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Abstract: Computational electromagnetic (CEM)
simulations of full-range military vehicles play a criti-
cal role in enhancing the survivability and target recog-
nition of combat systems. Modeling of full-range mili-
tary systems subjected to high frequencies may involve
generating large-scale meshes, solving equations, visu-
alization, and analysis of results in the range of bil-
lions of unknowns or grid points. Hence, the overall
objective of this research is to develop and demonstrate
a scalable CEM software environment to address accu-
rate prediction of radar cross sections (RCS) for full-
range armored vehicles with realistic material treatments
and complex geometric configurations. A software en-
vironment consisting of scalable preprocessing, postpro-
cessing, and an accurate CEM algorithmic approach is
needed to achieve a significant reduction in overall simu-
lation time for practical military applications. In addition
to RCS, this high-fidelity scalable software environment
can be easily extended to address wideband communica-
tions applications. This paper presents a scalable compu-
tational environment or framework for large-scale com-
putational electromagnetics and acoustics (CEA) appli-
cations consisting of (a) scalable grid generation based
on implicit surfaces and voxel methods, (b) scalable fi-
nite difference time domain method, (c) eXtensible Data
Model and Format, and (d) parallel visualization utiliz-
ing a network distributed global memory approach. Two
different applications are presented to illustrate the ca-
pabilities of the proposed approach. The first applica-
tion demonstrates the scalability and validity of the pro-
posed CEM software environment. The second appli-
cation demonstrates the capability of the proposed ap-
proach to model and analyze a very large-scale applica-
tion, namely, a full-scale combat vehicle simulation con-
sisting of 2.56 billion cells.
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1 Introduction

A low observable and controllable signature is the best
survivability technique for a combat system. Next gen-
eration combat systems are envisioned to be of light
weight, with tailored materials and a very short develop-
ment cycle time. To take advantage of these lightweight
new material systems, a better understanding of the sig-
natures for the combat systems in a realistic battlefield
environment is key in achieving dominance on the battle-
field. For this to occur and to meet short combat system
development cycles, validated high-performance com-
putational electromagnetic (CEM) methods are needed.
Scalable CEM simulations enable dramatic reductions
in the cost and time associated with accurate predic-
tions of radar cross section (RCS) for full-size ar-
mored vehicles with realistic material treatments and de-
tails/components, including cavities, thin edges, and em-
bedded antennas.

Numerical approaches for solving electromagnetic scat-
tering problems either in the time or frequency domain
may be classified broadly into the following four cat-
egories: (1) differential equation methods, (2) integral
equation methods, (3) high-frequency asymptotic meth-
ods, and (4) hybrid methods. Each numerical technique
has its own advantages and trade-offs for the analysis of
a particular type of application. For example, traditional
asymptotic analyses are well suited for modeling the
scattering properties of electrically large complex shapes
(Chew et al., 2001); such analyses have difficulty treating
nonmetallic material composition and volumetric com-
plexity of the structure. Significant progress has been
made in addressing the solution of the large systems of
equations generated by frequency domain integral equa-
tion methods; still it is very difficult to incorporate ma-
terial and device nonlinearities. Direct time-domain dif-
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ferential equations are usually solved with grid-based ap-
proaches. These time-domain approaches don’t have the
limitations of the frequency domain and high-frequency
asymptotic methods. Geometric complexity and algo-
rithmic stability, dependent on the physics of the appli-
cation, dictate the grid size. For example, the size of the
computational grid increases tremendously (to the order
of billions of cells), with an increase in the size of elec-
tromagnetic domains and frequencies. Generating large
grids and solving a large number of equations are the
main drawbacks of these approaches. A scalable comput-
ing environment is needed to overcome these problems.

The field of CEMs is a highly interdisciplinary activ-
ity consisting of different areas, namely, physics, engi-
neering, mathematics, and computer science. Develop-
ment of computational algorithms incorporating under-
lying mathematical principles and improved physics are
the cornerstones for the tremendous growth in CEMs.
The advent of parallel computers and associated devel-
opments in computational algorithms to take advantage
of these computers further enhanced this growth.

Finite difference time domain (FDTD) is one of the most
commonly used time-domain methods for solving the
Maxwell equations (Taflove, 1998). The FDTD method
is an explicit time difference scheme which uses central
difference on a staggered Cartesian grid (Yee grid) and
is second-order accurate in both time and space. Since
the finite difference scheme is based on a Cartesian grid,
inaccuracies may be introduced at the model boundries,
particularly with curved geometries. Use of unstruc-
tured mesh-based approaches will circumvent this prob-
lem with additional computational cost. To minimize this
drawback, one can resort to enhancements to the FDTD
method (higher-order methods), unstructured/structured
hybrid approaches, and higher-order finite element ap-
proximations (Castillo et al. 2004). Explicit formula-
tions are ideally suited for parallel implementation, and
the basic scheme is easy to implement on parallel com-
puters. Implementation of essential and natural boundary
conditions in parallel is relatively difficult compared to
the basic scheme.

Typically, solving large-scale practical electromagnetic
applications consists of the following three main steps:
(1) preprocessing or problem setup, (2) computational
approach or application software, and (3) postprocessing
or visualization and analyses. All three steps must exploit
scalable computers in order to address large-scale prac-

tical Army applications. Compared to the growth and
improvements in scalable computational algorithms for
electromagnetic application software, there has been lim-
ited growth in the development of scalable pre- and post-
processing approaches. For example, a single processor
memory is not enough to generate the input file or visu-
alize massive output from practical large-scale applica-
tion. Hence, a computing environment with the capabil-
ities for parallel preprocessing, scalable domain decom-
position, scalable electromagnetic software, and parallel
or run-time visualization is needed. Recently, Hassan et
al. (2004) developed finite element based framework to
address scalable pre- and post-processing approaches for
three-dimensional time domain electromagnetic scatter-
ing applications using tetrahedral meshes. As opposed to
the above tetrahedral finite element approach, the overall
objective of this effort is to develop and implement scal-
able preprocessing and postprocessing algorithms con-
sistent with scalable FDTD CEM algorithms for mod-
eling very large-scale complex Department of Defense
applications. The environment is developed in modular
form so that it works with other grid- based CEM soft-
ware.

2 Computational Formulations

2.1 Mathematical Preliminaries

Electromagnetic fields are modeled by four vec-
tor equations and put forward by the physicist
James Clerk Maxwell in the middle of the 19 th century.
Using vector calculus, the equations can be written in
concise form as

∇ ·B = 0, (1)

∇ ·D = ρ, (2)

∂B
∂t

= −∇ ×E, and (3)

∂D
∂t

= ∇ ×H−Je , (4)

where E(x,t) is the electric field, D(x,t) is the electric flux
density, H(x,t) is the magnetic field, B(x,t) is the mag-
netic flux density, Je(x,t) is the electric current density,
and ρ(x,t) is the charge density. Maxwell’s equations are
complemented by the following continuity equation:

∂ρ
∂t

= −∇ ·Je. (5)
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For linear, isotropic, nondispersive materials, and
nondispersive electric losses that attenuate E fields via
conversion to heat energy, we have

B = µH, D = εE, and Je = σE, (6)

where ε(x) is the electric permeability, µ(x) is the mag-
netic permeability, and σ(x) electric conductivity. Insert-
ing Eq. (6) into Eqs. (1-4) yields the following:

∇ · (µH) = 0, (7)

∇ · (εE) = ρ, (8)

∂H
∂t

= −1
µ

∇ ×E,and (9)

∂E
∂t

= −1
ε

∇ ×H− 1
ε

σE (10)

2.2 FDTD Method

The FDTD approach uses standard central-difference ap-
proximations to evaluate the space and time derivatives
of the partial differential equations on a staggered grid.
“Staggered” here indicates that the different electromag-
netic components are not located at the same place and
the fields are not represented at the same time levels.
The basic finite difference space grid (also known as a
Yee cell (Yee, 1997) is given in Figure 1. The mag-
netic field components are represented on the cell’s faces
and the electric field components are represented on the
cell’s edges. This scheme is second-order accurate in
both space and time and yields an explicit solver, which
is amenable to parallel implementation.

Examples of a typical finite difference stencil of a mag-
netic and electric field in one direction, namely Ex

and Hx, are given in Eqs. (11-12), where the sub-
scripts (n n+1/2) represent time levels and superscripts
(i,j+1/2,k+1/2) represent space. ∆x, ∆y, ∆z, are the space
increments in the x, y, and z Cartesian coordinate sys-
tem, and ∆t is the time increment or time step to march
in time. These equations are quite straightforward to im-
plement. Since this is a second- order accurate explicit
time integration scheme, there is a limit on the time step
size to ensure stability of the time integration scheme,
governed by Courant-Friedrichs-Lewy (CFL) criteria. In
simple terms, the time step to be used is proportional to
the characteristic size of the cell.

Absorbing or radiating boundary conditions (ABC) will
permit one to address electromagnetic wave interactions
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Figure 1 : basic finite difference cell (Yee cell).

in unbounded regions (i.e. an outer lattice to simulate the
extension of the lattice to infinity). The basic limitation
with this boundary condition is that this absorbing layer
is matched only to a normally incident wave. To over-
come this problem, a perfectly matched layer boundary
condition (Berenger, 1994) was implemented.
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The main advantages of FDTD-based techniques for
solving electromagnetic problems are simplicity and the
ability to handle complex geometries (in principle, us-
ing highly refined grids) and multimaterials, including
nonmetallic. As opposed to the traditional tetrahedral
explicit finite element method, this staggered formula-
tion substantially reduces the required memory for solv-
ing the problem. However, the major disadvantage of
FDTD is that Cartesian grids conform poorly to curved
geometry, thus introducing so-called stair- stepping er-
rors. Further, a huge grid is required when the dimen-
sions of the scattering object are large compared to the
input wavelength. This drawback can be addressed either
by resorting to hybrid approaches or using refined higher
order cells. However, the focus of this current research is
to provide a capability for solving very large-scale grids
and highly refined grid applications. Next, the scalable
implementation of the software is discussed briefly.

2.3 Parallel Implementation of FDTD

The parallel FDTD solver is implemented using the mes-
sage passing interface (MPI) allowing the flexibility to
port the software to different parallel computing archi-
tectures. For more details on the parallel implementa-
tion and features, refer to Nehrbass (2001), Guiffent and
Mahdjoubi (2001), Chew and Fusco (1995), and Nam-
buru et al. (2002). Because it is based on a structured
mesh, the FDTD method is an excellent candidate for
parallelization using domain-decomposition techniques
(Karypis and Kumar, 1998). The domain decomposi-
tion process partitions the FDTD solution domain into
subspaces, and each subspace is attributed to a proces-
sor. The objective of domain decomposition is to bal-
ance computational loads and optimize communications
between “N” processors such that computational time re-
quired to solve the problem is reduced by a factor of
“N” (theoretically). Scalability is one of the measures
to assess this speedup of the solution using multiple-
processors. Perfect scalability (when the problem size
is increased linearly with the number of processors, the
execution time is constant) is obtained for this FDTD
software on SGI O3K and IBM SP computing platforms.
Note that the SGIO3K is a shared-memory parallel com-
puter and the IBM SP is a distributed parallel computer.

3 Scalable Computing Environment

The Scalable Computing Environment developed in this
work is based on a common data model and format.
This data model and format takes advantage of the com-
monly used eXtensible Markup Language (XML), hence
we coined the term eXtensible Data Model and Format
(XDMF) (Clarke and Namburu, 2001). XDMF effi-
ciently consolidates large quantities of data for prepro-
cessing, postprocessing, and run-time visualization on
distributed parallel processors. This common data model
and format or XDMF is used in conjunction with the
FDTD computational simulations in order to alleviate
the complexities of communicating data between differ-
ent computational topologies, preprocessing, partition-
ing software, postprocessing, and applications software.
For example, data can be written to the XDMF utiliz-
ing one partitioning scheme, and read back with a totally
different scheme. Instead of imposing a new program-
ming paradigm on electromagnetic software on parallel
computers, XDMF uses the existing concept of file I/O
for distributed coordination to address large-scale appli-
cations, utilizing Network Distributed Global Memory
(NDGM), Hierarchical Data Format version 5 (HDF5),
and eXtensible Markup Language (XML).

XDMF is both a data model and format and allows for
a self-describing method of storing large data structures
and the information necessary to tell how the data is to
be used. This makes the development of reusable pre-
and postprocessing tools possible. “Data model” refers
to the intended use of the data. For example, a three-
dimensional (3-D) array of floating point values may be
the X, Y, and Z geometry for a grid or calculated vec-
tor values. Without a data model, it is impossible to tell
the difference. Since the data model only describes the
data, it is purely light data and thus stored using XML.
The data model is targeted at scientific simulation data
concentrating on scalars, vectors, and tensors defined on
some type of computational grid. Both structured and un-
structured grids can be described via their topology and
geometry. Calculated, time-varying data values are de-
scribed as “attributes” of the grid. The actual values for
the grid geometry, connectivity, and attributes are con-
tained in the data format. This separation of data format
and model allows FDTD software to efficiently produce
and store values in a convenient manner without being
encumbered by large-scale data, which may be different
from their internal arrangement. Utilizing the common
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data model and format, FDTD can produce and consume
data just as writing and reading any other data file. These
data “files,” however, can exist in a network distributed
shared memory system (called NDGM), which has bar-
riers and semaphores to help coordinate parallel activ-
ity. This is what makes XDMF more than just another
file format. In addition, a C++ class library is provided
mainly as a convenience layer. Preprocessing, domain
decomposition, FDTD, and postprocessing use this layer
from C++, C, or FORTRAN to easily access any XDMF
functionality. In addition, this layer has been “wrapped”
for access from Tcl, Python, and Java.

The FDTD solver was incorporated into the scalable
computing environment in a modular form. That is, in
addition to be able to use various libraries in this environ-
ment, the compatible I/O files required for the solver are
easily generated with XDMF. Integrating into this envi-
ronment does not require any modifications to the solver.
First, the solver is compiled for the IBM-SP3 and the
SGI Origin 2000 and 3000 platforms and linked with the
rest of scalable computing environment. Since XDMF is
part of this environment, all the required input files, do-
main decomposition info, communication files, and out-
put files were provided to the solver very easily.

4 Model Preparations and Scalable Visualization

The major difficulty in model preparation or preprocess-
ing is converting the available geometric data for com-
plex configurations into a suitable format for simula-
tions. For example, complex configurations are available
in computer-aided design (CAD) format either as volume
representations and/or surface representations. In some
cases, only surface representation from scanned image
file formats are available. CAD geometries are ideally
suited for generating unstructured meshes of a desired
refinement (theoretically) for high-frequency CEM sim-
ulations. However, facet files and some forms of scanned
images are not well suited for generating appropriate vol-
ume meshes efficiently. Unfortunately, most of the ge-
ometries available for military applications fall into this
category. Hence, our following discussions are focused
towards working with facet file representation to gener-
ate volumetric data suitable for a finite- difference, time-
domain computational approach.

The next difficulty in representing the geometry of the
solution domain is the quality of mesh as dictated by the
numerical approach, material properties, boundary con-

ditions, and source conditions. It is well known that this
is one of the most time-consuming activities and is usu-
ally a major bottleneck in complex simulations.

4.1 Grid Generation

Traditionally mesh generation is broadly divided into two
distinct classes– structured mesh generation and unstruc-
tured mesh generation. Creation of structured meshes
based on transformations and mappings usually proceeds
by creating a structured mesh of the application domain
with regular polyhedron and then mapping the topology
of the meshed object into a structured mesh domain. The
structured mesh typically represents a volume. Genera-
tion of the volume from the available unstructured topol-
ogy of the meshed object or surface representation of the
object is challenging for complex geometries. Similar
challenges exist in creating a volumetric representation
of the object or solution domain for unstructured meshes
starting from surface mesh of the object. Unstructured
mesh generation techniques are typically based on tetra-
hedral elements (Said et al., 1999) for 3-D volume con-
figurations. With the advent of fully automatic mesh
generators, unstructured mesh methods have proven to
be particularly attractive for addressing preprocessing
of complex 3-D configurations. In unstructured mesh-
ing starting from CAD geometries, advancing front tech-
niques (Chan and Anastasiou, 1997), Delaunay triangu-
lation (Krysl and Ortiz, 2001), and the combination of
the two (Borochaki et al., 2000 and Radovitzky and Or-
tiz, 2000) are quite common. A major issue in triangula-
tion techniques is ensuring that individual elements have
high-quality shapes. Despite the good properties of tri-
angulation techniques, they still require much user pre-
processing both to determine material boundaries and to
adjust the mesh size. To suit the needs of the applica-
tion and adaptive computations, refinement of the mesh
is needed. Degeneration of element shape and aspect ra-
tio under repetitive local mesh refinements (Cougny and
Shepherd, 1999) is one major issue and is still under ac-
tive research.

Electromagnetic simulations at higher frequencies of bat-
tlefield configurations demand generation of high- reso-
lution meshes on the order of billions of mesh entities.
Hence, mesh generators need to utilize parallel comput-
ers to address generation of large meshes because single-
processor computers cannot handle this. When the gen-
eration of large grids is attempted with the current par-
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allel unstructured mesh generators, it is found that these
approaches are too slow and the memory requirements
needed for the preprocessing requires much more than
solving the problem. Hence, there is a clear need for fast,
efficient parallel mesh generators.

When compared to tetrahedral elements, hexahedral el-
ements (e.g., the staggered solution procedure with Yee
cells) require less memory, have better stablilty per time
step, and require fewer elements to model the entire do-
main. Hence, the use of hexahedral elements is more
attractive for electromagnetic simulations. However, the
major drawback of hexahedral elements is that they can-
not model curved surfaces and complex geometric enti-
ties accurately. It results in so-called stair stepping at the
boundaries. Tetrahedral elements are more attractive for
modeling curved geometries and complex geometric en-
tities. Hence, a combination of hexahedral elements with
a modest number of tetrahedral elements is the desired
approach, (i.e., a hybrid approach combining both struc-
tured and unstructured mesh generation into one analysis
is ideal).

Lacking fast and robust scalable unstructured mesh gen-
erators for generating very large-scale meshes and effi-
cient structured mesh generators for surface representa-
tions, we explored voxel-based structured meshing ap-
proaches. Voxel-based structured meshing is widely used
in the bioengineering and engineering community (Hol-
lister and Kikuchi, 1994). Most of these approaches are
based on 3-D volume scanned images. To address large-
scale grid generation of complex geometries (starting
from CAD geometries and surfaces based on image rep-
resentation), we developed scalable methodologies using
voxel-based concepts in conjunction with an implicit sur-
face approach.

4.2 Scalable Grid Generator Based on Voxel/Implicit
Surfaces

The steps involved in grid generation discussed in this
paper are as follows:

(a) Facet file representation from scanned images.

(b) Covert the facet file format into XDMF using simple
XML scripts.

(c) Check normals on the facets.

(d) Map the facets onto a coarse Cartesian grid and de-
compose the domain.

(e) Generate desired thickness using implicit surfaces

concept.

(f) Generate desired refined voxels and identify voxels
that overlap the extruded polygons on each processor.

(g) Generate the desired communication information of
the generated voxel grid for the parallel FDTD

The first step is to covert the given coarse facet file rep-
resentation into the XDMF. Several conversion utilities
were incorporated into the scalable computing environ-
ment, which utilizes simple XML tags to convert various
formats of facet/mesh file representations into XDMF. In
addition, a simple file viewer is implemented for visually
confirming the correct conversion of the model, includ-
ing representation of facet normal directions.

With the model in XDMF format, we now need to give
appropriate volume to the facet file to generate the thick-
ness for the model. One easy way to approach this prob-
lem is to use a nodal approach, which provides appro-
priate thickness to the facet files. However, it is very
time consuming for complex geometries. To address
this problem, we employed an implicit surface model-
ing technique. This technique is widely used in the
computational graphics community (Bloomenthal, 1988;
Chadwick et al., 1989). Traditional implicit surface ap-
proaches are based on analytical equations. Recent de-
velopments in this research area demonstrate the gener-
ation of fast, efficient, and accurate layered models us-
ing a skeleton concept. Skeletons are simple geometric
primitives such as points, curves, triangles, and volumes.
Skeletons can be manipulated to produce implicit isosur-
faces such as “distance surfaces.”

Voxel mesh generation and domain decomposition are
handled in one step. An MPI-based utility was devel-
oped that places the coarse surface geometry represen-
tation into a coarse voxel domain of a specified block
size and then decomposes the coarse voxel domain along
with the coarse facet representation. Next, the extrusion
depth or layer thickness is specified to create a volume
representation that depends on the required thickness or
material configuration of the object. This results in a
model with the same external dimension with thickness.
The thickness can vary for each skeleton. Simple ho-
mogeneous extrusion may cause some internal geome-
try to overlap, particularly inside convex outer surfaces.
The desired number of volumetric cells can be generated
utilizing these polygons. Using this method, a polygon
mesh can be generated very quickly from a faceted or sur-
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face representation. However there are several potential
pitfalls. As with many model conversion schemes, the
direction of the original vertex normals is critical. A sec-
ond chance for error arises if the extrusion depth exceeds
the thickness of any of the convex surfaces of the model.
This will cause the geometry to extend back through the
model surface. Some of these errors can easily be cor-
rected with simple file viewer checks.

The next step involves identifying voxels, which overlap
with the polygon mesh. The standard approach is to use
ray-counting and winding number methods (Jin-Fa Lee
and Nehrbass, 2001). The ray-counting algorithm deter-
mines whether or not a point “P” lies within any object
”O.”, The winding number method determines whether
or not the intersection of a ray and a surface lies within
a surface and is therefore counted as a valid intersect.
A combined ray-counting and winding-number approach
will give more accurate results. However, this approach
is very expensive for a large-scale voxel mesh. Hence,
we adopted a different approach based on simple checks
for each of the voxels.

The grid generation is then handled in parallel on a user-
specified number of processors. Each processor is given
a single computational block to grid the entire block,
searching for the cells that overlap the polygon. Cells
are assigned a material value if the model is found to be
at that cell location; otherwise, it is assumed to be free
space. (Figure 2). When a given processor completes
its task, it is given another block until the mesh is com-
plete. The desired number of volume cells can be gen-
erated through the thickness of polygons (i.e., properties
for various material layers can be identified directly for
the corresponding the volume cell).

Figure 2 : Implicit modeler marches through its segment
of the domain generating cell material values based on
location of geometry.

Upon completion of the mesh, an input template file is
created in the format required by the solver. Included
in the input file is the distribution of blocks to the re-
quested number of processors. The FDTD solver utilizes
a perfectly matched layer (PML) of absorbing bound-
ary condition around the computational domain, provid-
ing an absorber region that prevents computational re-
flection back into the domain. The FDTD solver im-
plicitly accounts for this region; therefore, it is unneces-
sary to physically define these blocks. However, they are
accounted for during the decomposition process. Load
distribution is accomplished by dividing the number of
computational blocks by the number of requested proces-
sors. Based on this, each computational block, or group
of blocks, is distributed to a processor during execution
time. Any adjoining absorber blocks are assigned to that
same processor to reduce interprocessor communication.
Since the grid is generated from the implicit mesh infor-
mation and number of blocks, the required grid can be
generated using MPI on any number of processors. For
example, the grid can be generated on “M” processors
if the desire is to execute the job on “M” processors or
the grid can be generated on “N” number of processors
(N << M, with sufficient memory to generate grid) and
can later be spread onto “M” processors. The input tem-
plate file is edited to specify the desired frequency range,
number of time steps, values of PML conductivity, de-
sired volumetric output, and any other desired options.

4.3 Visualization of Large Data

Visualization of the very large data generated from the
scalable simulations is a major problem for the analyses
of results. For example, one of the numerical test cases
discussed in this paper used 384 processors to simulate
the problem and generated about 2 Tbytes of output for
one simulation. Gathering all the information onto one
processor to perform visualization is impossible. Hence,
in our work, we adopted the scalable computing environ-
ment discussed in this paper for parallel visualization.

Parallel FDTD software generates RCS and volumetric
data for each grid associated to the computational block
on each processor. To visualize volumetric data of the en-
tire domain, the block must be reassembled. The scalable
computing environment uses NDGM, along with XDMF
for this purpose. NDGM is a user level, heterogeneous
shared memory system that creates and manages a po-
tentially distributed shared memory buffer, which can be
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accessed. Based on a user request, requested data from
each processor will be communicated back to the user.
The user request will be updated and/or synchronized for
each gathering. Directly accessing the data from memory
substantially improves the performance. This facilitates
accessing of the previous time step data in near real time.
That is, visualization can be performed while simulations
are going on.

5 Numerical Test Cases

5.1 T5M3 Left Front Trihedron

To validate the scalable FDTD approach, a voxel-based
model was generated using the available facet represen-
tation of the T5M3 left front trihedron (Figure 3). This
is one of the standard benchmark problems developed at
the National Ground Intelligence Center (NGIC). Figure
3 shows the shape and dimensions of the trihedron (Spur-
geon et al., 2003). For this problem, RCS simulations of
the parallel finite-difference time-domain method were
compared with the available experimental results. Simu-
lations at 10 GHz

were run for various depression angles. Results at a 10 ◦

depression angle are shown in Figures 4 and 5. As can be
seen for this benchmark problem, FDTD compares very
well with the experimental results. To assess the parallel
performance of the FDTD solver, a small series of cal-
culations were run using a trihedron model as a test case
(Figure 3). A 1037 x 468 x 184 (89 million cells) mesh
was generated and decomposed into 360 computational
blocks. Table 1 lists the comparison for each calculation
run on the ARL IBM-SP (512 - 375 MHz Power3 PEs).
The computational blocks were divided evenly across the
requested number of processors. No attempt was made to
distribute in a manner that reduced interprocessor com-
munication.

     Number of processors   Wall Clock Time 

32 8.5 

64 4.9 

128   2.8 

Table 1 : Parallel performance of simulations.

(1.4 m x 0.6 m x 0.2 m)

Figure 3 : T5M3 trihedron geometric model.

Figure 4 : Comparison with experimental results for VV
polarization.

Figure 5 : Comparison with experimental results for VH
polarization.
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Note that the scalability numbers given in Table 1 are for
the entire simulation starting from finite difference time-
domain software to run-time visualization. Next, scala-
bility studies for grid generation alone for this trihedron
example are evaluated. The time required to generate an
81-million cell grid, including the appropriate input file
with communications information on 8 processors, is 3
minutes and 41 seconds. Memory required for this ex-
ample is about 150 Mbytes for each processor.

5.2 Full-Scale Ground Vehicle at 10 GHz

The objective of this test case is to advance first prin-
ciple electromagnetic calculations to evaluate full-scale
vehicles at X-band. As a test data set, we have chosen
a full-scale ground vehicle for testing, the ZSU23-4 an-
tiaircraft vehicle. This vehicle was selected because it
has been thoroughly analyzed with traditional signature
assessment tools and has been the subject of extensive
range measurements. A high-resolution geometric facet
model was obtained and translated into XDMF format.
To evaluate the vehicle at 10 GHz, the maximum cell
size was determined to be 3 mm by assuming the least
acceptable resolution to be approximately 9-10 cells per
wavelength. Based on a desired 3 mm cell size, each
facet in the XDMF model was given a thickness of 1.6
cm (approximately 5 x 3 mm) by extruding as previously
described. The final mesh was then generated using the
computing environment tools. The result was a 1984 x
1043 x 1188 grid (2.46-billion cells) with a cell thickness
of 3.2 mm. The mesh was divided into 384 actual blocks
with additional 416 implied absorber blocks surrounding
the problem space. The calculation was run to 17000
time steps on the Army Research Laboratory (ARL) Ma-
jor Shared Resource Center (MSRC) IBM-SP3 on 384
processors (PEs). Total wall clock run time was approx-
imately 32.6 hours for a single incident/azimuth angle.
This calculation generated approximately 2.0 TB of vol-
umetric output. An example of the volumetric output at
two different time steps is shown in Figures 6 and 7.

This effort has successfully demonstrated the ability
to efficiently generate and decompose very large-scale
meshes from existing facet geometry utilizing parallel
techniques.

Parallel visualization techniques were developed to inter-
act with the large amounts of volumetric data generated
by the solver during run time.

Figure 6 : An incident pulse (centered around 10 GHz)
impinging the armored vehicle – magnitude of E field.

Figure 7 : An incident pulse (centered around 10 GHz)
impinging the armored vehicle – magnitude of E field at
a later time.

6 Concluding Remarks

This effort successfully demonstrated the ability to effi-
ciently generate very large-scale rectilinear meshes from
existing CAD or facet geometry utilizing parallel tech-
niques within the scalable computing environment. The
Parallel FDTD solver has been validated with the avail-
able experimental data. Scalability of the application
within the computing environment starting from prepro-
cessing, finite difference time-domain software and run-
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time visualization were also demonstrated. Parallel vi-
sualization techniques have also been developed to inter-
act with the large amounts of volumetric data generated
by the Parallel FDTD solver. The Scalable Computing
Environment, with the addition of the tools previously
described, has proven to be an effective means of gen-
erating input in utilizing multiple processors and post-
processing for very large-scale electromagnetic calcula-
tions. This capability, along with the high-performance
computing assets, allows the solution of a new class of
electromagnetic simulations.

In this study, we focused our efforts towards developing
a scalable computing environment to address practical
Army applications utilizing scalable computers. This ba-
sic framework can be used to enhance overall modeling
efforts in CEM. Some of the areas that we are planning
to address in future work include adding multiple ma-
terial support to the implicit modeler during mesh gen-
eration, improving load balancing, modifying the Paral-
lel FDTD solver to add binary data transfer, streamlining
the visualization process, improving the accuracy of the
numerical approaches (higher order methods), develop-
ing hybrid methods (e.g., finite-difference/finite element,
finite-difference/method of moments, etc.), and develop-
ing scalable structured-unstructured hybrid meshing al-
gorithms.
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