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Application of MBPE Method to Frequency Domain Hybrid Techniques to
Compute RCS of Electrically Large Objects

C. J. Reddy1

Abstract: This paper presents an efficient algorithm
to evaluate multi-spectral and multi-angular monostatic
radar cross section (RCS) of large objects with very fine
increments. The technique is based on the combination
of Model Based Parameter Estimation (MBPE) method
with hybrid frequency domain formulations. A general
approach to formulation of MBPE is presented along
with a similar approach called the Asymptotic Wave-
form Evaluation (AWE). Various numerical examples
are presented for multi-spectral response calculations us-
ing method of moments (MoM) and the hybrid Finite
Element-MoM technique in conjunction with MBPE.
Example application of MBPE for hybrid MoM-Physical
Optics approach for multi-angular calculations is also
presented.

keyword: Model Based Parameter Estimation, MBPE,
Hybrid Methods, Computational Electromagnetics
(CEM), Radar Cross Section (RCS).

1 Introduction

Frequency domain techniques in electromagnetics rely
on integral or differential equation approaches and have
been very successful in recent years for RCS calcula-
tions of targets in low frequency to midband applica-
tions [Miller, Mitschang and Newman,(1992)]. More re-
cently, hybrid integro-differential techniques have been
developed to take advantage of both approaches and
thus model materials and surfaces with greater efficiency
[Volakis, Chatterjee and Kempel, (1998)]. Also more ef-
ficient methods using hierarchical vector finite elements
using p-type multiplicative Schwarz method (pMUS) are
developed for arbitrary shapes [Lee, Lee and Teixeira,
(2004)]. This technique results in one order of magni-
tude speed up compared to the previous finite element
approaches. For electrically large objects with mate-
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rial treatments it is necessary to hybridize first principle
CEM techniques with asymptotic high frequency meth-
ods, such as Physical optics (PO) [Jakobus and Land-
storfer (1995)]. Hybrid methods in frequency domain,
though suitable for computing RCS of large objects re-
quire repeated calculations over a frequency band of in-
terest. These methods require an iterative process to de-
termine the illuminated and shadow regions for each an-
gle of incident plane wave. Electrically large objects with
sharp edges and corners exhibit large variations in RCS
with nulls and peaks. Sharp nulls are normally observed
within a small angular range. The CPU requirements to
compute RCS at fine frequency and angular increments
are normally prohibitive. In this paper, Model Based Pa-
rameter Estimation (MBPE) technique [Miller and Burke
(1991)] is presented to accurately compute multi-spectral
and multi-angular responses with a few direct calcula-
tions. In MBPE technique, the electric current or field
is expanded as a rational function. The coefficients of
the rational function are obtained using the either fre-
quency/angular data or the related derivative data. Once
the coefficients of the rational function are obtained the
RCS can be computed using the rational function at any
fine frequency or angle increments. A brief description
of another technique called the Asymptotic Waveform
Evaluation (AWE) [Pillage and Roherer (1990)] is also
presented. AWE is similar to MBPE and is used for
microwave circuit analysis [Tang, Nakhala and Griffith
(1991)]. An approach similar to AWE is presented in
[Jose, Kanapady and Tamma, 2004] using a novel hybrid
finite element and Laplace transform formulation for the
computation of transient electromagnetic fields.

The rest of the paper is organized as follows. In section
2, MBPE method implementation is described. A brief
description of AWE technique is also presented. Numer-
ical results to validate application of MBPE method to
hybrid techniques are presented in Section 3. The nu-
merical data are compared with the exact solution over
frequency/angle range. Concluding remarks on the ad-
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vantages and disadvantages of MBPE are given in Sec-
tion 4.

2 Model Based Parameter Estimation (MBPE)

Frequency domain techniques to compute RCS often re-
sult in a system matrix equation such as

A(k)x(k) = v(k) (1)

Where A(k) is the system matrix, x(k) is the solution vec-
tor and v(k) is the excitation vector due to the plane wave
incident.

Solution of equation (1) at any frequency f o gives the so-
lution vector x(ko), where ko is the free space wavenum-
ber at fo. Instead of directly solving for x(ko), it can be
written as a rational function,

x(k) =
PL(k)
QM(k)

(2)

where

PL(k) = ao +a1k +a2k2 +a3k3 + .....+aLkL (3)

QM(k) = bo +b1k +b2k2 +b3k3 + .....+bLkL (4)

bo is set to 1 as the rational function can be divided by an
arbitrary constant. The coefficients of the rational func-
tion are obtained by matching the frequency derivatives
of x(k). If equation (2) is differentiated t times with re-
spect to k, the resulting equation can be written as [Miller
and Burke, (1991)]

xQM = PL

x′QM +xQ′
M = P′

M

x′′QM +2x′Q′
M +xQ′′

M = P′′
L

x′′′QM +3x′′Q′
M +3x′Q′′

M +xQ′′′
M = P′′′

L

...

...

x(t)QM + tx(t−1)Q(1)
M + · · · · · ·+Ct,t−mx(m)Q(t−m)

M + · · ·
· · · · · ·+xQ(t)

M = P(t)
L

where Cr,s = r!
s!(r−s)! is the binomial coefficient. The sys-

tem of (t+1) equations provides the information from
which the rational function coefficients can be found if

t ≥ L + M + 1. If the frequency derivatives are available
at only one frequency fo, the variable in the rational func-
tion can be replaced with (k−ko) i.e.,

x(k) =
PL(k−ko)
QM(k−ko)

(5)

The derivatives are evaluated at k = ko. The coefficients
of the rational function can be obtained from the follow-
ing equations:

ao = x(ko) (6)




1 · · · −xo 0 · · · 0
0 · · · −x1 −xo · · · 0
0 · · · −x2 −x1 · · · 0
0 · · · −x3 −x2 · · · 0
· · · · · · · · · · · · · · · · · ·
0 · · · −xL+M−1 −xL+M−2 · · · −xL







a1

a2

· · ·
aL

· · ·
bM




=




x1

x2

· · ·
xL

· · ·
xL+M




(7)

Where xm = x(m)

m! .

If the frequency derivatives are known at more than one
frequency, then the expansion about k = ko cannot be
used and the system matrix to solve the rational func-
tion coefficients takes a general form [Miller and Burke,
(1991)]. For the sake of simplicity, let us examine a two-
frequency model. Assume that at two frequencies, f1

(with free space wavenumber k1) and f2 (with free space
wave number k2), four derivatives are evaluated at each
frequency. Hence 10 samples of data are needed (two fre-
quency samples and a total of eight derivative samples)
to form a rational function with L=5 and M=4.

x(k) =
ao +a1k +a2k2 +a3k3 +a4k4 +a5k5

1+b1k +b2k2 +b3k3 +b4k4 (8)

Equation (8) can be written as(
1+b1k +b2k2 +b3k3 +b4k4

)
x(k)

= ao +a1k +a2k2 +a3k3 +a4k4 +a5k5 (9)
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Differentiating equation (9) four times at each frequency,
the matrix equation for the solution of the coefficients of
the rational function (equation (9)) can be written as


M11 M12 · · · · · · M19 M110

M21 M22 · · · · · · M29 M210

M31 M32 · · · · · · M39 M310

· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
M101 M102 · · · · · · M109 M1010







ao

a1

a2

· · ·
b3

b4




=




x(0)
1

x(1)
1

x(2)
1

x(3)
2

x(4)
2




(10)

where x(m)
1 = dm

dkm x(k)|k=k1
,x(m)

2 = dm

dkm x(k)|k=k2

Matrix elements (M11, M12 etc) are given in [Reddy
(1998a)].

In the above equations, x(t), the tth derivative is obtained
using the recursive relationship,

x(t)

= A−1(k)

[
v(t) −

t

∑
q=0

(1−δqo)Ct,qA(q)(k)x(t−q)(k)

]
(11)

where A(q)(k) is the qth derivative with respect to k of
A(k) and v(t)(k) is the tth derivative with respect to k of
v(k). The Kronecker delta δqo is defined as

δqo =
{

1
0

q = 0
q �= 0

The above procedure can be generalized for multiple
frequencies with frequency-derivatives evaluated at each
frequency to increase the accuracy of the rational func-
tion. Alternatively, the two-frequency-four-derivative
model can be used with multiple frequency windows.

2.1 Asymptotic Waveform Evaluation (AWE)

AWE is similar to MBPE and was used for the timing
analysis of very large scale integration (VLSI) circuits
[Pillage and Roherer (1990)]. The AWE technique is also
applied to the electromagnetic analysis of microwave cir-
cuits [Gong and Volakis (1996), Erdemli, Reddy and

Volakis (1999)]. Like MBPE, AWE also results in a ra-
tional function approximation. In the AWE technique the
electric field or current is expanded in the Taylor series
around a frequency. The coefficients of the Taylor series
(called “moments”) are evaluated using the frequency
derivatives of equation (1). Taylor series approximation
gives fairly good results. However, the radius of conver-
gence limits the accuracy of the Taylor series and will
not converge beyond the radius of convergence. The ra-
tional function approach is used to improve the accuracy
of the numerical solution. The coefficients of the Taylor
series are matched via Padè approximation to a rational
function.

To implement AWE, solution vector in equation (1) is
expanded in Taylor series as

x(k) =
∞

∑
n=0

mn(k−ko)n (12)

With the moments given by

mn

= A−1(ko)

[
v(n)(ko)

n!
−

n

∑
q=0

(1−δqo)A(q)(ko)mn−q

q!

]
(13)

To obtain Padè approximation, the Taylor series expan-
sion in equation (12) is matched with a rational function

∞

∑
n=0

mn(k−ko)n =
PL(k−ko)
QM(k−ko)

(14)

Since there are (L+M +1) unknowns, (L+M) moments
of the Taylor series should be matched. Equating the co-
efficients for powers (k − ko)L+1 . . . . . .(k − ko)L+M, the
coefficients of QM(k−ko) can be obtained by solving the
matrix equation




mL−M+1 mL−M+2 · · · mL

mL−M+2 mL−M+3 · · · mL+1

· · · · · · · · · · · ·
mL mL+1 · · · mL+M−1







bM

bM−1

· · ·
b1




=




mL+1

mL+2

· · ·
mL+M


 (15)
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The numerator coefficients can be found by equating the
powers (k−ko)0 . . . . . .(k−ko)L

ao = mo

a1 = m1 +b1mo

a2 = m2 +b1m1 +b2mo

. . . . . . . . . . . . .

aL = mL +
min(L.M)

∑
i=1

bimL−i

For a single frequency calculation, the computational ef-
fort to construct an AWE model or MBPE model is iden-
tical. AWE may be limited to single frequency calcula-
tions due to the Taylor series, where as MBPE could be
used over many frequencies to construct a rational func-
tion spanning a wide frequency band.

3 Numerical Results

MBPE technique as described in the above section is
applied to integral equation method such as MoM, hy-
brid method such as FEM/MoM for RCS calculations
over a frequency range. MBPE is also applied to hybrid
MoM/PO technique to compute monostatic RCS over a
range of incident angles.

3.1 Application of MBPE to MoM

RCS of perfectly conducting three-dimensional objects
is calculated using MoM. This method leads to dense,
complex matrix system of equations. To compute RCS
over a frequency range the system matrix is solved at
each frequency, leading to large CPU times if fine fre-
quency increments are needed. To over come this lim-
itation, MBPE is applied to MoM formulation [Reddy
(1998b)] to compute RCS over a frequency range with
fine increments.

First example is a square plate (1cmX1cm) with the in-
cident electric field, Eφ at θi=90◦ and φi=0◦. The fre-
quency response is calculated with one-frequency MBPE
(L = 5 and M = 4) at 30GHz and using nine frequency
derivatives. The frequency response is also calculated
with two-frequency MBPE (L = 5,M = 4), at f1=24GHz
and f2=36GHz and using four frequency derivatives at
each frequency. Figure 1 shows the frequency response
along with the discrete calculations with MoM. It can be

seen that both one-frequency and two-frequency MBPE
agree well with the discrete calculations with MoM. Dis-
crete calculations took 22,258 secs to compute 31 points,
whereas one-frequency MBPE tool 1688 secs and two
frequency MBPE took 3060 secs. Both one-frequency
and two-frequency MBPE calculations are done with 0.1
GHz increment, a total of 300 frequency points.

Figure 1 : RCS calculation of a square plate over a fre-
quency range using MBPE.

The second example is a perfectly conducting cube
(1cmX1cmX1cm). Normal incidence is assumed.
RCS calculations over a frequency range of 2GHz to
22GHz are calculated and shown in Figure 2. One-
frequency MBPE calculation is done at 15GHz, whereas
the two-frequency MBPE calculations are done at
11GHz and 19GHz. The one-frequency MBPE took
1,143secs, whereas the two-frequency MBPE solution
took 2,066secs. Both MBPE calculations are done with
0.1GHz increments (200 frequency points). The dis-
crete calculations are done at 21 frequencies and took
10,500secs of CPU time.

A more challenging problem, an ogive structure (10” in
length and 1” in diameter) with plane wave incident at the
tip is addressed [Reddy, Cockrell, Beck, Bindignavale,
and Sancer (1999)]. The VV-polarized backscatter is
computed using MBPE in conjunction with MoM and is
plotted in Figure 3. As expected the backscatter shows
deep nulls over the frequency band. To exactly locate
the nulls, MoM calculations need to be done at very fine



Application of MBPE Method to Frequency Domain Hybrid Techniques 459

Figure 2 : RCS calculation of a cube over a frequency
range using MBPE.

Figure 3 : RCS calculations of an ogive over a frequency
range.

increments (0.01GHz at the minimum). Using MBPE,
frequency sweep is accomplished with fine increments.
MBPE calculations are performed in two windows, us-
ing two-frequency MBPE model. For the first window,
MBPE coefficients are computed at 0.5GHz and 1.5GHz
and for the second window, the coefficients are calcu-
lated at 2.5GHz and 3.5GHz. Excellent agreement with
discrete calculations can be observed in Figure 3. Dis-
crete calculations at 40 frequency points took approxi-
mately 20hrs of CPU time, whereas MBPE calculation
for both windows took only 3hrs for a total of 400 fre-
quency points.

3.2 Application of MBPE to Hybrid FEM/MoM tech-
nique

Electromagnetic characterization of cavity-backed aper-
tures is of importance in understanding the scattering
properties and in electromagnetic penetration/coupling
studies. Hybrid FEM/MoM technique is widely used for
computing the electromagnetic scattering characteristics
of cavity-backed apertures [Reddy, Deshpande, Cockrell,
and Beck (1995)]. FEM is used in the cavity volume to
compute the electric field, whereas MoM is used to com-
pute the magnetic current at the aperture. This method
results in a partly sparse and partly dense complex ma-
trix system of equations. Instead of computing RCS at
each frequency, MBPE is used to accelerate RCS calcu-
lations with fine frequency increments.

As an example, a square cavity in an infinite ground
plane is considered (Cavity depth is 2cm and aperture
size is 1cmX1cm). Backscattering calculations are done
for normal incidence of the plane wave. Figure 4 shows
RCS of the cavity over the frequency range calculated
using the Taylor series (equation (12)) for Eθ polarized
incident wave. Taylor series moments are calculated at
20GHz. Figure 5 shows RCS calculations using one-
frequency MBPE (or AWE with Padè approximation). It
can be seen from Figure 4 that Taylor series expansion
gives good results over 18GHz to 22GHz. Beyond this
frequency range, there is no improvement in accuracy,
even by adding more terms to the Taylor series. How-
ever, Figure 5 indicates that MBPE (or AWE) with ra-
tional function approximation gave good results over the
frequency range 15GHz to 25GHz with L=5 and M=5,
and good convergence is observed as the orders of nu-
merator and denominator polynomials increase.

3.3 Application of MBPE to Hybrid MoM/PO tech-
nique

Despite of the innovative fast algorithms for integral
equation [Chew, Jin, Michielssen, and Song (2001)] and
differential equation techniques, characterizing electri-
cally large objects requires hybridization with high fre-
quency techniques such as Physical Optics (PO) [Jakobus
and Landstorfer (1995)]. Efficient implementation of hy-
brid MoM/PO technique requires an iterative process to
compute the RCS of electrically large objects. Despite
the hybridization, multi angular calculations for monos-
tatic RCS are prohibitive due to excessive CPU require-
ments. MBPE is applied to the hybrid MoM/PO tech-
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Figure 4 : RCS calculations of an air-filled square cavity-
backed aperture using Taylor series approximation ap-
plied to hybrid FEM/MoM technique.

Figure 5 : RCS calculations of an air-filled square cavity-
backed aperture using one-frequency MBPE (AWE) ap-
proximation applied to hybrid FEM/MoM technique.

nique for fast multi-angular monostatic RCS calcula-
tions.

A rational function of polynomials is constructed as func-
tion of angle.

x(φ) =
PL(φ)
QM(φ)

(16)

where PL(φ) and QM(φ) are polynomial functions of or-
der L and M, respectively. MBPE calculations are carried
out for a trihedral geometry (Figure 6, EMCC bench-
mark [Greenwood (2001)]) at 3GHz with Eθ incidence
at θ=80◦ (10◦ elevation above grazing).

The MBPE representation was used from φ=0◦ to 22◦

Figure 6 : Trihedron geometry

(a)

(b) 

Figure 7 : Monostatic RCS calculations of the trihedron
geometry using MBPE applied to hybrid MoM/PO tech-
nique.

(Figure 7) using discrete calculations at 1◦ increments.
In Figure 7(a) a model with L=5 and M=4 was applied
in the 0◦ to 11◦ window (window 1) and another model
with L=5 and M=4 was applied in the 11 ◦ to 22◦ window
(window 2) using 10 discrete solution vectors for each
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window. Also a model with L=10 and M=9 between 0 ◦ to
22◦ was constructed (Figure 6b). It can be seen that both
models produce identical results. With the MBPE model,
the monostatic RCS is computed at 0.1◦ increments and
by using L=5 and M=4 only 200secs was required to
compute the RCS values at all angles. Similarly, using
L=10 and M=9 it took only 221secs. However, direct
calculations (using hybrid MoM/PO technique) at 0.1 ◦

intervals require 2,382hours on a single processor, that
is the MBPE allows in this case for a CPU reduction by
a factor of 4000 (3 orders of magnitude). It can also be
noted that discrete calculation gives the first null for cross
polarization (Figure 7b) at 2◦. However with MBPE, the
first null can be observed at 2.201◦, i.e. more accurately.
Further, once the MBPE model is constructed, the RCS
values at even finer increments (0.01◦ for example) could
be computed with very little CPU time consumption.

Figure 8 shows monostatic RCS calculations for the tri-
hedron geometry for 0◦ to 90◦ azimuthal variation at
θ=80◦ (10◦ depression angle). The discrete calculations
were performed at 2◦ interval, whereas MBPE calcula-
tions were done at 0.1◦ increments.

Figure 8 : Monostatic RCS calculations of the trihedron
geometry using MBPE at 3GHz.

4 Conclusions

The MBPE technique is applied to frequency domain
techniques, with an emphasis on hybrid methods for RCS

calculations. Multi-spectral and multi-angular responses
are computed using MBPE and compared with discrete
calculations. From the numerical examples presented in
this paper, the MBPE technique is found essential for ef-
ficient multi-spectral and multi-angular calculations. Ba-
sically, once the MBPE model is constructed, calcula-
tions at finer increments can be calculated with a very
minimal cost. To be accurate a reliable error criterion
should be developed, which can be used to sample the
discrete points to apply MBPE model. Development of
such a sampling criterion will make MBPE a very pow-
erful tool for computational electromagnetics.
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