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The Effect of Fiber Diameter on the Compressive Strength of Composites - A 3D
Finite Element Based Study

Chandra S. Yerramalli1 and Anthony M. Waas2

Abstract: Results from a 3D finite element based
study of the compression response of unidirectional fiber
reinforced polymer matrix composites (FRPC) are pre-
sented in this paper. The micromechanics based study
was used to simulate the compressive response of glass
and carbon fiber reinforced polymer matrix composites,
with a view to understanding the effect of fiber diameter
on compression strength. Results from the modeling and
simulation indicate the presence of a complex three di-
mensional stress state in the matrix of the FRPC. Results
from the simulation highlight the role of fiber diameter
on the compressive response of FRPC. In particular, it is
shown that, depending on the fiber diameter, fiber break-
ing may precede the attainment of a limit load due to fiber
misalignment, thus, precipitating a different mechanism
for the initiation of kink bands.
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1 Introduction

Experimental and analytical models presented in the lit-
erature indicate the complexity and the difficulty in mod-
eling the undirectional fiber composite compressive re-
sponse and failure accurately. Several previous experi-
mental studies and associated analytical modeling have
established kink banding as a dominant mode of com-
pressive failure in high fiber volume fraction FRPC,
[Waas and Schultheisz (1996)]. The increase in available
computational power and the recent advances in numer-
ical modeling of instability problems [Pichler and Mang
(2000) and Iura and Atluri (2003)], provide a means to
understand this problem in a true 3D setting. In this
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study, a 3D finite element micro-mechanics model of a
FRPC is presented and used to understand the compres-
sive response and failure of FRPC. In doing so, an at-
tempt is made to understand 3D effects in the kinking
failure process, and to delineate the role of finite bend-
ing stiffness and its influence on the mechanism of kink
banding.

Previous analytical and numerical attempts to analyze the
kinking failure mechanism are two dimensional, based
on a model of the composite that assumes it to be a two
constituent alternatingly layered medium under plane
strain conditions. A comprehensive summary of the lit-
erature on modeling upto 1999 is contained in the papers
by [Waas and Schultheisz (1996), Fleck (1997), and Naik
and Kumar (1999)]. Beyond this time, investigations re-
lated to compressive response of FRPC have been re-
ported by [Lee and Waas (1999), Jensen (1999), Vogler,
Hsu, and Kyriakides (2000, 2001), Vogler and Kyriakides
(1999, 2001), and, Niu and Talreja (2000)].

Among previous studies, [Vogler, Hsu, and Kyriakides
(2000)], modeled the composite as a 3D plate, but the
fibers were assumed to be periodic in the third dimension
and hence only a 2D slice of the composite was consid-
ered. In a composite cylindrical specimen like that con-
sidered here, the fibers are arranged in a random fashion
and the three dimensionality of the random arrangement
of fibers in a cylinder cannot be modeled in a 2D man-
ner. It can be argued that a 2D model of FRPC captures
the appropriate mechanics at large fiber volume fractions,
however, a 3D model is most appropriate to capture two
important effects of FRPC compressive behavior. These
are the influence of the complex 3D shear state that de-
velops in the sandwiched matrix between the fibers in
the region where kink bands (deformation localization)
develop, and, the effect of finite fiber bending stiffness
on the mechanism of kink band initiation and forma-
tion. In addition to these two effects, there is experi-
mental evidence and characterization of carbon fiber as
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a orthotropic solid, [Kawabata (1988)]. Yet, the effect
of fiber orthotropy on compression response in a true 3D
setting has not been investigated before.

The issues that are of particular interest in the current fi-
nite element study are as follows; (a) Comparison of the
predicted compressive strength between a true 3D finite
element model, a corresponding approximate 2D finite
element model under pure compression, and, an available
analytical prediction, (b) the effect of orthotropic fiber
properties on the predicted maximum stress at a given an-
gle of fiber misalignment, and (c) the dependancy of the
maximum stress on the fiber diameter. The resolution of
the above issues would establish, among other things the
dependancy of critical kinking stress on the fiber diam-
eter. It is to be noted that previous analytical models of
kinking assume that the kink band is already developed,
[Budiansky and Fleck (1993)]. Consequently, the effect
of finite fiber bending stiffness and fiber orthotropy on
the predicted compression strength associated with kink-
ing failure is not accounted for. The effect of fiber di-
ameter, which accounts for finite fiber bending stiffness,
and fiber orthotropy are directly captured via a 3D micro-
mechanics based finite element model, as has been pre-
sented in this paper.

2 Modeling

A unidirectional fiber reinforced composite cylinder was
modeled using 8 noded reduced order brick elements,
C3D8R, using the commercial finite element software,
ABAQUS. Hourglass stiffness control was adopted to
prevent the hourglassing of the brick elements. The com-
posite cylinder geometry consisting of cylindrical fibers
and matrix was meshed using the commercial meshing
software HYPERMESH. Initially, a total of 37 fibers was
included within a representative circular cylindrical mi-
crosection for both glass and carbon composite finite ele-
ment models. An isometric view of the 3D finite element
model is shown in figure 1. The carbon composite and
glass composites were modeled for a fiber volume frac-
tion of 0.5. In case of the glass composite finite element
model, the fiber diameter was varied to study the effect of
fiber diameter on the maximum stress. For this purpose
the number of fibers in the models was kept the same.
This resulted in two glass composite models with differ-
ent composite outer radius, rc. The cylinder length of
both models were kept the same. 2D finite element mod-
els of carbon FRPC were used to predict the compres-
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Figure 1 : A 3D finite element micro-mechanical model
of a composite cylinder

sive strength of carbon FRPC with, V f = 0.5, so that the
2D and 3D model predictions could be compared against
each other and also against the analytical prediction of
[Budiansky and Fleck (1993)]. Details of each of these
models are given in Table 1. In case of carbon fiber,
the effect of orthotropy of the carbon fiber on the pre-
dicted stress response was studied. The orthotropic prop-
erties of carbon fiber are obtained from [Lee and Waas
(1999)] and are as follows, E11 = 276000(MPa), E22 =
E33 = 8760(MPa), G12 = G13 = 12000(MPa), G23 =
3244(MPa), ν12 = 0.35. In those cases where the car-
bon fiber is assumed isotropic, the material properties
are given in Table 2. In section 3.2, results from a scal-
ing study to determine size effects associated with the
FE models are presented. For this purpose, two different
types of scaling are introduced and discussed.

2.1 Initial Geometric Imperfection

An important consideration in studies related to compres-
sive response of structures is the effect of initial geo-
metric imperfection on the load-end shortening, (P−∆)
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Model Total Total Length Radius Fiber V f

Name Elements Nodes radius
L (µm) rc(µm) r f (µm)

Carbon-1 64704 68673 64 21.5 2.5 0.5
Carbon-2D 10000 30349 710 250 2.5 0.5

Glass-1 64704 68673 306.43 58 6.75 0.5
Glass-2 64704 68673 306.43 103 12 0.5

Table 1 : 3D finite element model details

curve. In cases where the P−∆ curve shows a load max-
imum (limit load), it is of interest to determine the effect
of imperfection magnitude on the load maximum. By do-
ing so, one can generate a plot of maximum load against
imperfection magnitude. From this plot, one can obtain
the maximum load in the limit of vanishing imperfection
magnitude (see figure 2).

E f (MPa) ν

Glass fiber 72000 0.22
Carbon fiber 276000 0.35
Vinylester 3585 0.36

Table 2 : Material properties of fiber and matrix

H1 Mode-1 Mode-3

64 1.0334 0
32 0.5050 1.0179

Table 3 : Normalised displacements from buckling anal-
ysis of FE model(carbon-1)

For the purpose of generating an appropriate initial ge-
ometric imperfection shape, a linear buckling analysis
of the models was performed and the buckling mode
shapes (eigenmodes) were used to introduce the imper-
fection into the finite element models. As can be seen
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Figure 2 : Peak stress, σmax as a function of initial im-
perfection, φ, to illustrate the different definitions of the
initial misalignment angle

from figure 3 and figure 4, eigenmode-1 is a deformed
cantilever mode and is a long wavelength imperfection
mode. Whereas, eigenmode-3 shows a maximum lat-
eral amplitude at the center of the cylinder. Thus, a
combination of these two modes was used with vary-
ing amounts of magnitude to introduce a series of ini-
tial geometric imperfections in the composite. These im-
perfections lead to initial fiber misalignment that can be
categorized through an initial fiber misalignment angle,
(φ) . The imperfection angle can be calculated based on
the mode shapes chosen to perturb the original geome-
try. From the eigenmodes, the normalized displacement
(U1,U2,U3) for each mode can be obtained. Then, us-
ing the displacements in the 2− 3 plane, (U2,U3), the
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Figure 3 : Mode-1 displacement of 3D FE model

radius vector, rd, by which the nodes are displaced in the
2− 3 plane is calculated. Further, with a knowledge of
the location of these nodes along the 1 direction (the fiber
direction), the imperfection angle can be calculated. The
maximum values of the radius vector, rd, for different
mode shapes and the location of these maximum values
are given in Table 3. In case of using more than one
mode shape to generate the initial imperfection (as has
been done here with mode-1 and mode-3), the imperfec-
tion angle is calculated as follows. If δ1 is the mode-1
radius vector and s1 is the scaling factor, then the actual
perturbation of the mesh, ∆1, would be s1× δ1. Sim-
ilarly, for mode-3, with s3 as the scaling factor and δ3

as the radius vector, then the actual perturbation of the
mesh, ∆3, would be s3× δ3. Thus, the total perturba-
tion of the mesh, ∆tot , would be a linear combination of
these two perturbations given by ∆ 1 +∆3. The imperfec-
tion angle, φ can be obtained from tan−1(∆tot/H1). The
maximum value is taken as the imperfection angle of the
mesh. However, it should be noted that the imperfection
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Figure 4 : Mode-3 displacement of 3D FE model
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Figure 5 : Pure compression response of vinylester ma-
trix used as input for FE modeling
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Figure 6 : A schematic of the FE model for pure com-
pression and pure torsion

angle calculated is predicated on the basis that the mesh
is being deformed in a homogeneous manner. As can be
seen in figure 3 and figure 4, the displaced shape is non-
homogeneous and thus the misalignment angle is a func-
tion of the axial position at which it is measured. The av-
erage initial fiber misalignment will be smaller than that
based on the estimate tan−1(∆tot/H1). After the eigen
mode-shapes are obtained from the finite element model,
compressive response studies on the perturbed mesh are
carried out in a setting that includes both, geometric and
material non-linearity. For this purpose, the fibers are as-
sumed to be linearly elastic isotropic or orthotropic as the
case may be, the matrix is modeled as a J2 incremental
theory of plasticity solid [Mendelson (1983)] and an arc-
length tracing nonlinear solution process (RIKS method)
is used to obtain the overall P− ∆ curve of the micro-
model. An arc-length procedure is needed to accomodate
any ‘snap-back’ that can develop in the P−∆ response.
The complete non-linear uni-axial stress-strain curve of
the matrix that is used in the present study is shown in

figure 5. This non-linear curve is also the relation be-
tween the equivalent stress and equivalent strain for a J2
incremental theory plastic solid with a Von-Mises yield
criterion and an associated flow rule [Mendelson (1983)].

2.2 Model Implementation

The straight fiber finite element models were perturbed
using the procedure described in the preceding section to
generate 3D perturbed finite element models of the com-
posite with known initial geometric imperfections and
then subjected to displacement control axial loading in
a geometrically non-linear setting. Prior to conducting
the axial compression studies, the response of the model
to pure torsion loading was examined so that the shear
stress-shear strain (τ−γ) response of the FE model would
match the (τ−γ) response measured through experiment.
To perform the torsion loading, a multi-point constraint
option available in the ABAQUS software was used to
constrain the motion of all the nodes on the top surface
to move along the axial direction at the prescribed rate
of displacement. The use of a MPC is useful in the tor-
sion loading case since the rotation on the MPC node is
translated into displacements along the tangential and ra-
dial directions for the face nodes. A schematic of the FE
model along with the MPC node and the axis locations
are shown in figure 6. The boundary conditions used for
pure compression and pure torsion cases are shown in Ta-
ble 4-5. For the loading cases studied, the models were
allowed to ‘breathe’, i.e. the displacements along the 2
and 3 directions were free on both cylinder end faces.

The procedure used for studying the compressive re-
sponse of the composites is as follows; first the 3D fi-
nite element models were used to generate the torsional
response. The matrix non-linear properties were ‘cali-
brated’ to obtain the composite shear stress-shear strain
(τ −γ) response of the 3D FE model to be similar to the
experimentally measured shear stress-shear strain curve.
The model response was compared against the experi-
mental shear stress-strain curve as shown in figure 7.
The following is to be noted. The linear part of the
τ −γ curve was found to match the linear part of the ex-
perimentally obtained τ − γ curve exactly. In order for
the FE models τ − γ curve to match the experimental
τ−γ curve in the non-linear regime, the non-linear (plas-
tic) part of the σ− ε curve shown in figure 5 had to be
changed. This is because, the present 3D FE model is a
representative microsection (containing 37 fibers) of the
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Node/face U1 U2 U3 θ1 θ2 θ3

MPC node ∆ Free Free Free Fixed Fixed
Bottom Fixed Free Free - - -

Table 4 : Boundary conditions for pure compression

Node/face U1 U2 U3 θ1 θ2 θ3

MPC node Fixed Fixed Fixed θ Fixed Fixed
Bottom Free Fixed Fixed - - -

Table 5 : Boundary conditions for pure torsion

much larger laboratory specimen that contains approxi-
mately ‘125,000’ fibers within a radius of ‘3.35mm’ (see
[Yerramalli (2003); Yerramalli and Waas (2003)], for de-
tails). For the purpose of studying compressive response,
a numerical FE model of a representative micro-section
is deemed equivalent to the actual laboratory specimen
when both the FE model and the laboratory specimen
contain the same fiber volume fraction and the same over-
all composite τ − γ response curve. After this ‘equiv-
alence’ was established, the 3D models were used to
generate compressive response curves. In section 3.2 of
this paper, two different types of scaling related to in-
terpreting finite elment model results are presented and
discussed.

3 Results

3.1 Comparison of 3D and 2D Model Predictions

The pure compressive response curves for a range of ini-
tial imperfection magnitudes are shown in figure 8. In the
plot, σc is the macroscopic axial stress (axial load divided
by the initial microsection cylinder crossectional area)
and εc is the macroscopic strain based on end-shortening
(i.e. the axial end shortening divided by the initial micro-
section cylinder length). A note about the initial imper-
fection is in order. Recall, that two curves were shown
in figure 2, which showed the dependency of maximum
macroscopic stress on imprefection magnitude. In the
first curve, the initial imperfection (misalignment angle)
is based on the magnitude of the mode-1 imperfection

(even though, both mode-1 and mode-3 imperfections
are included in the 3D FE model). This is because, as
explained earlier, the misalignment angle is a function
of axial position. Thus, for comparison purposes, it is
clearer to define the geometric imperfection based on the
mode-1 shape only. The misalignment angles indicated
in Figure 8 are based on the definition that includes only
the mode-1 imperfection, and this will be so for the re-
mainder of this paper.
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Figure 9 : Compressive response curve of car-
bon/vinylester composite of V f = 0.5 and φ1 = 10 with
orthotropic fiber properties

An explanation of a typical σ − ε curve as shown in
figure 8 is in order. At first, the model behaves lin-
early. With continued loading (consider the φ1 = 0.250

case, for example), the matrix material in the region
of initially misaligned fibers is subjected to increasing
amounts of shear strain. This results in a progressively

decreasing shear stiffness of the matrix (inferred from
the shear stress-shear strain curve of the composite, fig-
ure 7), which in turn, provides decreasing support to the
fibers. A point is reached (peak load or limit load), when
the competition between the elastic restoring force of the
fiber is overcome by the action of the external compres-
sive load that deflects the fiber into a progressively dete-
riorating (in shear) matrix. Beyond this limit load, there
can be ‘snap-back’ (both the macroscopic stress, σ, and
the macroscopic axial strain, ε can decrease), resulting in
an unstable equilibrium path. In the context of a labo-
ratory experiment, the snap-back can be interpreted as a
drop in stress instantaneously (at fixed ε) to the curving
back path of the σ−ε curve (see dashed line in figure 8).

The carbon fiber composite response curves were first
generated with isotropic properties of carbon fiber. For
the case corresponding to the maximum value of mis-
alignment, the properties of carbon fiber were changed to
reflect material orthotropy and the compressive response
was obtained. As can be seen from the results in Figure
8, the maximum stress is unaffected by fiber orthotropy
but the post peak response is much softer in case of or-
thotropic fiber properties. The initial stiffness predicted
by the 3D finite element model is nearly same for all the
models with different imperfections, thus, establishing
the “smallness” of the range of imperfection magnitudes
selected for study.

In figure 9, the compressive response of the FE model
with a misalignment angle of φ1 = 10 is shown. The
response can be divided into three regions; the first is
the pre-peak region where the response is linear, next,
a post-peak region where the decrease in stress is very
rapid, and, finally, a stage referred to as the plateau region
where the stress is approaching a near constant value.
Corresponding to the peak and post-peak regions, the
displaced shape of the FE mesh has been plotted in fig-
ure 10. The meshes corresponding to step-4 lie near the
peak and in the post-peak region of the curve. It can be
seen that the deformation gradually increases as the stress
starts to decrease beyond the peak stress value. As ex-
plained previously, the matrix starts to yield in shear at
locations of maximum fiber misalignment thus causing
a narrow band of fibers to rotate and propagate seem-
ingly with no resistance, causing the macroscopic stress
to drop. In the post-peak region, the mesh starts to show
the formation of a distinct kink band and this distincti-
ion becomes clear as can be seen in the deformed mesh



8 Copyright c© 2004 Tech Science Press cmes, vol.6, no.1, pp.1-16, 2004

1

2 3

RESTART FILE = d5v50carb3old2   STEP 4  INCREMENT 12

1

2 3

1

2 3

RESTART FILE = d5v50carb3old2   STEP 4  INCREMENT 15

1

2 3

1

2 3

RESTART FILE = d5v50carb3old2   STEP 4  INCREMENT 18

1

2 3

1

2 3

RESTART FILE = d5v50carb3old2   STEP 4  INCREMENT 20

1

2 3

1

2 3

RESTART FILE = d5v50carb3old4   STEP 6  INCREMENT 1

1

2 3

1

2 3

RESTART FILE = d5v50carb3old4   STEP 6  INCREMENT 5

1

2 3

1

2 3

RESTART FILE = d5v50carb3old4   STEP 6  INCREMENT 10

1

2 3

1

2 3

RESTART FILE = d5v50carb3old3   STEP 5  INCREMENT 8

1

2 3

Figure 10 : Deformed mesh of carbon/vinylester composite of V f = 0.5 and φ1 = 10 with orthotropic fiber properties



A 3D Finite Element Based Study 9

y

z

orthostep1_inc2_exxstep4 inc20, t=1.79e+00

Strain YZ

> 4.39e-02

< 4.39e-02

< 2.92e-02

< 1.44e-02

<-3.25e-04

<-1.51e-02

<-2.98e-02

<-4.46e-02

Max = 5.87e-02

Min =-4.46e-02

y

z

orthostep1_inc2_exxstep4 inc20, t=1.79e+00

Strain YZ

> 6.37e-02

< 6.37e-02

< 4.10e-02

< 1.83e-02

<-4.46e-03

<-2.72e-02

<-4.99e-02

<-7.26e-02

Max = 8.64e-02

Min =-7.26e-02

x

z

orthostep1_inc2_exxstep4 inc20, t=1.79e+00

Strain YZ

> 4.39e-02

< 4.39e-02

< 2.92e-02

< 1.44e-02

<-3.25e-04

<-1.51e-02

<-2.98e-02

<-4.46e-02

Max = 5.87e-02

Min =-4.46e-02

disk at x = 20

disk at x = 30

Figure 11 : Deformed mesh of a slice of the carbon/vinylester composite of V f = 0.5 and φ1 = 10 with orthotropic
fiber properties

corresponding to step-6. The stress corresponding to the
deformed mesh for step-6, increment 10 is shown in the
stress response curve and it can be seen that the point
lies in the plateau region. An important observation that
can be made from this 3D finite element simulation of
kinking is the formation of circumferential ripples of in-
creasing magnitude on the outer surface of the micro-
section cylinder with continuded loading, indicative of
matrix regions which undergo shearing strains of differ-

ent sense (positive and negative shear). Unlike 2D sim-
ulation of kink bands where the matrix material within
the kink band shows shearing of one sense (positive or
negative), the outer surface of the composite in the 3D
case shows ‘ripples’ which is reflected in the zig-zag na-
ture of the deformed mesh in the kinked region. In fact
as will be seen in figure 11, the circular shape of the
composite no longer remains circular. In these figures,
a slice of the composite without the embedded fibers is
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Figure 12 : Contours of εxx for the carbon/vinylester composite of V f = 0.5 and φ1 = 10 with orthotropic fiber
properties

shown. Figure 11 corresponds to the post-peak region
of the compressive stress response curve. The side view
of the deformed cross-section shows the ripples. On the
deformed mesh, contours of inplane shear strain, γyz are
superposed. The value of γyz increases as the post-peak
region is reached. This also corresponds to the fact that
the shape of the circular section no longer remains cir-
cular because of the inplane shear strains that develop.
Contours of the uni-axial strain, εxx, are presented in fig-

ure 12. The strain contours are superposed on a deformed
mesh. It was observed that, in the pre-peak region (step-
1) the total strains are low, even though, one could no-
tice the formation of a band of high strain region starting
from one end of the composite and spreading diagonally
across the surface. In the post-peak region (step-4) the
strains started to increase and the strain localization ini-
tiated along the previously mentioned band indicated by
the dark region in the strain contours (Figure 12). As the
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post-peak region was approached, the band of high strain
region started to grow and spread. The value of the peak
strain in the band also increased. The region with el-
evated strain corresponded to the region of localized de-
formation of the mesh as seen in figure 10. A longitudinal
section of the FE model for the carbon composite (with
only the fibers) is presented in figure 13. The axial shear
strain contours, γxz, are superposed over the deformed
mesh. This is of interest in case of orthotropic fibers (like
carbon), where the fiber itself has a microstructure. High
values of inplane shear strain can cause the fiber to fail by
shearing between outer layers and the fiber core (eg. in a
onion skin core type of structure, [Herakovich (1998)]).

The procedure described for the 3D finite element sim-
ulation was also used to generate a perturbed mesh and
obtain the compressive response of carbon fiber compos-
ite in a 2D plane strain setting. The comparison between
the predicted maximum stress values for a 2D model and
a 3D model are given in Table 6. As can be seen, the
3D model predictions are significantly lower at the same
angle of initial fiber misalignment as compared to the 2D
model predictions. Furthermore, the 3D model predic-
tions are also lower than the analytical Budiansky-Fleck
model predictions given by,

σc =
τy

φ+γy
(1)

where τy is the shear yield stress of the composite, γy is
the corresponding shear yield strain, and φ is the initial
fiber misalignment angle.

σc(MPa) φ

Carbon-3D 495 2.30

Carbon-2D 581 2.30

BF-model 652 2.30

Table 6 : Comparison of compressive strength predic-
tions

3.2 Size Effects - Effect of fiber diameter

The 3D finite element micromechanical model of the
glass fiber composite was used to study the effect of

fiber diameter on the peak stress under axial compres-
sion loading. For this purpose, two types of models were
developed; one is referred to as a micro-mechanically
scaled model and the other is referred to as a structurally
scaled model. In the micro-mechanically scaled mod-
els, the FE models for both fiber diameters contained the
same number of fibers and had similar fiber volume frac-
tions. Thus, the outer radius of the FE model was differ-
ent. In the case of structurally scaled models, the outer
radius of both FE models and the fiber volume fraction
were kept the same. This requires that the number of
fibers in both models be different. In the case of the FE
model with small fiber diameter, the number of fibers
were taken to be 37 and in the case of the FE model
with large fiber diameter, the number of fibers were taken
to be 19. In passing, we note the extensive literature
[Bazant, Kim, Daniel, Becq-Giraudon, and Zi (1999)] on
the effect of structure size on the nominal compression
strength of unidirectional fiber polymer composites.

3.2.1 Micro-mechanically Scaled Models

The shear stress-shear strain response from both mod-
els were found to be nearly same (Figure 14). Thus, an
equivalence was established between the two microme-
chanically scaled FE models. Recall that the two glass
composite models contain 37 fibers packed in a cylin-
der such that the overall fiber volume fraction, V f = 0.5.
The dimensions of the models are given in Table 1. The
3D models were next used to generate the compressive
stress-compressive strain response. For the larger diame-
ter fibers, the initial fiber misalignment values were var-
ied. However, for comparing with the small fiber diam-
eter model, two FE models with same value of initial
misalignment were studied. From the response curves
in figure 15, it can be seen that the peak stress in the
case of the large fiber diameter model is high compared
to the model with the small fiber diameter (at the same
initial angle of misalignment). The analytical kinking
stress prediction of [Budiansky and Fleck (1993)] (see
equation (1)) would predict the peak stress to be the
same for both cases since the composite shear stress-
shear strain response is same for both models. However,
as can be seen from the present FE model results, the
peak stress is different with different reinforcing fiber di-
ameters. This indicates that fiber bending stiffness plays
an important role in the determination of the peak stress
associated with kink banding. This novel result has not
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Figure 13 : Contours of γxz for the carbon/vinylester composite of V f = 0.5 and φ1 = 10 with orthotropic fiber
properties



A 3D Finite Element Based Study 13

Shear strain, γ

S
he

ar
st

re
ss

,τ
(M

P
a)

0 0.01 0.02 0.03 0.04 0.05
0

25

50

75

100
r0=6.75µm nf = 37
r0=12µm nf = 37

3D Torsion FE models
Micro-mechanically scaled
Glass/Vinylester, Vf = 0.5

Figure 14 : Torsional response of a 3D FE model of
a glass composite of V f = 0.5 for micro-mechanically
scaled models

Axial strain, ε

A
xi

al
C

om
pr

es
si

ve
S

tr
es

s,
σ c

(M
P

a)

0 0.01 0.02 0.03 0.04 0.05
0

50

100

150

200

250

300

350

400

r0=6.75µm (φ1=50)
r0=12µm (φ1=50)

glass/vinylester
L1 = 306.43; nf = 37
Vf = 0.5

φ

Figure 15 : Compressive stress response of a 3D FE
model of a glass composite of V f = 0.5 for micro-
mechanically scaled models - effect of fiber diameter.

been identified in previous 2D FE studies of kink banding
(see [Vogler, Hsu, and Kyriakides (2001), Lee and Waas
(1999)]). It should be noted that the analytical model for
kinking by [Budiansky and Fleck (1993)] does not take
into account the finite fiber bending stiffness and the ex-
tensibility of the fibers.
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Figure 16 : Torsional response of a 3D FE model of a
glass composite of V f = 0.5 for structurally scaled mod-
els
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Figure 17 : Compressive stress response of a 3D FE
model of a glass composite of V f = 0.5 for structurally
scaled models

3.2.2 Structurally Scaled Model

Structurally scaled FE models were first subjected to
pure torsion as was the case with the micromechanically
scaled models, and the properties of the matrix material
were ‘calibrated’ in order to obtain a similar macroscopic
shear stress-shear strain response for both models with
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Figure 18 : Compressive stress response of a 3D FE
model of a glass composite of V f = 0.5 and r f = 12µm

different diameter fibers as shown in figure 16. After this
equivalence was established, the compressive response
of the FE models were studied to understand the effect of
fiber diameter on the peak compressive load. For com-
parison purposes, the initial fiber misalignment was kept
the same for both FE models. As shown in figure 17,
the peak compressive stress is different for both models
and the model with a larger fiber diameter has a higher
peak compressive stress for the same angle of misalign-
ment. Thus, it is clear from both the structurally and the
micro-mechanically scaled models that the fiber diameter
does influence the peak compressive stress. The tendency
is for the peak compressive kinking stress to increase
with fiber diameter. The increase in composite com-
pressive strength with increase in fiber diameter, as has
been shown here, has been observed experimentally by
[Schutz (1994)] for boron fiber composites, and by [Yer-
ramalli (2003); Yerramalli and Waas (2003)] for glass
fiber composites at low fiber volume fractions. However,
it was also observed by [Yerramalli (2003)] that change
in fiber diameter led to a change in the observed fail-
ure mechanism from kinking for small diameter fiber to
splitting in case of large diameter glass fiber composites.
Therefore, an increase in fiber diameter could lead to a
different failure mechanism, thus limiting an increase to
be gained in kinking compressive strength.

The micromechanically scaled FE model results are
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Figure 19 : Compressive stress response of a 3D FE
model of a glass composite of V f = 0.5and r f = 6.75µm

shown in figure 18 and figure 19, where the maximum
fiber strains are noted. It can be seen that for the same
macroscopic axial strain, the local fiber strain is higher
in the small fiber diameter FE model, compared against
the larger diameter FE model. Furthermore, in this
case (small fiber diameter), the maximum fiber strain is
reached prior to the attainment of a maximum macro-
scopic load. This indicates the possibility of fiber break-
ing as the mechanism for initiation of failure, leading to
kinking, in the case of small fiber diameter glass com-
posite. In case of large diameter glass fibers, there are
two possibilities. The fiber breaking strain is reached be-
fore or after the localized kink banding instability corre-
sponding to a peak load. In the current study, assuming a
fiber breaking strain of 0.02 for glass, it can be seen that,
in the large fiber diameter model, the maximum fiber
strain exceeds the fiber breaking strain almost at the max-
imum load point in the stress response curve. However,
for the small fiber diameter model, the maximumn fiber
strain exceeds the fiber breaking strain much below the
attainment of the maximum stress. Thus, the formation
of kink bands, much like what has been experimentally
observed by [Narayanan and Schadler (1999)] and [Gar-
land, Beyerlein, and Schadler (2001)], can occur due to
damage zones formed on account of fiber breaks prior to
the attainment of a maximum load associated with a kink
banding instability predicated on models that do not ac-
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count for finite fiber bending stiffness. This finding is
important, since it shows that the onset of kink band-
ing and the associated kink band angle can be depen-
dent on the fiber diameter and the fiber breaking strain
when kink banding initiates from damage zones formed
by fiber breaks. The fiber breaking strain is not a quan-
tity that can be obtained from simple tension tests in gen-
eral. For example, in case of carbon fibers that have a
microstructure, the breaking strain under bending (with
through thickness gradient loading) is different than the
breaking strain in tension (where there is no through the
thickness gradient in loading). These aspects have been
pointed out by [Wisnom, Atkinson, and Jones (1997),
Drapier, Grandidier, and Potier-Ferry (1999, 2001) and
Quek (2002)].

4 Conclusions

In this paper, the results from a 3D finite element based
micromechanics study on the kinking failure of unidirec-
tional fiber composites have been presented. It can be
seen that the fiber diameter and thus the finite fiber bend-
ing stiffness plays an important role in the determination
of the compressive strength of FRPC. The results clearly
indicate that kinking initiating due to a fiber break cannot
be ignored in the case of small fiber diameter fiber com-
posites. The quantitative results presented in this paper
can be used to explain the microscopic experimental ob-
servations (based on Raman spectroscopy to track fiber
breaks, as has been reported by [Narayanan and Schadler
(1999) and Garland, Beyerlein, and Schadler (2001)]) on
the initiation of kink bands. The 3D finite element simu-
lation results show the importance of finite fiber bending
stiffness on the compressive strength and the presence
of a complex three dimensional stress state in the ma-
trix region. Both of these effects are unaccounted for in
previous models of kink banding that consider 2D mod-
els under plane strain condition. Based on 2D models
the role of fiber misalignment on kink banding has pre-
viously been identified. The present results, on the other
hand, show that other effects, controlled by fiber break-
ing strain and the fiber bending stiffness also effect com-
posite compressive strength in a significant manner.
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