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Meshless Local Petrov-Galerkin (MLPG) approaches for solving 3D Problems in
elasto-statics

Z. D. Han1 and S. N. Atluri1

Abstract: Three different truly Meshless Local
Petrov-Galerkin (MLPG) methods are developed for
solving 3D elasto-static problems. Using the general
MLPG concept, these methods are derived through the
local weak forms of the equilibrium equations, by us-
ing different test functions, namely, the Heaviside func-
tion, the Dirac delta function, and the fundamental solu-
tions. The one with the use of the fundamental solutions
is based on the local unsymmetric weak form (LUSWF),
which is equivalent to the local boundary integral equa-
tions (LBIE) of the elasto-statics. Simple formulations
are derived for the LBIEs in which only weakly-singular
integrals are included for a simple numerical implemen-
tation. A novel definition of the local 3D sub-domain
is presented, which enables the numerical integrations
to be performed in an accurate and efficient way, based
on a truly meshless implementation. The augmented ra-
dial basis functions (RBF) and the moving least squares
(MLS) are chosen to construct the shape functions, for
the three MLPG methods. Numerical examples are in-
cluded to demonstrate that the present methods are very
promising for solving the elastic problems, as compared
to the traditional Galerkin Finite Element Method.

keyword: Meshless Local Petrov-Galerkin approach
(MLPG), Local Boundary Integral Equations (LBIE),
Radial Basis Functions (RBF), Moving Least Squares
(MLS).

1 Introduction

The Galerkin Finite Element Method has found exten-
sive engineering acceptance as well as a commercial mar-
ket. Compared with its convenience and flexibility in use,
the finite element method (FEM) has been plagued for a
long time, by the inherent problems such as locking, poor
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derivative solutions, etc. It is well known that the accu-
racy of the FEM relies on the quality of the mesh and the
element type. First, a good-quality of the mesh cannot
be always achieved, especially when adaptive refinement
and adaptive re-meshing are required for 3D problems.
It has also been found that only simple quadrilateral or
hexahedral elements have achieved considerable success
for explicit dynamic analysis. However, the use of such
elements is limited by the mesh generation.

In contrast, the truly meshless local Petrov-Galerkin
(MLPG) approach has become very attractive as a very
promising method for solving 3D problems. The MLPG
concept was presented in Atluri and Zhu (1998). The
main advantage of this method, over the widely used fi-
nite element methods, is that it does not need any mesh,
either for the interpolation of the solution variables or
for the integration of the weak forms. It has been de-
veloped as a general framework for solving partial dif-
ferential equations by Atluri and colleagues. Under this
framework, the PDEs can be solved in their various lo-
cal symmetric or unsymmetric weak forms, by using
a variety of interpolation methods (trial functions), test
functions, integration schemes with/without background
cells, and their flexible combinations. The MLPG do-
main methods have been studied in [Atluri and Zhu
(1998), Atluri and Shen (2002a,b)]. Recently, the MLPG
method has been applied to boundary integral equations,
as MLPG/BIE [Atluri, Han and Shen (2003), Han and
Atluri (2003b)]. The many research successes in solv-
ing PDEs, and demonstrates that the MLPG method, and
its variants, become some of the most promising alter-
native methods for computational mechanics. Unfortu-
nately, most research is restricted in solving 2D prob-
lems. It is more challenging to apply the MLPG for solv-
ing 3D problems, because of the difficulty in handling
the local integrals over the intersection of the local test-
function domain and the global boundary of the arbitrary
3D solution domain. The representative 3D works in-
clude the papers of [Li, Shen, Han and Atluri (2003)]
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for 3D elastic problems by using MLPG domain meth-
ods, and [Han and Atluri(2003b)] for 3D elastic fracture
problem by using MLPG BIE methods. A summary of
the literature on MLPG, to date, appears in the mono-
graph by Atluri(2004).

In the present work, three MLPG methods are developed
for solving 3D elasto-static problems. The first method
employs a local symmetric weak form (LSWF), and the
shape functions are also chosen as the test functions,
which leads to a symmetric system of equations. The
similar work has been done for solving 2D elastic prob-
lems by Atluri, Kim and Cho (1999), in which the MLS
approximation was used. Although the MLS approxima-
tions have some drawbacks in dealing with the essential
boundary conditions, they can be straightforwardly ap-
plied to 3D cases, by using the numerical techniques de-
veloped for 2D problems [Atluri, Kim and Cho (1999)].
One of the major advantages of the MLS is that, the shape
functions are constructed from the local points only, with
the high order continuities. In the present study, the aug-
mented RBF approximations are also used to construct
shape functions [Golberg, Chen and Bowman (1999)].
They have some distinct advantages over the MLS ap-
proximation including that, the shape functions possess
the delta function property, and the second derivatives
of the shape functions are smoother, and are computa-
tionally less costly. Its delta function property makes it
possible to directly enforce the essential boundary condi-
tions through the collocation method. However, it should
be pointed out that the RBF approximations give non-
continuous shape functions, if they are used in local
meshless way. It is not possible, using the RBF approx-
imation, to construct shape functions in the global way
for 3D problems, which leads to a fully-populated sys-
tem matrix. In addition, the compactly-supported RBFs
are also required to avoid the round-off errors, when a
large number of nodes are included in the solution do-
main, especially for 3D cases.

The second MLPG method in the present study is the
same as the first one, except that the Heaviside function is
used as the test function [Atluri and Shen (2002a,b)]. The
advantage of this method is the lesser cost in assembling
the system equations.

The third MLPG method employs a local unsymmet-
ric weak form and uses the static fundamental solution
as the test function. This method is equivalent to the
local boundary integral equation (LBIE) method. Al-

though only a boundary discretization is necessary for
linear boundary value problems, the global boundary el-
ement methods entails fully populated coefficient matri-
ces, which hinders their application to large-scale prob-
lems with complex geometry. Besides, in the BEM, the
evaluation of the unknown function and/or its gradients
at any single point within the domain of the problem in-
volves the calculation of an integral over the entire global
boundary, which is tedious and inefficient in the global
boundary element method. In the LBIE, however, all
the field values within the domain of the problem are in-
terpolated through the shape functions and the matrices
are banded. The LBIE has been applied for 2D poten-
tial problems [Zhu, Zhang, and Atluri (1998)], and 2D
elasto-static problems [Atluri, Sladek, Sladek and Zhu
(2000)]. Recently, it has also been successfully applied
in the 2D Laplace-transform domain [Sladek, Sladek and
Zhang (2003)] and the 2D frequency domain [Selloun-
tos and Polyzos (2003)]. All these studies were car-
ried out for 2D problems, in which the special numeri-
cal quadrature schemes were introduced to evaluate the
strongly singular integrals. In the present study, we use
the simple non-hyper-singular BIE formulations, given
in the paper of Han and Atluri (2003a) with the combi-
nation of the augmented RBF approximation. With these
formulations, the strong singularities in the LBIE can be
also avoided by using the rigid body motion idea, as in
the conventional global BIEs. It makes the present LBIE
methods to be more numerically efficient. In addition,
the formulations presented by Han and Atluri (2003a) are
also numerically tractable when the traction BIEs are ap-
plied in the local domain for contact and fracture prob-
lems [Han and Atluri (2004)].

In the general MLPG approach, the local test domains
can be arbitrary, such as spheres, cubes, and ellipsoids in
3D. However, the local sub-domains become very com-
plicated, for the points which are located on, or near, the
global boundaries, because of the intersection between
the simple sub-domain and the boundary surfaces. It hin-
ders the MLPG to be truly meshless for realistic 3D solu-
tion domains. In the present study, a method is developed
to define the local sub-domains as spheres, with the use
of polyhedrons to subdivide the local spherical surfaces
for all surface integrals, in a piece-wise fashion. The
polyhedrons can be also so chosen to match the global
boundary of the complicated 3D solution domain.

The following discussion begins with the brief descrip-
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tion of the augmented RBF and MLS approximations in
Section 2. The various MLPG methods in different weak
forms are presented in Section 3. Section 4 deals with
the numerical aspects of treating the local domains. A
method is presented to define the local 3D sub-domains
in Section 5. Numerical examples for 3D elasticity prob-
lems are given in Section 6. Then paper ends with con-
clusions and discussions in Section 7.

2 Interpolation Approximation

2.1 The RBF approximation

For a so-called meshless implementation, a meshless in-
terpolation scheme is required, in order to approximate
the trial functions over the solution domain. The inter-
polation schemes with the radial basis functions (RBF)
are becoming attractive in meshless methods, because of
the delta function property of the shape functions and the
simplicity of their derivatives. The polynomials are also
introduced to overcome their lack of completeness [Gol-
berg, Chen and Bowman (1999)].

x

s

Figure 1 : a local sub-domain around point x

Consider a sub-domain Ωs, the neighborhood of a point
x, which is local in the solution domain, shown in Figure
1. To approximate the distribution of function u in Ωs,
over a number of scattered points {xi}, (i = 1,2, ...,n),
the local augmented RBFs interpolate u(x) of u, ∀x∈ Ωs,
can be defined by

u(x) = RT (x)a+PT (x)b ∀x ∈ Ωs (1)

where RT (x) = [R1(x),R2(x), ...,Rn(x)] is a set of ra-
dial basis functions centered around the n scattered
points; aT = [a1,a2, ...,an] is a constant vector contain-
ing the coefficients; PT (x) = [p1(x), p2(x), ... , pm(x)] =
[1,x,y, z,x2,y2, z2,xy,yz, zx, ....] is a monomial basis of or-
der m; bT = [b1,b2, ...,bm] is a constant vector containing
the coefficients. The radial basis function has the follow-
ing general form

Ri (x) = Ri (ri) and ri = ‖x−xi‖ (2)

To determine the coefficients a and b, one may enforce
the interpolation to satisfy the given values at the scat-
tered points as:

u(xi) = RT (xi)a+PT (xi)b i = 1,2, ...,n or

ue = R0a+P0b (3a)

and
n

∑
i=1

p j(xi)ai = 0 j = 1,2, ... ,m or PT
0 a = 0 (3b)

One may write Eq. (3) in the matrix form as:

[
R0 P0

PT
0 0

]{
a
b

}
=

{
ue

0

}
(4)

By solving Eq. (4), the constant vectors can be obtained
as:

{
a
b

}
=

[
R0 P0

PT
0 0

]−1 {
ue

0

}
≡ G

{
ue

0

}
(5)

By substituting the solution of Eq. (5) into Eq. (1), the
interpolation can be expressed as:

u(x) =
[
RT (x),PT (x)

]
Gue ≡ ΦΦΦT (x)ue ∀x ∈ Ωs (6)

where by definition, ΦΦΦ(x) are the shape functions as:

ΦΦΦT (x) =
[
RT (x),PT(x)

]
G (7)

The derivatives of the shape functions, ΦΦΦ, j(x), can be ob-
tained as:
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ΦΦΦT
, j(x) =

[
RT

, j(x),PT
, j(x)

]
G =

[
dRT (x)

dr
r, j,PT

, j(x)
]

G

(8)

Although there are wide choices for the RBFs, practical
applications have focused on a limited number of func-
tions to obtain the unique solution of Eq. (4), including
thin plate splines (TPS), multiquadrics (MQ), Gaussians.
It should be pointed out that the shape functions are non-
continuous if only some local points are involved in Eq.
(1). If all nodes are used, the matrix G in Eq. (5) are fully
populated, which is not efficient and accurate, when a 3D
model contains a large number of nodes. In the present
study, the compactly supported RBFs are used in a local
way, as:

Ri(r) =
{

(1− r
ri0

)3(3 r
ri0

+1) r ≤ ri0

0 r > r0
(9)

where ri0 is the radius of the support size of node i.

2.2 The moving least squares (MLS)

The MLS method of interpolation is generally consid-
ered to be one of the best schemes to interpolate random
data with a reasonable accuracy [Atluri and Zhu (1998)].
Although the nodal shape functions that arise from the
MLS approximation have a very complex nature, they al-
ways preserve completeness up to the order of the chosen
basis, and robustly interpolate the irregularly distributed
nodal information. The MLS scheme has been widely
used in domain discretization methods. With the MLS,
the distribution of function u in Ωs can be approximated
as,

u(x) = pT (x)a(x) ∀x ∈ Ωs (10)

where pT (x) = [p1(x), p2(x), ... , pm(x)] is a monomial
basis of order m; and a(x) is a vector containing coef-
ficients, which are functions of the global Cartesian co-
ordinates [x1,x2,x3], depending on the monomial basis.
They are determined by minimizing a weighted discrete
L2 norm, defined, as:

J(x) =
m

∑
i=1

wi(x)[pT (xi)a(x)− ûi]2

≡ [P ·a(x)− û]T W[P ·a(x)− û] (11)

where wi(x) are the weight functions and ûiare the ficti-
tious nodal values.

The stationarity of J in Eq. (11), with respect to a(x)
leads to following linear relation between a(x) and û,

A(x)a(x)= B(x)û (12)

where matrices A(x) and B(x) are defined by

A(x) = PT WP B(x) = PT W ∀x ∈ ∂Ωx (13)

Once coefficients a(x) in Eq. (12) are determined, one
may obtain the approximation from the nodal values at
the local scattered points, by substituting them into Eq.
(10), as

u(x) = ΦΦΦT (x)û ∀x ∈ ∂Ωx (14)

where ΦΦΦ(x) is the so-called shape function of the MLS
approximation, defined as,

ΦΦΦ(x) = pT (x)A−1(x)B(x) (15)

The weight function in Eq. (11) defines the range of in-
fluence of node I. Normally it has a compact support.
The derivatives of the shape functions in Eq. (15) can ob-
tained by differentiate them respect to xi [Atluri and Zhu
(1998)]. The continuity of the shape functions is con-
trolled , by that of the weight functions[Atluri and Shen,
2000a & 2000b].

3 MLPG domain methods

3.1 Local symmetric weak-forms (LSWF) of elasticity

Consider a linear elastic body in a 3D domain Ω, with a
boundary ∂Ω. The solid is assumed to undergo infinitesi-
mal deformations. The equations of balance of linear and
angular momentum can be written as:
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σi j, j + fi = 0; σi j = σ ji; (),i ≡ ∂
∂ξi

(16)

where σi j is the stress tensor, which corresponds to the
displacement field ui; fi is the body force. The corre-
sponding boundary conditions are given as follows,

ui = ui on Γu (17a)

ti ≡ σi jn j = t i on Γt (17b)

where ui and t i are the prescribed displacements and trac-
tions, respectively, on the displacement boundary Γu and
on the traction boundary Γt , and ni is the unit outward
normal to the boundary Γ.

The strain-displacement relations are:

εkl =
1
2
(uk,l +ul,k) (18)

The constitutive relations of an isotropic linear elastic ho-
mogeneous solid are:

σi j = Ei jklεkl = Ei jkluk,l (19)

where

Ei jkl = λδi jδkl +µ(δikδ jl +δilδ jk) (20)

with λ and µ being the Lame’s constants.

In the local Petrov-Galerkin approaches, one may write a
weak form over a local sub-domain Ωs, which may have
an arbitrary shape, and contain the a point x in question.
A generalized local weak form of the differential equa-
tion (16) over a local sub-domain Ωs, can be written as:

∫
Ωs

(σi j, j + fi)vidΩ = 0 (21)

where ui and vi are the trial and test functions, respec-
tively.

By applying the divergence theorem, Eq. (21) may be
rewritten in a symmetric weak form as:

∫
∂Ωs

σi jn jvidΓ−
∫

Ωs

(σi jvi, j − fivi)dΩ = 0 (22)

Imposing the boundary conditions in (17), one obtains

∫
Ls

tividΓ+
∫

Γsu

tividΓ+
∫

Γst

t ividΓ

−
∫

Ωs

(σi jvi, j − fivi)dΩ = 0 (23)

where Γsu is a part of the boundary ∂Ωs of Ωs, over which
the essential boundary conditions are specified. In gen-
eral, ∂Ωs = Γs ∪ Ls, with Γs being a part of the local
boundary located on the global boundary, and Ls being
the other part of the local boundary which is inside the
solution domain. Γsu = Γs ∩ Γu is the intersection be-
tween the local boundary ∂Ωs and the global displace-
ment boundary Γu; Γst = Γs ∩Γt is a part of the boundary
over which the natural boundary conditions are specified.

Therefore, a local symmetric weak form (LSWF) in lin-
ear elasticity can be written as:

∫
Ωs

σi jvi, jdΩ−
∫

Ls

tividΓ−
∫

Γsu

tividΓ

=
∫

Γst

tividΓ+
∫

Ωs

fividΩ (24)

It should be pointed out that the essential boundary con-
ditions can not be imposed directly even with the use of
the RBF approximation, because the shape function pos-
sesses the delta property only at the corresponding node.
Although one may impose the essential boundary condi-
tions at all nodes on the prescribed displacement bound-
ary, these conditions are still not satisfied for all points
on the boundary except the nodal points. The reason is
that the values at these points through the RBF approxi-
mation depend not only on the boundary nodes, but also
the related ones inside the domain. This is quite different
from those in the element-based methods, in which the
boundary values are interpolated through only the nodes
at the boundary nodes. The details for enforcing the es-
sential boundary conditions have been reported by Zhu
and Atluri (1998), and Atluri and Shen (2002a).



174 Copyright c© 2004 Tech Science Press CMES, vol.6, no.2, pp.169-188, 2004

3.2 Local unsymmetric weak-forms (LUSWF) of elas-
ticity

Let vi be the trial functions, the weak form of Eq. (16)
can also be written, without the boundary condition, as:

∫
Ωs

(σi j, j + fi)vidΩ = 0 (25)

Applying the divergence theorem two times in Eq. (25),
we obtain:

∫
Γs

t jv j dS−
∫

Γs

um(nnEi jmnv j,i) dS

+
∫

Ωs

um(Ei jmnv j,i),n dΩ+
∫

Ωs

fivi dΩ = 0 (26)

Consider a point unit load applied in an arbitrary direc-
tion ep at a generic location x in a linear elastic isotropic
homogeneous infinite. It is well-known that the displace-
ment and stress solution corresponding to this unit point
load are given as (Kelvin’s solution):

u∗p
i (x,ξ) =

1
16πµ(1−υ)r

[(3−4υ)δip + r,ir,p] (27a)

σ∗p
i j (x,ξ) =

1
8π(1−υ)r2

[(1−2υ)(δi jr,p −δipr, j −δ jpr,i)−3r,ir, jr,p] (27b)

This fundamental solution has some basic properties, in-
cluding

∫
Ωs

σ∗p
i j, j(x,ξ)dS +δpi = 0 for ∀x ∈ Ω (28)

By taking the fundamental solution u∗p
i (x,ξ) as the test

functions vi(ξ), and with the consideration of its proper-
ties in Eq. (28), we re-write Eq. (26) in the form as the
local boundary integral equations (LBIE):

up(x) =
∫

Γs

ti(ξ)u∗p
i (x,ξ) dS

−
∫

Γs

ui(ξ)t∗p
i (x,ξ) dS +

∫
Ωs

fi(ξ)u∗p
i (x,ξ)dΩ (29)

Further more, Eq. (29) can also be simplified with the
basic properties of the fundamental solutions as [Han and
Atluri (2003a)]:

∫
Γs

ti(ξ)u∗p
i (x,ξ) dS−

∫
Γs

[ui(ξ)−ui(x)]t∗p
i (x,ξ) dS

+
∫

Ωs

fi(ξ)u∗p
i (x,ξ)dΩ = 0 (30)

which is equivalent to the rigid body motion idea used in
the global BEM.

It should be pointed out that, Eq. (30) is based on the
displacement BIEs, and holds the same form when point
x approaches to the global boundary, Γ. In addition, the
local unsymmetric weak form can be also used for the
traction BIEs, which is more suitable for the crack and
contact problems. One may write a vector weak form
of Eq. (16) by taking the gradients of the fundamental
solution as the test function [as originally proposed in
Okada, Rajiyah, and Atluri (1988,1989), and extended in
Han and Atluri (2003a)]. One may obtain the traction
LBIE formulation as:

− tb(x) =
∫

Γs

tq(ξ)na(x)σ∗q
ab(x,ξ) dS

+
∫

Γs

Dpuq(ξ)na(x)Σ∗
abpq(x,ξ) dS

+
∫

Ωs

fq(ξ)na(x)σ∗q
ab(x,ξ)dΩ (31)

in which Σ∗
abpq is the derived kernel function defined as:

Σ∗
i jpq(x,ξ) = Ei jklenlpσ∗k

nq(x,ξ) (32)

Eq. (31) is the non-hypersingular integral equations. It
can be simply regularized by applying the basic proper-
ties of the fundamental solution in Eq. (28), as:

0 =
∫

Γs

[tq(ξ)−np(ξ)σpq(x)]na(x)σ∗q
ab(x,ξ) dS

+
∫

Γs

[Dpuq(ξ)− (Dpuq)(x)]na(x)Σ∗
abpq(x,ξ) dS

+
∫

Ωs

fq(ξ)na(x)σ∗q
ab(x,ξ)dΩ (33)
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The derivation of non-hypersingular traction BIE was re-
ported in [Han and Atluri (2003a)]. This generalized
MLPG/LBIE formulations have been derived with details
in [Han and Atluri (2004)].

On the contrast, the conventional MLPG/LBIE methods
use a “companion solution”, ũp

i (x,ξ), to get rid of the un-
known traction in the first term of Eq. (30). The compan-
ion solution is associated with the fundamental solution
and the local test sub-domain. It is defined as the solution
to the following equations:

{
σ̃p

i j, j = 0 on Ωs

ũp
i = u∗p

i on ∂Ωs
(34)

For a 3D problem, it is given for a spherical local sub-
domain, with a radius of r0, as:

ũp
i (x,ξ) =

1
16πµ(1−υ)r0

[(3−4υ)δip

+
r2

r2
0

r,ir,p +
3−2υ

2(2−3υ)
(1− r2

r2
0

)δip] (35a)

σ̃p
i j(x,ξ) =

1

8π(1−υ)r2
0

(1+υ)r
2(2−3υ)r0

(4δi jr,p −δipr, j −δ jpr,i) (35b)

By taking the companion solution in Eq. (35) as the test
functions, the local weak form can be written as:

∫
Γs

ti(ξ)ũp
i (x,ξ) dS−

∫
Γs

ui(ξ)t̃ p
i (x,ξ) dS

+
∫

Ωs

fi(ξ)ũp
i (x,ξ)dΩ = 0 (36)

One may also define a solution, ũ∗p
i (x,ξ), as:

ũ∗p
i (x,ξ) = u∗p

i (x,ξ)− ũp
i (x,ξ) (37)

and rewrite the local weak with them as the test functions
for a spherical local sub-domain, with the consideration
of Eq. (34):

∫
Γst

ti(ξ)ũ∗p
i (x,ξ) dS+

∫
Γsu

ti(ξ)ũ∗p
i (x,ξ) dS

−
∫

Γs

[ui(ξ)−ui(x)]t̃∗p
i (x,ξ) dS

+
∫

Ωs

fi(ξ)ũ∗p
i (x,ξ)dΩ = 0 (38)

Eq. (38) is conventional meshless local weak form as
LBIE, which is restricted to the spherical local sub-
domain only [Atluri, Sladek, Sladek and Zhu (2000)].
The advantage is that there are no unknown tractions
to be evaluated on the part of the boundary of the lo-
cal sub-domain which is inside the solution domain. The
disadvantage is that the local sub-domain is limited by
the companion solution. It needs the special numeri-
cal techniques for the strong singular integrals. For the
present LBIE formulations in Eqs. (30) and (33), there
are no strong singular integrals as they are fully regu-
larized. They have no restrictions in choosing the lo-
cal sub-domain, which could be spheres or polyhedrons
with more details in the following section for 3D prob-
lems. Another difference is the use of the unknown trac-
tion variables. In the conventional LBIEs, the unknown
variables are displacements, with the tractions as the de-
rived one. Sellountos and Polyzos (2003) introduced the
unknown traction variables to the displacement LBIE,
whose application is limited. However, the presented
LBIEs for displacements and tractions can be used to-
gether for solving problems in which the tractions need to
be unknown variables, such as those with cracks, contact
and material interfaces. It makes the LBIE more general
and flexible. These non-hyper-singular BIEs have also
been successfully applied together for acoustic problems
[Qian, Han, Ufimtsev and Atluri (2004)].

4 Discretization and numerical implementation

4.1 MLPG/Symmetric: using the shape function as
the test function and collocation method for the
essential boundary conditions for LSWF

Let us apply the local symmetric weak form in Eq. (24)
on the local 3D sub-domain Ωs, centered on each nodal
point x(I). If its ith degree of freedom (DOF) is not
prescribed, i.e., u(I)

i /∈ Γsu, or the node is inside the do-
main, one may take the shape function of node k in Eq.
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(7), Φ(I)(x), as the test function. In addition, the local-
domain is chosen as the same as the support domain of
the node, Eq. (24) can be simplified for u(I)

i as:

∫
Ωs

σi jΦ
(I)
, j dΩ−

∫
Γsu

tiΦ(I)dΓ

=
∫

Γst

tiΦ(I)dΓ+
∫

Ωs

fiΦ(I)dΩ (39)

in which the following condition has been used:

Φ(I)(x) = 0 for ∀x ∈ Ls (40)

If the ith DOF belongs to the displacement boundary, i.e.,

u(I)
i ∈ Γsu, one may take the Derac’s delta function as

the test function and obtain the corresponding local weak
form from Eq. (24):

αui(x(I)) = αui(x(I)) (41)

By taking the approximation in Eq. (6) and the con-
stitute relations in Eq. (19), Eqs. (39) and (41) are
ready for numerical implementation, labeled as MLPG6
in [Atluri(2004)]. This method has the following proper-
ties:

The system matrix is symmetric.

The system matrix is sparse and banded.

4.2 MLPG/Heaviside: using Heaviside step function
as the test function and collocation method for the
essential boundary conditions for LSWF

Similar to MLPG/Symmetric, a Heaviside step function
is used as the test function for the nodes on the natural
boundary or inside the domain, i.e., u

(I)
i /∈ Γsu. One may

simplify Eq. (24) for u(I)
i as:

−
∫

Ls

tidΓ−
∫

Γsu

tidΓ =
∫

Γst

t idΓ+
∫

Ωs

fidΩ (42)

For the ith DOF belongs to the displacement boundary,
i.e., u(I)

i ∈ Γsu, the similar equation can be obtained by
taking the Derac’s delta function as the test function for
MLGP/Symmetric as:

αui(x(I)) = αui(x(I)) (43)

By taking the approximation in Eq. (6) and the constitute
relations in Eq. (19), Eqs. (42) and (43) are ready for nu-
merical implementation. This method has the following
properties:

The system matrix is unsymmetric.

The system matrix is sparse and banded.

Theoretically, the shapes of the sub-domains can be cho-
sen arbitrarily, including spheres, cubes, polyhedrons, el-
lipsoids and so on. The practical shapes may be restricted
to those have a piece-wise surface. It is discussed with
more details in the next section.

4.3 MLPG/LBIE: using the fundamental solution as
the test function for LUSWF (LBIE)

Most LBIE work in literatures is based on Eq. (38) for
2D problems, with the use of either companion solutions
[Atluri, Sladek, Sladek and Zhu (2000), Sladek, Sladek
and Zhang (2003), Sellountos and Polyzos (2003)], or
cut-off functions [Mikhailov (2002)]. The local sub-
domain needs to be chosen as a circle centered at the
nodal point in question. Then the conventional quadra-
ture schemes are used for the integrals over the circle.
This idea may not work for 3D problems, by choosing a
sphere as a simple extension, because integrals for LBIE
need to be performed over the surface of the local sub-
domain. In contrast, Eq. (30) has no such kind of re-
striction in choosing the local sub-domain. In addition,
Eq. (30) contains no strong singularities, and the weakly
singular integrals can be easily evaluated by using the
conventional Gauss qradrature scheme over the piece-
wisely surface. For the nodes on the global boundary,
the weak singularities can be cancelled by the Jacobian
of the coordinate transforms, in which the conventional
Gauss quadrature is still applicable.

By taking the meshless approximation in Eq. (6), the dis-
placements, tractions and body forces can be expressed
as:

ui(ξ) =
N

∑
j=1

Φ(J)(ξ)u(J)
i (44a)

ti(ξ) =
N

∑
J=1

[λni(ξ)Φ(J)
, j (ξ)u(J)

j +µn j(ξ)Φ(J)
, j (ξ)u(J)

i

+µn j(ξ)Φ(J)
,i (ξ)u(J)

j ] (44b)
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fi(ξ) =
N

∑
J=1

Φ(J)(ξ) f (J)
i (44c)

in which the constitute relations in Eq. (19) is used, and
N is the number of the nodes in the solution domain. One
may discretize the LBIE in Eq. (30), corresponding to
node I’s p-th displacement, u(I)

p , as:

N

∑
J=1

u(J)
j

∫
Ls

[λu∗p
i (x,ξ)ni(ξ)Φ(J)

, j (ξ)

+µu∗p
j (x,ξ)ni(ξ)Φ(J)

,i (ξ)

+µu∗p
i (x,ξ)n j(ξ)Φ(J)

,i (ξ)]dΓ

−
N

∑
J=1

(u(J)
i −δipu(I)

p )
∫

Γs

t∗p
i (x,ξ)Φ(J)(ξ)dΓ

= −
∫

Γs

t i(ξ)u∗p
i (x,ξ) dS

−
∫

Ωs

[
N

∑
J=1

f (J)
i Φ(J)(ξ)]u∗p

i (x,ξ)dΩ (45)

The local sub-domains for this method are also chosen
as the polyhedrons centered at each node, defined in the
following section.

5 The shape of 3D local sub-domain

For MLPG/Symmetric and MLPG/Heaviside, the trac-
tions are included in the integrals which need to be per-
formed over the surface of the local sub-domain. By def-
inition, the tractions, ti ≡ σi jn j, contain the normal n to
the surface. It is seen that, in defining the unit normal
on a 3-D spherical surface, the trigonometric functions
are involved. It is well known that the conventional nu-
merical quadrature schemes are designed for polynomi-
als, and are not efficient for trigonometric functions. It
is well known that a 2-point Gauss quadrature evaluates∫ 1

0 x3 dx accurately. However, the numerical experiments
show that, it gives an error of about 0.07% when a 4-
point Gauss quadrature is used to evaluate one dimen-
sional integral

∫ 1
0 x3 sin2πx dx over a 2D circle, in which

only one trigonometric function is involved. It gives a
higher error of 0.15% for a 4x4 point Gauss quadrature to
evaluate a double integral

∫ 1
0

∫ 1
0 x3y3 sin2πx sin2πy dxdy

over a spherical surface, and an error of 1.5× 10−5 for

s
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Figure 2 : a local sub-domain around point x

a 6x6 point Gauss quadrature. However, the shape func-
tions constructed here are more complicated than sim-
ple monomials. For 2D problems, such numerical er-
rors may be controlled by simply increasing the order of
Gauss quadrature scheme, or subdividing the domain of
integration into small segments for better accuracy. It
has been reported that the subdivision algorithm is much
more efficient than those the integration is performed
over the entire domain with a large number of integra-
tion points [Atluri, Kim and Cho (1999), Sellountos and
Polyzos (2003)]. The integration over the entire domain
is tediously inefficient for 3D problems, as the high or-
der Gauss quadrature is required even for passing patch
tests. In the present implementation, the piece-wise poly-
hedron is defined for each node in the following way, to
subdivide the local spherical domain for simplifying the
numerical quadrature and improving the accuracy.

Consider node I at x(I), one may determine the radius of
a local sphere centered at node I, denoted by r(I)

0 :

r(I)
0 = α min{

∥∥∥x(I)−x(K)
∥∥∥ ,K = 1,2, ...,n and K 
= I}

(46)

where α is a constant and greater than 0 and less than 1.
It is chosen as 0.75 in the present study.

In addition, if node I is inside the solution domain but
close to the global boundary, a smaller radius may be
used so that the local sphere has no intersection with
the global boundary. In other words, the local test sub-
domains of all internal nodes are restricted inside the so-
lution domain, and their local boundaries are also inside
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the solution domain. Therefore, the numerical imple-
mentation becomes much simpler, because the essential
and natural boundary conditions appear in the integrals
of the nodes on the global boundary only.

With the use of the local radius, r(I)
0 , one may define a

minimum subset of nodes, {x(J)}, (J = 1,2, ...,m), by
which the local sphere is covered. By drawing a line
from node I to node J, a point can be obtained at the
intersection between the line and the local sphere, de-
noted by y(J). One may use Delaunay triangulation al-
gorithm to triangulate the local spherical surface through
{y(J)}, (J = 1,2, ...,m). Then a set of 3-node triangles
are obtained which define a local polyhedron, as shown
in Figure 2. Then the local spherical sub-domain for node
I can be sub-divided into pieces through these triangles.
The integration can be performed over the triangles by
mapping the point x back to the point x on the spheri-
cal surface. For a surface integration, one may write the
mapping relationship between points x and x, as

θ(x) = θ(x), ϕ(x) = ϕ(x)

dS(x) = dS(x)[ r(I)
0‖x−x(I)‖ ]2

(47)

In addition, the corresponding tetrahedron can be de-
fined for each triangle by adding node I as the 4-th ver-
tex and then mapping back to the corresponding cone.
Thereafter, all integrals over the local surface can be
mapped over the triangles, and the local sub-domain in-
tegrals over the tetrahedrons, using very simple Gaussian
quadrature.

6 Numerical Experiments

Several problems in three-dimensional linear elasticity
are solved, to illustrate the effectiveness of the present
method. The numerical results of the present methods,
as applied to problems in 3D elasto-statics, specifically
(i) a cube, (ii) a hollow sphere, (iii) cantilever beam, (iv)
concentrated load on a semi-infinite space (Boussinesq
Problem), are discussed.

6.1 Cube under uniform tension

The first example is that of a standard patch test, shown in
Figure 3. A cube under the uniform tension is considered.
The material parameters are taken as E = 1.0, and ν =
0.25. The cube is modeled with 27 nodes, including one

node in the center of cube and 9 nodes for each of the
faces. Two nodal configurations are used for the testing
purpose: one is regular and another is irregular, as shown
in Figure 3. In the patch tests, the uniform tension stress
is applied on the upper face and the proper displacement
constraints are applied to the lower face.

The satisfaction of the patch test requires that the dis-
placements are linear on the lateral faces, and are con-
stant on the upper face; and the stresses are constant on
all faces. It is found that the present methods pass the
patch tests. The maximum numerical errors are limited
by the computer for two nodal configurations.

6.2 3D Lamé problem

The 3D Lame problem consists of a hollow sphere un-
der internal pressure, as illustrated in Figure 4. The ge-
ometry is defined with the inner and outer radius of 1.0
and 4.0, respectively. The Young’s modulus is chosen
as E = 1.0 and the Poisson ratioν = 0.25. The internal
pressure p = 1.0 is applied. With the consideration of
the symmetric load and boundary conditions, only one
eighth of the sphere is models with the proper boundary
conditions. The non-uniform nodal configuration of 333
nodes is used, as shown in Figure 5.

The radial displacement field is given in [Timoshenko &
Goodier (1976)],

ur =
pRa3

E(b3−a3)

[
(1−2v)+(1+v)

b3

2R3

]
(48)

The radial and tangential stresses are

σr =
pa3(b3−R3)
R3(a3−b3)

σθ =
pa3(b3 +2R3)
2R3(b3−a3)

(49)

The displacements are shown in Figure 6, and are com-
pared with the analytical solution. As shown in Figure
7, the radial and tangential stresses are compared with
the analytical solution. They agree with each other very
well.

6.3 Cantilever beam

The performances of the present MLPG formulations are
also evaluated, using the cantilever beam problem under
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a transverse load, shown in Figure 8, for which the fol-
lowing exact solution is given in Timoshenko and Good-
ier (1970):

ux = −P(1−υ2)
6bEI

(y− h
2
)[3x(2L−x)+

2−υ
1−υ

y(y−h)]

uy =
P(1−υ2)

6bEI
[x2(3L−x)+

3υ
1−υ

(L−x)(y− h
2
)2

+
4+υ
4−4υ

h2x] (50)

where I is the bending stiffness of the plate, as,

I =
h3

12
(51)

and

E =

⎧⎨
⎩

E

1+2υ
(1+υ)2 E

and υ =

⎧⎨
⎩

υ for plane strain

υ
1+υ for plane stress

(52)

The corresponding stresses are
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σx = − P
bI

(L−x)(y− h
2
)

σy = 0 (53)

σxy = − P
2bI

y(y−h)

The problem is solved for the plane stress case with
P = 1, E = 1, b = h = 2, L = 24 and υ = 0.25. Reg-
ular uniform nodal configurations with nodal distances,
d, of 2.0, 1.0, 0.5, 0.25 and 0.125 are used, as Figure 9
shows the configuration with a nodal distance of 1.0. The
number of nodes are 52, 225, 1225, 7857 and 55777, re-
spectively. For the comparison purpose, FE meshes are
also constructed from the nodal configurations by using
the standard Hex 8 element.

First, a uniform tension load is applied to the free end
of the cantilever beam. A linear deformation field is ex-
pected for this simple loading. The problem is solved by
using the three MLPG methods with both the MLS and
CRBF approximations. The numerical results of the ten-
sion deformation are shown in Figure 10, which agree
with the analytical solution well. The maximum relative
error is less than 0.25%, as listed in Figure 11.

The MLPG/LBIE is used to solve the beam under the
transverse load. The results with the MLS approx-
imation with a linear basis are shown in Figure 12,
with the stream line from the exact solution. It can
be seen that the results are well approximated by the
MLPG/LBIE method with a nodal distance of 0.5, as
compared to the analytical solution. The results from the
MLPG/Symmetric method are shown in Figure 13. This
method gives the better results even with a nodal distance
of 1.0. The linear basis yields almost the same results as
the quadratic basis for the MLS approximation. The con-
vergence with nodal refinement of the MLPG/Symmetric
method is studied for this problem. The results of rela-
tive errors are shown in Figure 14. The relative errors of
the FEM with the conventional Hex8 elements are also
shown in Figure 14. It shows a faster convergence rate of
the present MLPG method than the FEM.

6.4 A concentrated load on a semi-infinite space
(Boussinesq problem)

The Boussinesq problem can simply be described as
a concentrated load acting on a semi-infinite elastic

medium with no body force, as shown in Figure 15.
This problem was solved by using MLPG/Heaviside [Li,
Shen, Han and Atluri (2003)] and MLPG/BIE [Han and
Atluri (2003)b]. In Li, Shen, Han, and Atluri (2003),
the problem was simplified, somewhat, by carving out a
sphere of a small radius, at the point of application of
the concentrated load, and applying only displacement
boundary conditions ( corresponding to the analytical
solution), on the inner surface of this small sphere. In
the present paper, the MLPG methods are used to solve
this problem, by directly applying the point load itself, to
show the capability of the MLPG methods for the strong
singularities. A quarter of a half sphere with a radius of
10 is used to simulate the semi-infinite space, with the
consideration of the symmetrical boundary conditions.
It is modeled with a nodal configuration, as shown in
Figure 16a, containg 1067 nodes. For comparison pur-
poses, a mesh for the FEM is also constructed from the
same nodes by using tetrahedral elements. In addition, a
finer tetrahedral mesh for FEM is also created with 4869
nodes, as shown in Figure 16b. Young’s modulus and
Poisson’s ratio are chosen to be 1.0 and 0.25, respec-
tively.

The exact displacement field within the semi-infinite
medium is given in [Timoshenko & Goodier (1976)],

ur =
(1+ν)P

2EπR

[
zr
R2 −

(1−2ν)r
R+ z

]

uw =
(1+ν)P

2EπR

[
z2

R2 +2(1−ν)
]

(54)

where ur is the radial displacement, and uw is the verti-
cal one, R is the distance to the loading point, r is the
projection of R on the loading surface.

The theoretical stress field is:

σr =
P

2πR2

[
−3r2z

R3 +
(1−2ν)R

R+ z

]

σθ =
(1−2ν)P

2πR2

[
z
R
− R

R+ z

]

σz = − 3Pz3

2πR5

τzr = τrz = −3Prz2

2πR5
(55)
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Figure 11 : Relative errors of the tension deformation for a cantilever beam under a uniform tension
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It is clear that the displacements and stresses are strongly
singular and approach to infinity; with the displacement
being O(1/R) and the stresses beingO(1/R2).

The vertical displacement uw along the z-axis is shown
in Figure 17. The radial stresses along the Z and Y axes
are shown in Figure 18 and Figure 19. The analytical so-
lution for the displacement and stress are plotted on the
same figures for comparison purpose. The results show
that the present MLPG method gives much better results
than the FEM method, when the same nodal configura-
tion is used. The FEM achieves the same accuracy, as the
present MLPG methods, only when a 4-time finer mesh
is used. For this finer mesh, it takes a much longer CPU
time for the FEM to solve the problem, along with more
system resources. The CPU Time and the used system
memory are shown in 6.4. For the same accuracy, the
MLPG method takes lesser CPU time, as well as lesser
system resources, than the FEM.

7 Closure

Three Meshless Local Petrov Galerkin (MLPG) meth-
ods are developed for 3D static problems, based on the
local symmetric and unsymmetric weak forms. The
MLS and CRBF approximations are used for construct-
ing the shape functions from the scattered points. A novel
method has also been developed to define the local sub-
domains from the polyhedrons for the evaluation of the
integrals. The numerical results demonstrate the advan-

tages of the present MLPG methods over the Finite el-
ement method, including the higher accuracy, and the
smoother stress fields. Convergence studies in the nu-
merical examples show that the present methods possess
an excellent rate of convergence for both the unknown
variable and its derivatives, which are even faster than
the conventional FEM. The much lesser number of nodes
required in the MLPG methods, to obtain the same ac-
curacy, as compared to the FEM, in static 3 D elastic-
ity problems, is demonstrated. It also leads to the con-
clusion, that the present MLPG methods are even more
efficient for dynamic problems, while using explicit time-
integration schemes, because only the simple matrix mul-
tiplication operations are involved, instead of the matrix
reversion as in the static problems. This is discussed in
detail, in a companion paper.
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Figure 17 : Vertical displacement along z-axis for the Boussinesq problem
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Figure 18 : Radial stress along z-axis for the Boussinesq problem
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Figure 19 : Radial stress along y-axis for the Boussinesq problem

Table 1 : CPU time and used memory for MLPG and FEM to solve Boussinesq problem
Method Number of

Node
Max
Disp.

Max
Stress

CPU Time
(Second)

Memory
(MB)

MLPG 1067 10.3 47.2 56.2 20
FEM 1067 6.5 13.9 3.2 5
FEM 4869 11.8 42.9 61.8 91
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