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Boundary Integral-Based Domain Decomposition Technique for Solution of
Navier Stokes Equations

N. Mai-Duy1 and T. Tran-Cong2

Abstract: This paper presents a new domain decom-
position technique based on the use of Boundary Integral
Equations (BIEs) for the analysis of viscous flow prob-
lems. The domain of interest is divided into a number
of non-overlapping subdomains and an iterative proce-
dure is then employed to update the boundary conditions
at interfaces. The new feature in the present work is
that at each iteration, the relevant two subdomains, to-
gether containing a particular interface, are assumed to
satisfy the governing BI equations which they do at the
end of a convergent iterative process. Hence the bound-
ary conditions on such an interface can be updated using
the interior point formulas. Updating formulas based on
standard and hypersingular BIEs are derived and the fi-
nal forms obtained are simple. Furthermore, the internal
point formula can be used as a means to estimate the ini-
tial interface solution. The proposed method is verified
in conjunction with the BEM through the simulation of
Poiseuille, driven cavity and backward facing step vis-
cous flows.

keyword: domain decomposition, viscous flow, stan-
dard boundary integral equation, hypersingular boundary
integral equation.

1 Introduction

Domain Decomposition (DD) methods have become
necessary to deal with large industrial applications. A
physical DD method is based on the assumption that the
given analysis domain is partitioned into subdomains.
The original problem can then be reformulated for each
subdomain, yielding a family of smaller subproblems
that are coupled one to another through the unknown, but
common, solution at subdomain interfaces [Quarteroni
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and Valli (1999)].

Based on the concept of a spatial decomposition, the
DD methods can be classified into two categories: over-
lapping and non-overlapping. The present work is con-
cerned with the case of non-overlapping subdomains and
the use of an iterative procedure to update the boundary
conditions (from here on referred to as “updating mech-
anism”) at interfaces for the analysis of viscous flows,
which extends the earlier work on potential problems
[Mai-Duy and Tran-Cong (2002)]. The new feature in
the present updating mechanism (with associated “up-
dating formulas”) is that at each iteration, the relevant
two subdomains, together containing a particular inter-
face, are assumed to satisfy the governing BI equations,
which they do at the end of a convergent iterative pro-
cess, and hence the boundary conditions on such an in-
terface can be updated using the interior point formulas.
Updating formulas based on standard and hypersingular
BIEs are derived and the final forms obtained are quite
simple, where the need for the evaluation of volume in-
tegrals is eliminated and the boundary integrals are con-
fined to subdomain interfaces only. Furthermore, the BIE
formula for interior points can also be utilised as a means
to estimate the initial interface solution.

The present method is different from the subregioning
technique [Brebbia and Dominguez (1992)] in some as-
pects. The latter involves the formation and solution of
a system of equations, where the total number of un-
knowns is the sum of nodal degrees of freedom associ-
ated with the real boundaries and twice the number of
nodal degrees of freedom associated with subdomain in-
terfaces. In the present method, no such a large sys-
tem of equations is required. However, it is necessary
to employ an iterative process. Furthermore, subdomain
problems obtained here are relatively independent (in the
sense that they are separate problems once the interface
conditions are specified) and hence can be solved in par-
allel using any suitable numerical method such as BEM
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or FEM. The BEM works very well for linear and mildly
nonlinear problems, for some of which the discretiza-
tion needs be performed only on the boundaries [Han
and Atluri(2002,2003); Tsai, Young, and Cheng (2002);
Agnantiaris and Polyzos (2003); Zhang and Savaidis
(2003)]. The parallelisation of the most time-consuming
part can therefore lead to speed-up. Although the pro-
posed method is well-suited to parallel distributed com-
puting environments, such an investigation is beyond the
scope of the present paper. In contrast to some other DD
methods that use the exchange of data obtained at subdo-
main interfaces to update the interface conditions (which
are referred to as the “conventional methods” from here
on), the present method is based on the requirement of
satisfying the governing BI equations on relevant subdo-
mains. The remainder of the paper is organised as fol-
lows. In section 2, the standard and hypersingular BIEs
governing viscous flow problems are briefly reviewed
and then in section 3 they are utilised to develop formu-
las for updating the interface boundary conditions. In
section 4, the proposed method is verified in conjunc-
tion with the BEM through the simulation of Poiseuille,
driven cavity and backward facing step viscous flows.
Section 5 gives some concluding remarks.

2 Boundary Integral Equations (BIEs)

Consider a two dimensional and steady flow of an incom-
pressible viscous fluid of density ρ and viscosity µ. The
equations for the conservation of momentum and mass
take the forms

µ(u1,11 +u1,22)− p,1 = ρ(u1u1,1 +u2u1,2) , (1)

µ(u2,11 +u2,22)− p,2 = ρ(u1u2,1 +u2u2,2) , (2)

u1,1 +u2,2 = 0, (3)

where u j is the velocity vector and p the pressure. In
the indicial notation used here, the subscripted comma
denotes a partial derivative. The governing equations
Eq. 1-Eq. 3 can be transformed into integral equations
(IEs). For creeping flows, IEs contain only boundary in-
tegrals and can be written in the following two forms for
interior points and smooth boundary points. The case of
non-creeping flows is discussed in section 3.3.

2.1 Standard Boundary Integral Equation (SBIE) for
creeping flows

For a point y ∈ Γ, the SBIE is given by

ci j(y)u j(y) =
∫

Γ
Ui j(y,x)t j(x)dΓ(x)

−CPV
∫

Γ
Ti j(y,x)u j(x)dΓ(x), (4)

Ui j(y,x) =
1

4πµ

[ri

r
r j

r
−δi j ln(r)

]
, (5)

Ti j(y,x) = − 1
πr

[
ri

r

r j

r
∂r
∂n

]
, (6)

where CPV stands for Cauchy Principal Value, Ui j and
Ti j are the Stokeslet fundamental solution and its associ-
ated traction respectively, t j the traction vector, ci j the
free term coefficient which is 0.5δi j if Γ is a smooth
boundary, ri = xi − yi, r = ‖x− y‖ and n the direction
of the outwardly unit vector normal to the boundary. The
SBIE for boundary points contains weakly singular and
CPV singular integrals.

For an interior point y, ci j = δi j and the second integral
in Eq. 4 is a normal integral (i.e. not a CPV one).

2.2 Hypersingular Boundary Integral Equation
(HBIE) for creeping flows

For a point y ∈ Γ, the HBIE is given by

ci jkh(y)σkh(y) = CPV
∫

Γ
Qi jk(y,x)tk(x)dΓ

−HPV
∫

Γ
Pi jk(y,x)uk(x)dΓ, (7)

Qi jk(y,x) =
1
πr

ri

r
r j

r
rk

r
, (8)

Pi jk(y,x) =
µ

πr2
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+ ni
r j

r
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r
+n j

ri

r
rk

r
+nkδi j

}
, (9)

where HPV stands for Hadamard Principal Value and the
free term ci jkhσkh is 0.5σi j if Γ is a smooth boundary.
The fundamental solutions Qi jk and Pi jk are obtained by
differentiating the kernels Ui j and Ti j respectively. The
kernel singularities of HBIE are one order higher than
the counterparts of SBIE, e.g. in 2D problems, Ui j and
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Ti j exhibit singularities of order (lnr) and (1/r) respec-
tively, while the singularities of Q i jk and Pi jk are of order
(1/r) and (1/r2) as r approaches zero. Eq. 7 is an inte-
gral equation of the second kind for the boundary traction
involving a CPV singular and a hypersingular integral.

For an interior point y, ci jkhσkh = σi j and both integrals
in Eq. 7 are normal integrals (i.e. not a CPV or HPV
one).

Figure 1 : BIE-based estimation of the interface bound-
ary conditions.

3 BIE-Based Domain Decomposition Method

A mechanism for the iterative update of interface bound-
ary ui, ti-values is developed in this section. Without loss
of generality, the case of two subdomains and one in-
terface (Fig. 1) is considered. The relevant volume and
boundaries are Ω = I + II, ∂I = Γ1 +Γ, ∂II = Γ2 +Γ and
∂Ω = Γ1 +Γ2. Let (ui, ti) be the solution to the problem
and assume that the pressure is continuous across the in-
terface Γ.

3.1 Estimate of the interface boundary condition for
ui

A point y on the interface Γ can be considered as (a) an
interior point relative to the domain Ω, (b) a boundary
point relative to the domain I, and (c) a boundary point
relative to the domain II, resulting in the corresponding
SBIEs as follows

ui(y) =
∫

Γ1

Ui jt jdΓ +
∫

Γ2

Ui jt jdΓ

−
∫

Γ1

Ti ju jdΓ −
∫

Γ2

Ti ju jdΓ, (10)

1
2

ui(y) =
∫

Γ1

Ui jt jdΓ +
∫

Γ
UI

i jt
I
jdΓ

−
∫

Γ1

Ti ju jdΓ −CPV
∫

Γ
T I

i ju jdΓ, (11)

1
2

ui(y) =
∫

Γ2

Ui jt jdΓ +
∫

Γ
UII

i j tII
j dΓ

−
∫

Γ2

Ti ju jdΓ−CPV
∫

Γ
T II

i j u jdΓ. (12)

where tI
j and t II

j are the tractions acting on I and II at
point y, respectively, and therefore formally t I

j = −tII
j ;

also the kernels U I
i j = UII

i j and T I
i j = −T II

i j . At the itera-
tion k where convergence has not been achieved yet, the
actual solutions ui and ti at points along ∂Ω can be ex-
pressed as

ui = ui +∆ui, x ∈ ∂Ω, (13)

ti = t i +∆t i, x ∈ ∂Ω, (14)

where ui and t i are current approximations obtained at the
iteration (k− 1) by solving subdomain problems while
∆ui and ∆ti are errors of ui and t i respectively. How-
ever, at points along the interface Γ, there are two current
approximations corresponding to the two adjacent sub-
domains I and II for each variable ui and ti, which can be
written as

ui = uI
i +∆uI

i , or (15)

ui = uII
i +∆uII

i , (16)

tI
i = tI

i +∆tI
i , or (17)

tII
i = tII

i +∆tII
i = −tI

i , x ∈ Γ. (18)

The substitution of Eq. 13 and Eq. 14 into Eq. 10; of
Eq. 13, Eq. 14, Eq. 15 and Eq. 17 into Eq. 11; of Eq. 13,
Eq. 14, Eq. 16 and Eq. 18 into Eq. 12 yields

ui =
∫

Γ1

Ui j(t j +∆t j)dΓ +
∫

Γ2

Ui j(t j +∆t j)dΓ

−
∫

Γ1

Ti j(u j +∆u j)dΓ−
∫

Γ2

Ti j(uj +∆u j)dΓ, (19)

1
2
(uI

i +∆uI
i ) =

∫
Γ1

Ui j(t j +∆t j)dΓ +
∫

Γ
UI

i j(t
I
j +∆tI

j)dΓ

−
∫

Γ1

Ti j(uj +∆u j)dΓ−CPV
∫

Γ
T I

i j(uI
j +∆uI

j)dΓ, (20)
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Figure 2 : Methods of guessing an initial solution at interfaces.

1
2
(uII

i +∆uII
i ) =

∫
Γ2

Ui j(t j +∆t j)dΓ

+
∫

Γ
UII

i j (t
II
j +∆tII

j )dΓ−
∫

Γ2

Ti j(uj +∆u j)dΓ

−CPV
∫

Γ
T II

i j (uII
j +∆uII

j )dΓ. (21)

The subtraction of Eq. 20 and Eq. 21 from Eq. 19 yields

ui =
1
2

(
uI

i +∆uI
i

)−
∫

Γ
UI

i j(t
I
j +∆tI

j)dΓ

+CPV
∫

Γ
T I

i j(uI
j +∆uI

j)dΓ +
1
2

(
uII

i +∆uII
i

)

−
∫

Γ
UII

i j (t
II
j +∆tII

j )dΓ +CPV
∫

Γ
T II

i j (uII
j +∆uII

j )dΓ.

(22)

Since UI
i j = UII

i j and T I
i j = −T II

i j , Eq. 22 can be rewritten
as

ui =
1
2

(
uI

i +uII
i

)−
∫

Γ
UI

i j(t
I
j + tII

j )dΓ

+ CPV
∫

Γ
T I

i j(uI
j −uII

j )dΓ +∆eui, (23)

where

∆eui =
1
2

(
∆uI

i +∆uII
i

)−
∫

Γ
UI

i j(∆tI
j +∆tII

j )dΓ

+ CPV
∫

Γ
T I

i j(∆uI
j −∆uII

j )dΓ

can be regarded as the error at the iteration (k−1). As-
suming a priori that the error will decrease as the iteration

goes on, the updated estimate of the interface boundary
condition for ui, for the current iteration k, is calculated
using Eq. 23 as

uupdate
i (y) = ui(y)−∆eui(y) =

1
2

(
uI

i(y)+uII
i (y)

)

−
∫

Γ
UI

i j(y,x)(tI
j(x)+ tII

j (x))dΓ(x)

+CPV
∫

Γ
T I

i j(y,x)(uI
j(x)−uII

j (x))dΓ(x). (24)

3.2 Estimate of the interface boundary condition for
ti

The updating formula for ti can be obtained in the same
way as for ui, except that the SBIEs are replaced by
HBIEs. A point y on the interface Γ can be considered
as (a) an interior point relative to the domain Ω, (b) a
boundary point relative to the domain I, and (c) a bound-
ary point relative to the domain II, resulting in the corre-
sponding HBIEs as follows

σi j(y) =
∫

Γ1

Qi jktkdΓ +
∫

Γ2

Qi jktkdΓ

−
∫

Γ1

Pi jkukdΓ −
∫

Γ2

Pi jkukdΓ, (25)

1
2

σi j(y) =
∫

Γ1

Qi jktkdΓ +CPV
∫

Γ
QI

i jktI
kdΓ

−
∫

Γ1

Pi jkukdΓ−HPV
∫

Γ
PI

i jkukdΓ, (26)
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1
2

σi j(y) =
∫

Γ2

Qi jktkdΓ +CPV
∫

Γ
QII

i jkt
II
k dΓ

−
∫

Γ2

Pi jkukdΓ−HPV
∫

Γ
PII

i jkukdΓ. (27)

As in the case of velocity, the appropriate substitution of
some of Eq. 13-Eq. 18 together with σi j = σI

i j +∆σI
i j or

σi j = σII
i j +∆σII

i j into Eq. 25-Eq. 27, followed by manip-
ulation, yields

σi j =
1
2

(
σI

i j +∆σI
i j

)−CPV
∫

Γ
QI

i jk(t
I
k +∆tI

k)dΓ

+HPV
∫

Γ
PI

i jk(uI
j +∆uI

j)dΓ +
1
2

(
σII

i j +∆σII
i j

)

−CPV
∫

Γ
QII

i jk(t
II
k +∆t II

k )dΓ

+ HPV
∫

Γ
PII

i jk(uII
k +∆uII

k )dΓ. (28)

Since QI
i jk = QII

i jk and PI
i jk = −PII

i jk , equation Eq. 28 can
be rewritten as

σi j =
1
2

(
σI

i j +σII
i j

)−CPV
∫

Γ
QI

i jk(t
I
k + tII

k )dΓ

+HPV
∫

Γ
PI

i jk(uI
k −uII

k )dΓ +∆eσi j , (29)

where

∆eσi j =
1
2

(
∆σI

i j +∆σII
i j

)−CPV
∫

Γ
QI

i jk(∆tI
k +∆tII

k )dΓ

+ HPV
∫

Γ
PI

i jk(∆uI
k −∆uII

k )dΓ

can be regarded as the error at the iteration (k−1). As-
suming a priori that the error will decrease as the iteration
goes on, the updated estimate of the interface boundary
condition for ti, for the current iteration k, is calculated
using Eq. 29 as

σupdate
i j (y) = σi j(y)−∆eσi j(y) =

1
2

(
σI

i j(y)+σII
i j(y)

)

−CPV
∫

Γ
QI

i jk(y,x)(tI
k(x)+ t II

k (x))dΓ

+HPV
∫

Γ
PI

i jk(y,x)(uI
k(x)−uII

k (x))dΓ, (30)

tupdate
i (y) = σupdate

i j (y)n j(y). (31)

It can be seen that the first term on the RHS of Eq. 24
and Eq. 30 appears to be similar to those found in con-
ventional methods. The new feature here lies in the re-
maining terms on the RHS, where the pre-convergence

“imbalanced” tractions and velocities along the common
interface are utilised in the interface integrals to update
the boundary conditions.

3.3 Non-creeping flows

In the case of viscous flows with non-zero Reynolds
number, the nonlinear convective terms introduce volume
integrals into the IEs. However, in the process of deriving
Eq. 10-Eq. 31, the volume integrals associated with the
original domain and subdomains cancel each other and
hence the boundary-only nature of the integral equations
is preserved. Thus the formulas Eq. 24 and Eq. 31 can be
used for both linear and nonlinear viscous flow problems.

3.4 Continuity of interface pressures

In practice, subdomain problems are solved separately
and hence the pressure obtained could be arbitrarily dis-
continuous across an interface due to incompressibility.
In general, the arbitrary pressure levels must be adjusted
so that the pressure is continuous across interfaces. Al-
though the pressure will be at the correct level and con-
tinuous when the iterative process converges, the adjust-
ment is not an easy task during the iterative process be-
cause of either (a) the errors involved (i.e. it is not easy
to separate the error from the arbitrary constant) or (b)
the fact that pressure is not calculated explicitly (e.g.
in the present velocity-traction formulation). Thus it is
more convenient to enforce the pressure continuity con-
dition by saying that the term (t I

j + tII
j ) in Eq. 24 and

Eq. 31 is the sum of the tractions due to the extra stress
µ(∂ui/∂x j +∂u j/∂xi) only, which can be calculated in a
straightforward manner from the velocity field.

3.5 Numerical evaluation of integrals

The updating formulae Eq. 24 and Eq. 31 involve three
kinds of singularity: (a) weakly singular integral (in-
tegrable in the ordinary Riemann sense); (b) strongly
singular integral (Cauchy principal value sense) and (c)
hyper-singular integral (Hadamard finite part sense).

The weakly singular integral can be treated numeri-
cally using the special log-weighted Gaussian integration
or Telles’s polynomial coordinate transformation [Telles
(1987)], while the computation of strongly- and hyper-
singular integrals can be accomplished by using finite
parts of the integrals involved [Brebbia, Telles, and Wro-
bel (1984)]. Considerable attention has been devoted
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to the treatment of finite-part (f.p.) integrals in recent
decades [Kutt (1975); Paget (1981); Ioakimidis (1995)].
A comprehensive review can be found in an article by
Tanaka, Sladek, and Sladek (1994). By disregarding the
divergent part, Kutt (1975) has derived some Gaussian
quadrature rules of the form

f.p.
∫ 1

0

f (x)
xk dx =

m

∑
i=1

wi f (xi),

where k ≥ 1, f (0) �= 0, wi the set of weights and xi the set
of abscissae. Note that these quadrature rules also permit
the evaluation of one-dimensional Cauchy-type principal
value integrals. This method, which is very convenient
for computational purposes since mere scalar products
of certain weights and function values have to be cal-
culated, is applied to compute singular integrals in the
present study.

The updating formulae Eq. 24 and Eq. 31 are applica-
ble to a curved or straight interface. The latter is recom-
mended here for practical uses because of the ease of im-
plementation and a reduction of the computational cost
associated with the updating process. When an interface
is flat, the derivative of r with respect to a normal direc-
tion vanishes (i.e. ∂r/∂n = 0) and hence the kernels Ti j

and Pi jk reduce to zero and µ
πr2

(
ni

r j

r
rk
r +n j

ri
r

rk
r +nkδi j

)
respectively. Furthermore, if such an interface is parallel
to one of the coordinate axes, the updating formulas for
ui and ti on that interface simply are

uupdate
i (y) =

1
2

(
uI

i(y)+uII
i (y)

)

− 1
4πµ

∫
Γ

(
(ri)

r
(ri)

r
− ln(r)

)
(tI

i (x)+ t II
i (x))dΓ, (32)

tupdate
i (y) =

1
2

(
tI
i (y)− tII

i (y)
)

+HPV
∫

Γ

µ
πr2 (uI

i (x)−uII
i (x))dΓ, (33)

where the strongly singular integrals disappear and the
kernels in the remaining integrals are simplified. In con-
trast to conventional methods, in the present method,
the pre-convergence imbalance of tractions on the inter-
face is now taken into account for the update of velocity
boundary conditions, and similarly, the pre-convergence
imbalance of velocities are utilised in updating tractions.
Furthermore, the present method exploits the use of the

integral error (surface integrals) of velocities and trac-
tions, rather than the simple point-wise error, to compute
the update for each point under consideration.

The case of many subdomains can be treated straightfor-
wardly by applying the above formulation for the case of
two subdomains, i.e. Eq. 24 and Eq. 31, to each interface
and the two relevant subdomains. The process of updat-
ing the boundary conditions at subdomain interfaces can
also be proceeded in parallel owing to the independency
of the associated input data.

3.6 Initial guess boundary conditions on interfaces

Due to the fact that the solving procedure is iterative, the
initial interface solution has an influence on the conver-
gence behaviour. For creeping flow problems, the initial
solution is usually chosen to be zero. However, it is pro-
posed here that the BIE formula for interior points can
be used as a means to estimate the initial solution. By
letting the nonlinear terms and the unknown boundary
values of the original domain be zero (i.e. all boundary
values are thus specified), the BIEs allow an estimate of
the interior solution which is to be used as the initial in-
terface solution. It is hypothesised that such an estimate
is closer to the final solution than the usual assumption
stated above. In the case of non-zero Reynolds number
viscous flows, the initial boundary conditions at subdo-
main interfaces could be chosen among (a) zero-solution,
(b) BIE-based values, (c) creeping flow solution and (d)
lower Reynolds number flow solution. It is expected that
convergence would be increasingly better for cases from
(a) to (d), which will be tested in numerical examples.
Fig. 2 summarises alternative methods of guessing an ini-
tial solution for the analysis of viscous flows.

3.7 Criterion for convergence

The iterative procedure converges when the solutions ob-
tained from all subdomain problems match at the inter-
faces, i.e.

|uI
i −uII

i | < tol,

|tI
i + tII

i | < tol,

where tol is a preset tolerance. When the above crite-
rion is met, the solution obtained is continuous every-
where and the governing equations are satisfied every-
where with the given actual boundary conditions. Thus
the solution obtained is the required solution. When this
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happens, the solution, within the specified tolerance, is

ui ≈ uI
i ≈ uII

i ,

ti ≈ tI
i ≈ tII

i ,

∆eui,∆eσi j → 0

It can be seen that on convergence, equations Eq. 24 and
Eq. 31 are self-consistent.

3.8 Flow chart

The flow chart for the present procedure can be summa-
rized as follows

1. Divide the domain of interest into a number of non-
overlapping subdomains;

2. Initialize the boundary conditions at interfaces;

3. Form a boundary value problem for each subdomain
by taking either the velocity boundary conditions or
the traction boundary conditions from the set of arti-
ficial boundary conditions at its relevant interfaces;

4. Solve subdomain problems. Since they are bound-
ary value problems, any numerical method such as
FDM, FEM, BEM or FVM can be applied to solve
subdomain problems for a numerical solution;

5. Check for convergence;

6. If not yet converged, update the artificial boundary
conditions on all interfaces using BIE-based formu-
lae Eq. 24 and Eq. 31 and then repeat from step 3;

7. If converged, stop.

4 Numerical examples

The present DD method is verified through the simula-
tion of Poiseuille, driven cavity and backward facing step
viscous flows, where subdomain problems are solved by
the BEM using continuous elements in general and dis-
continuous elements adjacent to corners. Nodes at a cor-
ner are shifted into the associated elements by an amount
of one quarter of the length of the corner elements [Tran-
Cong and Phan-Thien (1988)]. This shifting allows the
correct description of multi-valued tractions at corners
and also the updating process to be confined to smooth
interface points only, i.e. the formulae Eq. 24 and Eq. 31
above are sufficient here for the updating mechanism.

The integral formulations are applied to relatively small
subdomains instead of to the whole domain, resulting in
a great reduction of the cost associated with the BEM, es-
pecially for the computation of volume integrals arising
from the pseudo body forces term in the analysis of non-
linear viscous flow problems. The convergence measure
(CM) employed here is the norm of relative error of ve-
locity between two adjacent subdomains at the interfaces
as follows

CM =√√√√√∑inter f ace ∑N
i=1

[
(u(i)I

1 −u(i)II
1 )2 +(u(i)I

2 −u(i)II
2 )2

]

∑inter f ace ∑N
i=1

[
(u(i)I

1 )2 +(u(i)I
2 )2

] ,

(34)

where inter f ace denotes subdomain interfaces, (i) the
nodes on the inter f ace and N the number of nodes on
the inter f ace. Generally, it is necessary to use a relax-
ation scheme within the iterative process to achieve con-
vergence. The resultant interface velocity and traction
conditions at each iteration are calculated using the ones
obtained in the previous iteration and the currently com-
puted interface conditions from Eq. 24 and Eq. 31 as fol-
lows

uk
i = (1−α)uk−1

i +αuk
i , (35)

tk
i = (1−α)tk−1

i +αtk
i , (36)

where k denotes the current iteration and 0 < α ≤ 1 is
the relaxation parameter. The case α = 1 means that no
relaxation is applied.

4.1 Poiseuille flow

Consider the Poiseuille creeping flow problem on a 1×1
domain. Owing to the symmetry, only one half of the
domain (1×0.5) needs to be modelled. The domain of
analysis is divided into two subdomains with the same
size of 0.5× 0.5 (Fig. 3). A 6 × 6 mesh is employed
for each subdomain. In order to assess the effect of the
use of interface BIs, a simplified version of Eq. 24 and
Eq. 31 (i.e. without the BIs) are also used for compari-
son. In that case, the updating mechanism is somewhat
similar to that of conventional methods. The results ob-
tained for the two cases using zero initial solution are
displayed in Fig. 4 which shows that the interface BIs
make the convergence more stable and faster. Further-
more, the effect of initial solution on convergence is also
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Figure 3 : Poiseuille flow, 2 subdomains: geometry and boundary conditions.
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Figure 4 : Creeping Poiseuille flow, 2 subdomains, density of 6× 6 per subdomain, relaxation factor α = 0.3:
comparison of convergence behaviour. The initial interface boundary conditions are assumed either to be zero or
BIE-based estimates. Subsequent estimates of the interface boundary conditions are calculated using the updating
formulas with BIs in one case and without BIs in the other case.

examined. As shown in Fig. 4, the use of BIE-based
initial solution yields a better result than that obtained
with zero initial solution. In all cases, convergence rates
obtained are high and the value of CM achieved is very
small (O(10−9)). However, the procedure can usually be
considered as convergent when the CM is of the order
of O(10−4) which corresponds to about 40 iterations for
the present method and about 50 iterations for the con-
ventional method. It can be seen that the EFFICIENCY

factor defined as the ratio of the CPU time of the CON-
VENTIONAL method to that of the PRESENT method is
about 1.25. The effect of the relaxation factor on the

convergence rate is displayed in Fig. 5. As expected, a
low relaxation factor makes the convergence smooth but
also slow. The linear interpolation used to compute inter-
face integrals gives a slightly better convergence than the
constant interpolation as shown in Fig. 6.

4.2 Driven cavity viscous flow

The driven cavity viscous flow is recognised as a bench-
mark problem for checking and validating numerical
methods in the field of CFD and is utilised here for the
same reason.
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Figure 5 : Creeping Poiseuille flow, 2 subdomains, density of 6×6 per subdomain: effect of the relaxation factor α
on the convergence behaviour. The convergence is observed to be smooth but slow with a reduction in α.
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Figure 6 : Creeping Poiseuille flow, 2 subdomains, density of 6×6 per subdomain: effect of the interpolation type
used in the computation of interface integrals on the convergence behaviour. The linear interpolation yields a slightly
better convergence behaviour than the constant one.

4.2.1 Two subdomains - creeping viscous flow

The domain of dimension 1× 1 is partitioned into two
subdomains with the same size 0.5×1 (Fig. 7). A 6×11

mesh is employed for each subdomain. The effect of in-
terface integrals on convergence rate is further verified
in this problem. Fig. 8 shows that the interface integrals
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Figure 7 : Cavity driven flow, 2 subdomains: geometry and boundary conditions.
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Figure 8 : Creeping driven cavity flow, 2 subdomains, density of 6×11 per subdomain, relaxation factor α = 0.3:
convergence behaviour. This figure further demonstrates the effectiveness of interface integrals in the updating
process. Constant and linear interpolations yield similar performances.

play an important role in the updating process as they
make the convergence much smoother and faster. With
the preset tolerance of 1.e−4, it takes about 50 and 75
iterations to OBTAIN CONVERGENCE for the present and
conventional methods respectively. In this case, the EFFI-

CIENCY factor is about 1.5. Interface integrals computed
using constant and linear interpolations yield similar con-
vergence behaviours.
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Figure 9 : Cavity driven flow, 4 subdomains: geometry and boundary conditions.
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Figure 10 : Driven cavity flow, 4 subdomains, Re = 100, density of 6×21 per subdomain, relaxation factor α = 0.3:
convergence behaviour. The use of the creeping flow solution as an initial solution yields a better convergence than
the use of BIE-based initial solution, which confirms the expectation that an initial solution closer to the final solution
to be found can yield a faster convergence.

4.2.2 Four subdomains - viscous flow

The computational domain here is partitioned into 4 sub-
domains with the same size 0.25×1 (Fig. 9), where the
two middle subdomains each involve two interfaces. A
mesh of 6 × 21 is employed for each subdomain. The
flow with Re = 100 is simulated with different initial so-

lutions used. In the case of non-zero Reynolds number,
the use of the creeping flow solution (Re = 0) as the ini-
tial interface solution leads to better convergence charac-
teristics than the use of BIE-based initial solution directly
at that Reynolds number (Fig. 10). This result is not sur-
prising because the creeping flow solution is closer to the
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Figure 11 : Driven cavity flow, 4 subdomains, Re = 100: comparison of velocity profiles on the vertical and
horizontal centrelines denoted by solid lines with the benchmark solution obtained by Ghia, Ghia, and Shin (1982)
denoted by ◦. The velocity vector field obtained is also displayed.

final solution to be found than the BIE-based initial solu-
tion. The results obtained, including the velocity profiles
along centrelines and the velocity vector field, are dis-
played in Fig. 11 which are in very good agreement with
the benchmark solution of Ghia, Ghia, and Shin (1982).

4.3 Backward facing step viscous flow

A steady viscous incompressible flow over a backward
facing step provides an excellent test case and has been
addressed by numerous authors using a wide variety of

numerical methods [e.g. Kim and Moin (1985); Thomp-
son and Ferziger (1989); Gartling (1990); Verma and
Eswaran (1999)]. The experimental results have been
given by Armaly, Durst, Pereira, and Schonung (1983).
The geometry and boundary conditions are shown in
Fig. 12 where the size of the rectangular computational
domain is chosen to be the same as that proposed by
Verma and Eswaran (1999). The step height is one half
of the channel height H. No-slip condition is imposed
on all solid surfaces. At the inlet, the velocity field is
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Figure 12 : Backward facing step flow, 10 subdomains: geometry and boundary conditions.
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Figure 13 : Creeping flow over backward facing step, 10 subdomains, density of 11×11 per subdomain, relaxation
factor α = 0.3: convergence behaviour.

specified as a parallel flow with a parabolic horizontal
component given by u1 = 6x2(1−x2) for 0 ≤ x2 ≤ 1 and
a vertical component u2 = 0. This produces a maximum
inflow velocity of u1max = 1.5 and an average inflow ve-
locity of u1 = 1.0. At the outlet, the flow is assumed to be
a parallel flow (u2 = 0) and a zero-traction normal to the
boundary. It can be seen that the computational domain is
slender and hence a subdivision along the flow direction
is used to increase computational efficiency. The domain
here is divided into 10 subdomains (Fig. 12) that have the
same dimension of 2×2 and the same uniform mesh of
11×11. The use of multiple subdomains (10 in this case)
would provide a strong test for the present DD method,
which is verified with both creeping flow and non-zero

Reynolds number flows in the following sections.

4.3.1 Creeping flow

For creeping flows, there is no nonlinear term in the gov-
erning equations, and hence the solution for each subdo-
main can be obtained without the use of iteration. The
iterative process is employed here to update the bound-
ary conditions at subdomain interfaces and a high con-
vergence rate is obtained as shown in Fig. 13. The CM
achieved is very small (at least O(10−6)). The final result
is displayed through a plot of the velocity profile at the
outlet (Fig. 14), which shows that the computed velocity
profile agrees very well with the exact one.
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Figure 14 : Creeping flow over backward facing step, 10 subdomains, density of 11×11 per subdomain, relaxation
factor α = 0.3: Comparison of the computed x1 component of the velocity profile at the outlet denoted by ◦ and the
exact solution denoted by solid line, which shows a very good agreement.
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Figure 15 : Flow over backward facing step, Re = 133, 10 subdomains, density of 11×11 per subdomain, relaxation
factor α = 0.3, creeping flow initial solution: convergence behaviour. The first stage of the curve corresponds
to the creeping flow, while the second stage to the flow with Re = 133. Although the creeping flow stage took
approximately 225 iterations, each iteration is extremely fast in comparison with an iteration during the second
stage. Furthermore, the first stage can easily be stopped at CM = 10−3 (say), or about 125 iterations, without
affecting the performance of the second stage.

4.3.2 Viscous flow with non-zero Reynolds number

The Reynolds number is defined as Re = u1H
ν . The nu-

merical results obtained for the flows at Re = 60 and

Re = 133 are displayed in Fig. 15-Fig. 17, where the vor-
tex appearance is observed. The predicted reattachment
length of 4 at Re = 133 is in good agreement with the
values reported by Thompson and Ferziger (1989) and
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Figure 16 : Flow over backward facing step, Re = 133, 10 subdomains, density of 11×11 per subdomain, relaxation
factor α = 0.3: comparison of the convergence behaviour between different cases of initial solution. The use of a
lower Reynolds number flow solution (e.g. Re=60 here) as an initial solution clearly results in the best convergence
here.

Creeping Re = 60

Re = 133

Figure 17 : Flow over backward facing step, 10 subdomains, density of 11×11 per subdomain, relaxation factor
α = 0.3: Enlargement at the upstream section shows the growing of a recirculation behind the step with increasing
Reynolds number.

Verma and Eswaran (1999). Fig. 16 shows that the use of
a lower Reynold number flow solution as the initial solu-
tion yields a convergence rate much higher than the use
of the zero initial solution and slightly better than the use

of the creeping flow initial solution. A comparison of the
flow patterns for zero and non-zero Reynolds numbers is
displayed in Fig. 17 which reveals more clearly the re-
circulation flow behind the step in the case of non-zero
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Reynolds number flows.

5 Concluding Remarks

This paper reports a new BIE-based domain decomposi-
tion method for the analysis of viscous flow problems.
The idea of the proposed iterative method is to utilise
the governing integral equations as a means to update
the interface boundary conditions. Formulas for updat-
ing interface boundary conditions are derived, where the
computations are confined to subdomain interfaces only.
Numerical results showed that the proposed method per-
forms well for both linear and non-linear viscous flow
problems. The initial interface solution based on BIEs is
able to give a faster convergence rate than the zero-initial
solution in the analysis of creeping viscous flows, while
the use of the creeping flow or lower Reynolds number
flow as an initial interface solution provides better con-
vergence characteristics in the case of non-zero Reynolds
number flows.
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