(x) = ®;(x) =
Pn = spar{xy*:Z%}q| < n = spar{yi}il; with a = Wi(X). It is worth noting that after integr;tion by(parts in
(a1, 02, 013) being a multi-index, and Eq.(10) this scheme becomes the much studied discontin-
uous Galerkin method [Cockburn and Shu (2001)]. This
. (n+1)(n+2)(n+3) is, however, only one among numerous formulations in
dimPn=N = 6 ’ the same family of discontinuous element/Penalty meth-
are the number of unknowns on each element. ods. We refer to [Hesthaven (2000); Hesthaven and Got-
lieb (1999); Hesthaven and Teng (2000)] for examples
d further references.

Throughout, we us®, to signify the minimal polyno-
mial space for approximation on the tetrahedron, i.

To seek equations for these N unknowns, we require t

approximate solution to Maxwell's equationg,, to sat- o ]
is%l? a Ty To finalize the formulation of the scheme, we need

to specify the numerical fluxF*, which is responsi-
ble for passing information between the elements and
aay imposing the boundary conditions. Given the linear-
/D ( ot + U-Fn- SN) ®; (x) dx ity of Maxwell's equations, it is natural to use upwind-
. ing through characteristics to obtain [Mohammadian,
= ng i(X)A- [Fn—F]dx . (10) shankar and Hall (1991)]
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solve Egs.(1)-(2), however, but rather an approximation
— 1 . to it. Hence, one needs to consider the question of how
A[F_F7 = { Z "nx(nx[E[-Z"[H]) (14) Well Eq.(13) conserves the divergence.

9

-1
Y “nx(nx[H]+YT[E]) Simply using the convergence result given above, one

easily shows [Hesthaven and Warburton (2002)]
where[q] = g~ —q" measures the jump in the field val-

ues across an interface. Superscript '+’ refers to field

values from the neighbor element while superscript -’

refers to field values local to the element. To account fb¥) - dn (1) L2(q) <
the potential differences in material properties in the two

elements, we have introduced the local impedaice,
and conductancd;*, defined as

o—1 5/2

1+C<T>”Tt] 9(0) st

>

nP-1

providedq € HP(D), p > 7/2. Thus, one still have con-

trol over the divergence error by the resolution, provided
the solution is sufficiently smooth. However, for some
applications, in particular when computing at low order,

1 et ;
this may not be acceptable.

7t ==/ =

Y+ et ’

It is, however, possible to reformulate the scheme to re-

and the sums cover a formulation that locally conserves the divergence
of the initial conditions to machine accuracy. In doing so,

_ _ we will need to assume that all tetrahedra have straight
Z=Z'+Z ,Y=Y"+Y", faces only. While this may not be true in some compu-
: . tations, the number of elements with curved faces will

of the local impedance and conductance, respectlvely.be a small fraction of the total number of the elements.

The simplicity of the scheme, Eq.(13), allows a full semjgence, the impact of violating this assumption will be
discrete convergence analysis with the central result gmg| if any.

To recover a locally divergence free formulation, we

. 3/ ] must first recognize that a discrete divergence operator,

h .
la(t) —an ()llz@) < Cop | 1+C(T) |19(0)[|4s@) D. can be given as

ot

where 0<t < T andp > 3/2. Hereh signifiesthe max- _, .~ . . . .
imum edge lengthg = max(n+1,p) and|| - || 2y and 9 = M™S-g=D-q.
|- |lp(q) represent the brokel? and Soboleve norm

. " This follows directly from the definition of the operators
respectively.

in Egs.(11)-(12), the fact that we are working with poly-

This result confirms convergence in ap-sense, i.€., nomials and assuming that all integrations are done ex-
one can resolve the solution by refining the grfd, acqy,

convergence, and/or increasing the qrder. of the.s.cher[qgw recall that Eq.(13) is a linear problem which, for
p-convergence, provided the solution is sufficiently.

.simple elements, has no mechanism for generating alias-
smooth. Furthermore, the error can grow at most |I|I’I1]-g errors. Taking the divergence of Eq.(13) yields
early with the growth rate controlled by the resolution. ' '
The details of the analysis can be found in [Hesthaven
and Warburton (2002)]. D84 o o~ oim a a A s e e
Q——+D-M1S.F-D-S=D-MFn.[F-F7 .
3.1.1 A Locally Divergence Free Formulation dt
When deriving the scheme, Eq.(13), we neglected the Riecall thatD - F = D x §, is the discrete representation
vergence conditions on the fields, Eq.(3), relying on thod the rotation operator. Thus, féry € P, which is true
observation that Eq.(3) is a condition on the initial conunder the assumption of linearity, straight faced tetrahe-

ditions to Eqgs.(1)-(2). The scheme in Eq.(13) does naita and piecewise constant materials, we recover that
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the non-singular transformation Jacobian which enables
o us to compute all operators, Eqgs.(11)-(12), by integration
D-Dxg=0, onl. Itis worth recalling that for any straight faced tetra-
hedron,J will be constant, i.e., one needs only compute
&hd store the discrete operatorslas all others follow
by linear scaling.

|n this setting, we begin by considering the appropri-
R i _ate choice of the basis. An immediate candidate is the
Thls_ implies thgt we can isolate the source of generatign, o mial basisyi (X) = X1y222% with |a| < n. As is
of divergence since well known, however, this will lead to extremely illcon-
ditioned operators as the basis becomes almost linearly
ad-q - .. dependent for high polynomial order and prohibits the

Q4 =0 M~Fn.[F—F", stable and accurate computation at high order.

to machine precision as in the continuous case. Furth
more, from Egs.(4)-(5) we see that-B= 0 provided
only that the initial conditions, or rather its polynomia
representation, is divergence free and that 0.

The way to overcome such conditioning problems is to
i.e., it is originating from the weakly imposed fluxes aéeek an orthonormal basis &n Such a basis has been
the interfaces and boundaries. known for a long time [Proriol (1957); Koornwinder
This also suggests that a locally divergence free solutiti®75)]
can be recovered by considering the following problem

0i(8) = PO (1) (1%s> a1

o0 8 E_NS—En [E_ET
dt (201+1,0) 1-t\M"%  onit200420)
QP8 F M50 asy e TO(m) R ®
dt ’

2 2 2

. . . . - Y= ,
whereis a solution, evolved in tandem with the origi- ~ 201 +12(01+02) +22(0d1+ 02 +03) +3
nal solution and at no additional computational expense,
with the divergence of the initial conditions.

In the special case @f= 0, one can uspy = [En, Hn]T (®) Bi(€) (16)

|

3

to recover divergence free approximations to both fields. VY
In the general casqy = Hy, provides a locally diver-

gence free approximation té. This is, however, gener-Where
ally less accurate thgtdue to the missing boundary term

in the equation fop: 2(1
r=-— ( +§)—1 , S= 2(11+Zn)_1 , t=C,
3.2 The Nodal Element N+ B
To complete the description of the scheme, Eq.(13) @and Pr(ma’B)(X) represents the classical Jacobi polynomial

Eq.(15), we need to specify the polynomial bagigx), of ordern [Szeg' (1939)].

and define the expansion coefficiergs, This leaves the question of how to compute the expan-
We limit the complexity by introducing a standard tetrasion coefficientsg.” Clearly, with an orthonormal basis at
hedron, hand, it may seem natural to exploit the orthonormality

to defineq. The impact of doing so is that all modes are
needed to evaluatg, pointwise. This lack of separation
| = {(57 N0 e R3\(E, N, >—-1;E4+n+ < 1} ] between inner modes and boundary modes is not optimal
for the current formulation where the flux term in Eq.(13)
We assume that a smooth mappiflg, | — D, exists be- depends on the fluxes at the boundaripafnly. To over-
tweenl and any general tetrahedrdd, LetJ(&) signify come this issue, which can impact the performance as
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discussed shortly, one could seek to give up the strict dn-this framework, it is more natural to recast the scheme
thonormality of the basis to achieve a separation betwdarphysical space rather than in modal space as given in
inner and boundary modes. Such a basis, which shafecga(13). Using the identity in Eq.(17) and multiplying
number of similarities with Eq.(16), is discussed in [KarEq.(13) with(V )T from the left yields

niadakis and Sherwin (1999)] and provides an approach,

albeit rather complex, to achieve arbitrarily high order dg

accuracy. QMd—t'\'+S-FN—MS\|:Fn-[FN—F*] . (18)
Here we take a different approach and defirsch that

gy iS an interpolating polynomial, i.e., we require that Here we havey, Fn, Sy, andF" representing thelé-
vector of nodal values in physical space of the solution,

the flux, the source, and the numerical flux, respectively.
The discrete, pointwise operators, are given as

N
Vi qN(Ei,t):j;Qj(t)Lle(Ei) ,

wherey; (&) is the orthonormal basis in Eq.(16) aggd M;; :/ LiLjdx , M= (VVT)_1 ; (19)
are N predefined grid-points ith. On vector form this D
becomes Sj = /D LOLjdx , S=(VHT8v 1 (20)

where the modal operators are given in Egs.(11).

on=Va, Vij=y;(&) , (17) The form of the boundary operatdt, is simplified as a

_ o _ _consequence of the uniqueness of the Lagrange polyno-
wh_ere Vis a multldlmen3|onal Vgndermo_nde_ Malryial and the structure of the nodal points, i.e., integration
This ?IIOWS gs to define a genuine multivariate Lan the three-dimensiondl over the surface is equivalent
grangian basis as to the sum of the integration of the two-dimensional La-
grange polynomials defined by the nodal distribution on
the faces. This implies that

N

qN(Eat):_Zin(Eivt)Li(E) , ViL=y,
=

where the latter expression for evaluation of the La- F{?Ce:f 17212Pdx (21)

grange polynomials follows from the interpolation prop- faTce CANT face ;-1

erty. Herel = [Ly(£)....Ln(£)]T and the basis is given T~ 2 Riees(Vzp) F*VpRrace -

asy = [Wa(&), .., n(&)]".

The final issue in need of attention is the choice of théerel?® represents the two-dimensional Lagrange poly-

nodal points§;, within I. As is well known, the suc- nomials defined by the nodes on each of the 4 faces,

cess of high-order Lagrangian interpolation is critically »p is the associated Vandermonde matrix similar to the

dependent on the correct distribution of the nodes. Thiwee-dimensional form, Eq.(17), anddz is anNzg x N

is a problem that has received some attention recently avitich serves to extract those nodes situated at each face

nodal distributions, allowing for the construction of welbf the element. This reflects the natural separation be-

behaved unique Lagrange polynomials up to order 1Qeen internal and boundary nodes.

can be found in [Chen and Batka (1996); HesthavenTg rejterate the importance of the separation between in-
and Teng (2000)]. ternal and boundary nodes, which is immediate when us-
The nodal distributions are characterized by having eixig the nodal element, we note that the operation count
actly N nodes. Furthermore, the nodal set includes tfa evaluating the scheme, Eq.(13), assuming no separa-
vertices, the edges, and the faces of the tetrahedron. Tibm, is O (6N?) for each variable. For the nodal scheme,
number of nodes on each face is exactly thatis requiredtoa modal scheme with a similar separation, the work
support a two-dimensional multivariate polynomial, i.escales likeD (2N2 +4NN,q). Hence, the relative saving
Nog = (nN+1)(n+2)/2 nodes on each face. in operations scales as
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Runge-Kutta method [Carpenter and Kennedy (1994)]
and terminate the computational domain with a combina-
tion of stretching of the grid and characteristic boundary
conditions at the outer boundaries.

This clearly becomes increasingly important as the order
of the approximatiom, increases, although even for=
3 do we find a 13 reduction.

Another important advantage of the nodal element is the
ease by which one can relax the restriction on tetrahedra
having straight faces only. Clearly, this will impact the

evaluation of the discrete operators, Egs.(11)-(12) and w/

Eqgs.(19)-(21), in a similar way by requiring specific op- £ -
erators for each element and sufficient accuracy in the 10//’/
integration to evaluate entries in the operators. However,
the evaluation of the boundary fluxes, Eq.(14), is straight- ;
forward in a nodal representation even in the normal vec- '
tors, i, have variation along the faces. In a modal rep-

resentation, this will require convolutions and additional
work when setting up the boundary terms.

Work with Nodal Basis B 1+ 2
Work with Simple Modal Basis 3 n+3

[1H,ll5
>
U

Number of Processors 64 128 256 512 107 15-all,
Relative time 1.00 048 0.24 0.14

Table 1: Relative time for a 245.000 element grid with

6'th order elements as a function of number of proces-
sors. All computations performed at IBM SP located at
SRC NAVO. One unit time, representing one complete
flux evaluation, corresponds to 8.1 sec wall clock time. w07

10°

10°

[18=pll;
———— MM A
TR IR S T S TR ) H N S|
0 100 200 300 400
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3.3 Paralle Performance

The discontinuous element formulation discussed abqy%ure 1: On top we show the temporal evolution of
enables a highly efficient parallel implementation on CON - wimum error for different orders of approximation,

temporary large scale distributed memory machines. fé? a wave captured in a metallic cavity. The bottom fig-

a verification of this, we list in Table 1 the relative parﬂpre illustrates the ability to compute a fully divergence

allel speedup fora smg_le Iargg spale application, and e solution, using the divergence free scheme with the
serve superlinear scaling. Similar and more extensi

studies, given in [Hesthaven and Warburton (2002)‘2](,%@ variablep. This resultis obtained with n=6.
confirm this high parallel efficiency for a variety of ap-
plications.

4.1 Sanity Checks

4 Verification and Beyond . . :
& As a test of the analysis and basic properties of the

In the following we shall present some computational recheme, we consider a two-dimensiona\, lang cav-
sults to verify the performance and high-order accuraity with metallic end plates and assumed periodicity in
of the given in Eq.(18). We advance the semi-discrege The cavity is tiled with 8 triangles and a wave is used
scheme in time using a low-storage 4th order expli@s initial conditions.
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In Fig. 1 we show the temporal evolution of error for dif- a)
ferent orders of approximation, confirming the expected or
exponential convergence as control of the growth rate. g
Also in Fig. 1 we confirm the validity of the divergence
free formulation in Eqg.(15). While the additional vari-
able, p, provides a divergence free approximation to the
solution, it is generally about an order of magnitude less
accurate.

RCS (dBm)

Figure 3 : Plane wave scattering byka = 10 metal-

lic sphere for a fixed grid and increasing orderpf the
polynomial approximation. We show the convergence of
RCS@,0) for vertical polarization (TM)

b)

30 50

Figure 2 : Example of a body conforming grid oflea =

10 sphere. The open circles signify the vertices of the
triangles on the surface and the full dots the local nodes
for 6th order elements.

RCS (8, 90) (dBm)

RCS (6,0) (dBm)

NI IR
o

As a first verification of the general three-dimensional
framework, let us consider plane wave scattering by a i ! ]
ka = 10 perfectly conducting sphere, the analytic solu- B0 PO
tion of which is given by a Mie-series. The surface of the ¢

fully bodyconforming grid is illustrated in Fig. 2. The

grid has a total of 3000 elements, with an average edgigure 4 : Scattering by a finite length di-electric cylin-
length at the sphere oi45. der withg, = 2.25. We show the RC8(0) for vertical

In Fig. 3 we illustrate the convergence of the scheme wi®larization () of the illuminating field and RC$(90)
a fixed grid when increasing the order of the approximf®r horizontal polarization-j compared with results ob-
tion within each tetrahedron. Even for= 3, i.e., a third tained using a pseudospectral axi-symmetric code (full
order scheme with about 5 points per wavelength, do @) [Yang and Hesthaven (1999)]
compute a reasonable solution while increasing the order
yields a rapidly converging solution as one would expect.

glass. We find that using a total of approximately 67.000
4.2 Benchmarks elements, supporting a 4th order approximation and with

As an example of a problem, involving penetration, wa average vacuum edge length at the cylindek (&,
consider plane wave scattering by a dielectric Cy”ndé{;ﬁices to accurately predict the far field scattering.
5A long, radius of I\ and made of a non-magnetic mah Fig. 4 we show a direct comparison between the full
terial with a permittivity ofe, = 2.25, similar to that of bistatic RCS for a plane wave impinging directly at the
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end of the cylinder as computed using the current framée bodyconforming grid, shown in Fig. 5 illustrated the
work as well as an independently verified pseudospectgalometry of the problem.

multidomain axisymmetric code [Yang and Hesthaven
(1999)]. As expected we find an almost perfect agree-

ment between the results of the two schemes over ap- a)

proximately 50 dB dynamical range. sk
xf M  CFE
[ eosoeee 3D Time-Domain
25%
T 20;
S isp-
S 10F e
S E .
N 5F .
g E TM-Polarization
£ 6" =0deg
= ¢ =0deg
10fF
15F
Y N I I R S S
0 180
b)
40
m CFIE

------- 3D Time-Domain

RCS(8,0) (dbm)

O [T T T T T T T T T T T T T T T T T T

v b b b b by
3

960 120 150 180

Figure 6 : Plane wave scattering by a metallic cone-
sphere illuminated axially by a plane wave. On top we

Figure 5 : Details of the body conforming grid used tshow RCSg,0) for incidence on the spherical cap, while
compute scattering by a large PEC cone-sphere. The bottom figure shows similar results for RS for

surfaces are triangulated for visualization based on ti€idence directly at the apex. Both results are for verti-
nodes of the high-order elements cal (TM) polarization of the incident wave and compared

to results obtained by a CFIE frequency domain solver

As a considerably more challenging benchmark proble[r?,hore (2000)]

we consider plane wave scattering by a perfectly con-

ducting conesphere, consisting of a 60.5 cm long cohreFig. 6 we show a detailed comparison of the full
with half angle of 7 deg, capped smoothly with a sphetdistatic cross-section for axial plane wave illumination of
cal cap of radius 7.49 cm [Volakis (1992)]. llluminatethe conesphere, showing excellent agreement with high
by a 9 GHz plane wave, the object is approximately Zitlelity results obtained using a CFIE integral equation
wavelengths long. What makes the problem challengirsplver with a very high surface resolution. The compu-
though, is not only its electric size but also the very shatation utilizes about 270.000 elements at 3rd order with
apex and the long shadow region in which surface wawesesolution at the surface of up to 20 points/wavelength.
are excited and travel to focus at the apex. Details \3fe note the excellent agreement and a dynamic range ex-
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Figure 7 : Details of the surface grid used to compute
scattering by a PEC military aircraft. The triangulated
surface corresponds to the finite element grid, i.e., each
triangle supports a high-order element.

RCS(8,90) (dBm)

ceeding 50 dB. Similar results and agreement have been
found for TE polarized illumination.

4.3 Applications
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As a final example of realistic complexity, we consider
plane wave scattering by a military aircraft at 600MHz, at

which pointthe aircr_aft is approximately 50 Wavelength_sigure 8 1 600 MHz plane wave scattering by a PEC
Ic;nﬁ. Thefgnd C(')n'SIStf] of 24}5.0100 tetrahedra. A Sectl(?r[ﬂilitary aircraft, illuminated broadside by a plane wave.
ofthe _Sur ace. grid is showniin Fig. 7. ~On top we show RC$(0) for and measured in the plane
The aircraft is assumed to be a perfectly conductigg the wings, while the bottom figure shows equivalent
metallic shell, and the wave illuminates the aircrafesults for RCS,90). Both results are for TE- polariza-

broadside in the plane of the wings. While no compiion. Both graphs have results obtained for approxima-
tational results or measurements are available for valbn orders ofn = 1 — 3, illustrating that the results are

dation of the results, the ability to compute at differerfonverged.

orders at the same grid provides a way of establishing

convergence of the results. In Fig. 8 we show the bistatic

RCS computed a 3 different orders of approximation,

n=1-3. The results confirm convergence, at least foons. The discussion has focused on the formulation of
the 2nd and 3rd order schemes. the scheme and how choices have been made with per-
An illustration of the surface fields are given in Fig.§ormance in mind. We have also presented a formulation
where we show the distribution over the full aircraft.  Which enables the strict conservation of the divergence
and illustrated the very high parallel performance of the
scheme. The evaluations include both standard bench-
marks for scattering and penetration as well as nontrivial
In the paper we have discussed the formulation atebt cases and confirms the expected accuracy. It should
validation of a fully unstructured, high-order accuratee emphasized that while we have focused on the use
scheme for the time-domain solution of Maxwell's equaf tetrahedra to fill the volume, everything said carries

5 Concluding Remarks
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Figure 9 : Field distribution on PEC military aircraft at 600 MHz broadside plane wave illumination.

over to methods based on hexahedra, mixed elements emuputations were completed
even custom-designed nodal elements.
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