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A Three Dimensional Numerical Investigation of the T∗ integral along a Curved
Crack Front

J. H. Jackson1, A. S. Kobayashi2, S. N. Atluri3

Abstract: The T ∗
ε integral was calculated numerically

along an extending, tunneling crack front in an 8 mm
thick, aluminum three-point bend (3PB) specimen, us-
ing a numerical model driven by experimentally obtained
surface displacements. The model provided input to a
contour integration for the T ∗

ε integral, via the Equivalent
Domain Integral (EDI) method with incremental plastic-
ity. Validity of the analysis was ensured by the agreement
of the T ∗

ε integral obtained on the surface (plane stress)
and the plane stress values from previous studies. T ∗

ε was
observed to decrease from the outer surface of the speci-
men to the more constrained mid-plane. This difference
became more pronounced as the crack grew.

keyword: T ∗
ε integral, 3-D fracture, CTOA, stable

crack growth, crack tunneling.

1 Introduction

A majority of practical fracture mechanics problems in-
volve complex, three-dimensional (3-D) geometries. Al-
though a two-dimensional (2-D) analysis will often yield
acceptable results, a complete analysis requires a full,
3-D approach. In light of this, analysis of fracture pa-
rameters along crack fronts of three-dimensional flaws
has been considered for several years now. The most re-
cent studies have involved those of the elastic-plastic J-
integral [Rice (1968)] whose 3-D calculation is not a triv-
ial task. Several authors have overcome much of the dif-
ficulty associated with 3-D J calculation. Most notably,
methods of Virtual Crack Extension (VCE) [Parks, 1977]
have been employed by authors such as Shih, Moran,
and Nakamura (1986) and Nakemura, Shih, and Freund
(1986) to calculate point-wise values of J-integral along
a curved crack front.
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In similar fashion, the T ∗
ε integral, [Atluri, Nishioka, and

Nakagaki (1984)] which is relatively new in comparison,
has been studied extensively only in two-dimensional
form until recently. As with the J-integral, the natural
progression of the study of this parameter has led to the
necessity for a three-dimensional analysis. Since the util-
ity of the T ∗

ε integral lies in its assumed ability to char-
acterize stable crack extension, it is desired to extend its
2-D form to a more complete 3-D form. This has impli-
cations on the formation of a tunneled crack front in a
thick material.

2 Contour Integrals

2.1 3-D J-integral

There are essentially three methods that have been uti-
lized in calculating three-dimensional energy release rate
in a numerical analysis. Two involve the VCE method,
both direct and indirect as utilized by authors such as Li,
Shih and Needleman (1985). The third involves the gen-
eralization of the two-dimensional contour integral to a
three dimensional surface integral, details of which can
be found in papers such as those of Amestoy, Bui, and
Labbens (1981) or Raynund and Palusamy (1981). Only
the first two offer the ability for quantification of point-
wise values along a curved crack front.

Nikishkov and Atluri (1987) utilize a variation of the
VCE method to calculate J-integral using an Equivalent
Domain Integral (EDI) method. Here, the process of vir-
tual crack extension is approximated through the use of
an arbitrary function that is assigned a value of 1 on a
near-field contour, and 0 on a far-field contour. After a
transformation of relevant quantities to a crack front co-
ordinate system, this allows a straightforward computa-
tion of the near-tip J-integral.

It is well known that the J-integral is based on an as-
sumption of non-linear elasticity, and therefore loses its
validity under instances of unloading. On the other hand,
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the T ∗
ε integral has shown promise in 2-D cases as a stable

tearing characterization parameter (see e.g. [Brust, Nish-
ioka, Atluri, Nakagaki (1985)], [Okada, Atluri, Omori,
and Kobayashi (1999)], and [Brust, McGowan, and
Atluri (1986)]). It is therefore natural to expect similar
capability in a 3-D case. The purpose of this paper is to
detail the use of Nikishkov and Atluri’s (1987) J-integral
EDI formulation for calculation of the T ∗

ε integral in a
3-D case.

Figure 1 : Elongating Γε contour for calculation of T ∗
ε

2.2 T∗
ε integral

The T ∗
ε integral [Stonesifer and Atluri (1982); Atluri,

Nishioka, and Nakagaki (1984)], which is essentially
an incremental form of the J-integral is seen as a vi-
able means of characterizing stable crack extension. It
is calculated along a contour that extends with the mov-
ing crack tip (Figure 1) and by virtue of its incremental
form, takes into account the entire loading history. A lo-
cal value of T ∗

ε , defined on a small contour, Γε closely
surrounding the crack tip was given by Brust, Nishioka,
Atluri, and Nakagaki (1985) in Eq. 1.

T ∗
1ε =

∫
Γε

(
Wn1− ti

∂ui

∂x1

)
dΓ (1)

where ti are the tractions, ui are the displacements, n1 is
a unit normal to the crack plane, and W is the strain en-
ergy density. The numeral 1 in the subscript is indicative
of the fact that the T ∗

ε integral, like the J-integral, is a
vector quantity. Here we are concerned only with the x1

component, which is normal to the crack front. The size
of Γε is typically set at half the specimen thickness to

ensure a state of plane stress along the contour [Okada,
Atluri, Omori and Kobayashi (1999)].

A paper by Nikishkov and Atluri (1987) provides the ba-
sis for calculation of the T ∗

ε integral via the EDI method.
Here it is seen that the EDI method is naturally compati-
ble with isoparametric formulation of finite element (FE)
analyses, thus leading to a straightforward numerical in-
tegration after extraction of relevant quantities from FEA
output.

3 Numerical Model

An 8 mm thick, 3 Point Bend (3PB) specimen (Figure 2)
was modeled in the commercial Finite Element Analy-
sis (FEA) code, ABAQUS using 8 node, isoparametric,
brick elements (Figure 3). Symmetry allows one quarter
of the specimen to be modeled, and the model is further
truncated at a specific distance from the crack plane for
computational efficiency. This distance was determined
by building an initial full quarter model with a relatively
coarse mesh of 0.5 mm elements in the vicinity of the
crack tip and transitioning to 1.0, and 2.0 mm elements
further away. The coarse model contained 4 elements
through the half thickness of the specimen.

Figure 2 : Three-point bend specimen with moir grating

The coarse model was ramp loaded to a level equivalent
with the load at which crack extension was expected to
initiate. From experimental observations, this value was
taken to be approximately 3.5 KN. The Von Mises stress
was then obtained at the centroid of each of the elements
through the thickness, at several different distances from
the crack face. A truncation distance for prescribing ex-
perimentally obtained displacements in the FEA model
was determined as the distance from the crack face where
Von Mises stress was approximately constant through
the thickness. Figure 4 is a typical plot of Von Mises
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Figure 3 : FEA model truncated at y=15 mm, full height

stress through the thickness at a specified distance from
the crack plane, and at several points in the x-direction
(height). For this analysis, the truncation distance was
determined to be at y = 15 mm. Figure 5 shows the rel-
atively constant Von Mises stress through the half speci-
men thickness at a distance of y=15.0 mm from the crack
plane in comparison to the stress levels shown in figure 4
at a distance of y = 9.5 mm from the plane of the crack.

To ensure that the load was applied correctly at the
truncation point, and to check possible interaction be-
tween the relatively close boundary and the process
zone surrounding the crack tip, three different bound-
ary condition application scenarios were explored. Us-
ing a simple 2-D FE model, the transverse shear stress
was computed along a line 1.0 mm from the truncated
boundary. Figure 6 shows three different displacement
boundary conditions, which were obtained experimen-
tally using moiré interferometry. The three different
forms are: (a) pinned in the middle with linearly vary-
ing y-displacement (bending moment) and a single x-
displacement applied at the bottom of the specimen,
(b) no pin at the mid-span but with linearly varying y-
displacement (bending moment) applied, and (c) mid-
span pinned and linearly varying y-displacement (bend-
ing moment) applied with single x-displacement near the
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Figure 4 : Von Mises equivalent stress through thickness
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Figure 5 : Von Mises equivalent stress through thickness
at y=15 mm for ∆a = 1.0 mm and P=3.5 KN

middle of the specimen.

No significant interaction effects were noted but only
one of the three boundary condition applications resulted
in a shear state similar to that obtained in a full, 2-D
quarter model. Figure 7 shows the comparison between
shear stress distribution 1.0 mm behind the boundary
for these three applied transverse displacements and the
shear stress distribution seen in an un-truncated model.
As shown in Figure 7, the application of boundary con-
ditions in scenario (c) resulted in the best comparison of
shear stress distribution.

Tunneling profiles were obtained by digitizing crack
fronts in post-fatigued SENB specimens (Figure 2) that
had been monotonically loaded to discrete levels of crack
extension. To accommodate the numerical model and
provide several tunneling profiles to be prescribed as
crack extension steps, these discrete tunneling patterns
were curve fit and interpolated at intermediate locations.
The result of this process is shown in Figure 8 where
Tx-3PB are experimentally obtained levels of crack ex-
tension. Figure 9 shows the application of the curved
crack front shape as constrained nodes in the finite el-
ement model. As the crack extends, these constrained
nodes are released in such a manner as to follow the nat-
ural tunneling profiles shown in Figure 8.

4 Post Processing and Calculation of T ∗
ε

Following closely the work of Nikishkov and Atluri
(1987), a formulation for numerical calculation of the T ∗

ε
integral using stress, strain, and displacement data output
from ABAQUS may be obtained. Beginning with a vec-
tor representation and employing the EDI formulation,
the T ∗

ε integral may be represented as

T ∗
1ε f = −

∫
A−Aε

(
Wn1 −σi j

∂ui

∂x1
n j

)
sdA (2)

where s(x1,x2,x3) is an arbitrary function equal to 1 on
Γε, and 0 on a far field contour, Γ, and f is the area under
this s-function along a particular segment of the crack
front (Figure 10). Then, by application of the divergence
theorem,

T ∗
1ε f = −

∫ ∫ ∫
V−Vε

(
W

∂s
∂x1

−σi j
∂ui

∂x1

∂s
∂x j

)
dV

−
∫ ∫ ∫
V−Vε

(
∂W
∂x1

− ∂
∂x j

(
σi j

∂ui

∂x j

))
sdV

+
∫ ∫

A1+A2

(
Wnk −σi j

∂ui

∂x1
n j

)
sdA (3)

where V −Vε is the volume enclosed within the EDI re-
gion, and A− Aε is the area of the ends of the annular
volume.

In order to facilitate numerical integration, parametric
representations of displacements, coordinates, and s-
functions are utilized as in Eq. 4 where N I are quadratic
shape functions, NI = NI(ξ,η,ζ) and I is a node number.

s = NIsI

xi = NIxI
i

ui = NIuI
i (4)

Following substitution of Eqs. 4 into Eq. 3, the inte-
gral was solved numerically via 2x2x2 Gaussian quadra-
ture. Since the FE solver outputs integration point, or
nodal values of relevant quantities, the implementation
of this numerical integration is relatively straightforward
in Matlab, or Fortran. Full details of the formulation de-
velopment may be found in Nikishkov and Atluri (1987)
where the formulation for incremental J-integral is de-
veloped.
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Figure 6 : Transverse displacement boundary conditions applied at truncation boundary.
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Figure 7 : Shear stress distribution through specimen
width near boundary for ∆a = 0.00 mm.

4.1 Integration Contour Details

To avoid numerical difficulties and to ensure a valid com-
parison between T ∗

ε values obtained at the surface of the
specimen, and the through-thickness values, a similar
size contour must be used. This contour should be such
that an assumption of near 2-D behavior can be made if
this comparison is to be drawn. An examination of the
out-of-plane strains (ε33) directly in front of the crack tip
shows that after a short amount of crack extension, the

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0 1 2 3 4 5 6 7 8

z (mm)

x
 (

m
m

)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15 Interpolated

Precrack

T4-3PB

T5-3PB

T6-3PB

T3-3PB

Figure 8 : Interpolated crack front profiles.

level of out-of-plane strain becomes constant at a specific
distance ahead of the crack tip. Figures 11 and 12 show
the extent of out-of-plane strain (with respect to the x−y
plane) through the thickness of the numerical model at
different distances, r, from the crack tip for crack exten-
sions of ∆a = 0.0 mm, and ∆a = 0.75 mm, respectively.
This attainment of a constant value of ε33 is indicative of
a transition to a plane strain state at a distance from the
crack tip corresponding to this value of r. Since there is
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Figure 13 : Out of plane strain, ε33 for ∆a = 3.00 mm.

now a level of constancy through the thickness, this dis-
tance can be used as the inner, Γε contour size, ε. For
a short amount of crack extension (0.75 mm), it is seen
that this transition begins to occur at a distance of ap-
proximately 1 mm and that out of plane strain becomes
essentially constant and very close to zero between 2 and
3 mm from the crack tip. Figure 13 shows strain behav-
ior after several crack extension steps. Here, it is seen
that the distance for plane strain transition increases to
between 3 and 4 mm from the crack tip. A paper by Nar-
isimhan and Rosakis (1990) discussed a correlation be-
tween specimen thickness and distance to this plane state
transition for plane stress specimens. It was found that
the distance to the transition point was roughly equiv-
alent to half the specimen thickness in correlation with
what is seen here in Figures 11, 12 and 13 for the near
surface, plane stress portions.
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The extent of tunneling seen in this analysis leads to nu-
merical difficulties with regard to explicitly prescribing
the aforementioned transition point as the exact location
of the inner, Γε integration contour. A preliminary in-
spection of the behavior of the T ∗

ε integral through the
thickness of the specimen after a few crack extensions
revealed sensitivity of the analysis to the location of the
integration contour. After a short amount of crack prop-
agation, the expected path dependency of the T ∗

ε integral
becomes very evident. For contour sizes of 1.0, 2.0 mm,
and 3.0 mm, the behavior of the local crack tip integral
can change by 10-20%. There is also a slight depen-
dence of T ∗

ε integral on the size of the EDI region. Since
the T ∗

ε calculation should be independent of EDI domain
size [Nishioka, Kobayashi, and Epstein (1993)], this de-
pendence is indicative of numerical errors due to loss of
stress and strain data as the crack tip is approached and
extreme plasticity is present or, possibly boundary effects
if a large enough contour is used. It is also indicative of a
loss of resolution since the s-function is assigned at node
points, based on their location within the EDI boundaries.
Fewer node points through the width of the EDI region
will obviously adversely affect the accuracy of the calcu-
lation. As an example, if the extreme cases of either only
one element through the EDI region width or, say four el-
ements through the EDI region width are considered, it is
easy to see that the former case will utilize s-function val-
ues of 1 and 0, whereas the latter would have s-functions
of 1, 0.75, 0.5, 0.25, and 0 as the EDI region is traversed.
Thus, very small, or very large contour sizes should be
avoided due to the numerical inaccuracies and a reason-
able number of elements through the EDI region should
be assigned.

Inspection of Figures 11 and 12 reveal that an integration
contour size of less than 1.0 mm would likely lead to er-
roneous results. For distances, r=0.125 and r=0.625, the
out-of-plane strain changes dramatically, depending on
through-thickness location. However, since the T ∗

ε inte-
gral is supposed to be a “near tip” parameter, the contour
size should be kept as small as possible. Figures 11 and
12 reveal that at a distance of r=1.125 mm, the variation
of out-of-plane strain was much lower and that at larger
values of r, the variation does not significantly improve.
Figure 13 shows this trend starting at between r=2.125
mm and r = 3.125 mm. Based on the out of plane strain
plots, a contour size of ε = 2.0 mm makes the most sense
in terms of maintaining a close proximity to the crack

tip and, at the same time, allowing a valid comparison to
experimental T ∗

ε values obtained on the surface.

4.2 Crack Front Coordinate Transformation

To accommodate the tunneling crack front, which is con-
tinually turning with respect to the thickness, the global
variables are normally transformed with respect to the
crack front coordinate system to “straighten” the crack
front. This becomes more and more of an issue as the
inner contour of integration is collapsed onto the crack
tip. The coordinate transformation simply involves cal-
culating local tangents to the crack front and transform-
ing stresses, strains, work densities, displacements, and
coordinates to the crack front coordinate system. These
transformations from global to local coordinates are ap-
plied in the x-z plane (plane of the crack) and are simply:

xi = ai jx
G
i

si j = aipa jqsG
pq (5)

for vectors, and tensors respectively. However, as the in-
ner contour of integration is moved further away from
the crack tip, the transformation of global variables to
the crack front coordinate system becomes less reason-
able. Instead, a rotation of the entire EDI region with
respect to the global coordinate system is likely required
in addition to the transformation of global variables. This
is an extremely complex operation that would require a
very refined, radial mesh surrounding the current crack
tip. The mesh would also need to adapt intelligently as
the crack tip moves. Figure 14 is a representation of the
effect of transforming the variables within the EDI region
and of transforming the EDI variables in addition to a ro-
tation of the entire EDI region with respect to the crack
front. Since this is not feasible for the current numeri-
cal model, T ∗

ε is estimated without any transformation of
the EDI quantities. Thus, the result should be interpreted
as more of a “global” value of the energy release rate.
Regardless of contour size, the integration is performed
over elements sufficiently far from the crack front to al-
low this approximation, especially after several steps of
crack extension where the contour has extended far be-
hind the current crack tip. Additionally, it is noted that
in the present numerical analysis, element layers are lo-
cally straight with respect to the global model coordinate
system (Figure 9).
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     (A)           (B) 

Figure 14 : Transformation of EDI variables (A) and
transformation of EDI variables with rotation (B).

4.3 S-function

The s-function is an arbitrary, smooth function that varies
from a value of 1.0 on the inner, Γε contour, to 0.0 on
the outer contour. Several possibilities for this function
are discussed in Nikishkov and Atluri (1987), including
a linear s-function and triangular s-function, which are
the two chosen as candidates for this work. The linear
s-function is slightly simpler, geometrically and allows
a domain calculation at each element interface, but re-
quires that the ends of the annular domain be included
in the calculation. On the other hand, the triangular s-
function, which was used for the final analysis requires
two element layers per calculation but removes the ends
of the domain volume from the analysis. Performing two
calculation passes, each offset by one element as illus-
trated in Figure 15 solves the resolution problem.

5 Numerical Results

5.1 T ∗
ε integral

T ∗
ε was calculated for each of seventeen, 0.25mm and

0.50 mm crack extension steps, with the extent of ex-
perimentally observed tunneling reflected in the crack
face boundary conditions at each step. Using a post-
processing program written in Matlab that utilizes output
from ABAQUS, point-wise values were obtained at each
layer interface through the thickness of the quarter model
to build a plot of behavior for the extending, tunneling
crack. Since the integration program utilized the triangu-

lar s-function, values were unobtainable on the extreme
surface, and center plane. The remaining values provide
adequate resolution, so this is not a major problem.

Figure 16 shows the variation of T ∗
ε through the thickness

of the specimen at four different locations along the crack
front. It is noted that T ∗

ε remains fairly constant near the
highly constrained mid-plane (z = 4.0 mm), but exhibits
a rising trend as the plane stress surface is approached.

Figures 17-19 show T ∗
ε calculated on contours of 3.0, 2.0,

and 1.0 mm, respectively. Pointwise values are reported
at each element interface through the thickness (z) direc-
tion. Problems with excessive noise caused by extreme
deformation are evident in Figure 19 for T ∗

ε calculated on
an integration contour of 1.0 mm.

5.2 CTOA variation

The Crack Tip Opening Angle (CTOA) was also calcu-
lated using the displacements normal to, and behind the
crack front as the crack extended.

Figure 20 shows the CTOA calculated at three locations
through the thickness at approximately 1.0 mm behind
and normal to the crack tip for the surface, the quarter
point (midpoint of numerical model), and the specimen
mid-point. The surface CTOA trend shows the typical
sharp increase at the beginning of crack growth, followed
by a decline to a fairly steady state value of approxi-
mately 7-8 degrees. The quarter point and mid-point
trends exhibit an interesting slow rise as the crack ex-
tends. This behavior is due to the rapid crack propagation
in the center (tunneling) near the beginning of the test,
which will produce a small amount of crack tip blunting
and hence low CTOA. As the tunneling slows, the CTOA
on the inner layers should increase as seen here due to
increasing amounts of plastic deformation and crack tip
blunting. It is observed that the CTOA roughly follows
the same trend as the near-field T ∗

ε calculated on an ε
= 1.0 mm contour. Both the CTOA and the near-field
T ∗

ε show a decreasing trend followed by a fairly sharp
increase at local crack extensions longer than approxi-
mately 6.0 mm.

6 Discussion

The numerically obtained T ∗
ε shows a decreasing trend as

the mid-plane is approached which is contrary to energy
release rate behavior up to the point of crack initiation
seen in previous studies involving J-integral. However,
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Figure 16 : T ∗
ε for extending crack at various through-thickness locations ε = 3.0 mm.
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ε for an integration contour, ε = 2.0 mm.

the extreme tunneling should not directly imply a trend of
rising crack driving force toward the center. It is instead a
result of lower resistance near the mid-plane, which is re-
flected in the lower T ∗

ε values at this crack front location.
The specimen being modeled is relatively thick and will
exhibit a fairly thin region of plane stress near the surface
and transition to a plane strain state as the mid-plane is
approached. This trend is seen directly in the plots of ε 33

shown in Section 4.1 (Figures 11-13). In light of this,
T ∗

ε should instead be compared to a more local, physical
parameter such as CTOA. This comparison is best made
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Figure 19 : T ∗
ε for an integration contour, ε = 1.0 mm.

with the T ∗
ε calculated on an ε = 1.0 mm contour size

since CTOA is local to the crack tip. As the mid-plane
of the specimen is approached and for extensive tunnel-
ing, the T ∗

ε extending contour integral begins to exhibit
characteristics similar to those of a T ∗

ε integral calculated
with a moving contour as seen by Okada, Omori, Atluri,
and Kobayashi (1999). It is likely that the reason for this
is the decreasing contribution from those portions of the
contour in the wake of the extending crack. That is, each
step in this case is more similar to a case of T ∗

ε calculated
on a truncated contour as the strain history never builds as
in the case of a controlled, stably growing crack. Regard-
less, some comparison must be drawn between mid-plane
and surface T ∗

ε in order to allow the use of experimentally
obtained values to predict crack extension throughout the
thickness of a specimen.

At crack initiation, and within the first few steps of crack
growth, the surface and mid-plane values are quantita-
tively similar. However, as the crack extends, the sur-
face T ∗

ε rapidly increases while the mid-plane value stays
fairly steady, with a slight trend toward rising. After ap-
proximately 5-6 mm of crack growth, the two reach a
steady state with respect to each other and a comparison
can be made between the plane stress (surface) values
and plane strain (mid-plane) values.

For the linear elastic case, a comparison of JC and JIC

for very thin specimens (plane stress) and thick speci-
mens (near plane strain) respectively is made for 2024-
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Figure 20 : CTOA variation through the specimen thick-
ness.

T3 aluminum alloy as (K values from Batelle, Columbus
(1975));

(
KIC

Kt=0.8mm
C

)2 1
(1−ν2)

=
(

33 MPa
√

m
115 MPa

√
m

)2 1
(1− .342)

= 0.09 (6)

which shows plane strain JIC to be roughly 9% of plane
stress JC. Since J-integral is incapable of characterizing
the crack tip behavior after crack extension, this com-
parison cannot realistically be made for the case of long
crack extension and extreme tunneling. However, this
comparison can be used to make an analogy to the be-
havior of a steady state T ∗

ε toughness behavior since this
would represent the “critical” value of T ∗

ε . An inspection
of the plots of T ∗

ε for all contour sizes, and especially the
very near-tip ε = 1.0 mm contour reveals a relationship
between plane stress (surface) T ∗

ε and plane strain (mid-
plane) T ∗

ε . While the 3-point bend specimen configura-
tion did not allow sufficient crack extension to achieve
the complete steady state T ∗

ε value, it comes close enough
to begin to show signs of achieving a steady state value
which should occur at a crack extension roughly equiv-
alent to half the specimen thickness. At the final point
of crack extension (5.0 mm on the surface), the ratio be-
tween surface T ∗

ε and mid-plane T ∗
ε is roughly 10 %, re-

gardless of contour size, or method of calculation. The
much lower plane strain T ∗

ε is a direct reflection of the
much lower resistance to crack extension in the plane
strain region in comparison to the surface, plane stress
region. The very close agreement with the ratio of lin-
ear elastic fracture toughnesses is encouraging since this
would indicate the possibility for using plane stress (sur-
face) T∗

ε values to predict the fracture resistance on the
interior of a thick specimen.

In a study by Ma, Kobayashi, Atluri and Tan (2000),
plane stress T ∗

ε was calculated for thin, 0.8 mm thick
2024-T3 aluminum center notched specimens to be ap-
proximately 170 Mpa-mm at steady state. This compares
favorably with the results of this study for calculation of
Tε at the specimen surface. The surface value in the cur-
rent study was approximately 175 Mpa-mm. The corre-
lation between the current results and those previously
published is promising.

It is noted that in the time between completion of this
work and its final publication, substantial progress has
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been made in the area of numerical analysis of fracture
mechanics problems using the Meshless Local Petrov
Galerkin (MLPG) method outlined in the book by Atluri
and Shen (2003). The reader is additionally referred to
a number of recently published papers for details regard-
ing utilization of the MLPG method, including: Han and
Atluri (2003); Li, Shen, Han, and Atluri (2003); Atluri,
Han, Shen (2003); Han and Atluri (2002); Atluri and
Shen (2002).

7 Conclusions

T ∗
ε values generally reach a peak of approximately 175

MPa-mm on the surface and approximately 30 MPa-mm
in the mid-plane. This significant difference is due to the
existence of a plane stress state at the extreme surface,
and a plane strain region at the mid-plane of the speci-
men.

T ∗
ε for the 3-D configuration and tunneling crack front

behaves similarly to the local crack tip parameter, CTOA
for corresponding through-thickness resistance curves.
Thus, local T ∗

ε is assumed to represent the point-wise en-
ergy inflow to the crack front.

T ∗
ε is very sensitive to the constraint level in the material

surrounding the crack tip and will exhibit distinct plane
stress and plane strain values. The ratio of the plane
strain T ∗

ε and planes stress T ∗
ε values is approximately

10% for this material and specimen geometry.
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