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Crack-Path Analysis for Brittle and Non-Brittle Cracks: A Cell Method Approach

E. Ferretti1

Abstract: Defining the crack path in brittle and non-
brittle crack is not easy, due to several unknowns. If
the direction of crack propagation can be computed by
means of one of the existing criteria, it is not known
whether this direction will remain constant during crack
propagation. A crack initiation leads to an enhanced
stress field at crack tip. During propagation, the en-
hanced tip stress field propagates into the solid, locally
interacting with the pre-existing stress field. This inter-
action can lead to modifications of the propagation di-
rection, depending on the domain and crack geometry.
Moreover, trajectory deviation affects the length of crack
propagation. Thus, the length of crack propagation too
depends on the domain and crack geometry. Finally, the
local interaction between stress fields of opposite signs
can return a modified condition of crack arrest. Crack
stability analysis cannot be performed without consider-
ing this interaction. The problem of defining trajectory
deviation, propagation length and crack stabilization is of
particular interest in brittle cracks, since these cracks de-
velop statically from the moment of crack initiation forth.
It will be shown here how a numerical code for use with
the CM returns an accurate crack path for brittle and non-
brittle cracks. In both cases, the stress analysis has been
performed on the plane of Mohr for each step of the car-
rying process. At crack propagation, an automatic tool
of nodal relaxation with remeshing is used to update the
domain geometry.

keyword: Cell Method, automatic remeshing, crack
stability, failure mechanism analysis.

1 Introduction

The Cell Method (CM) is a new numerical method, pro-
viding a direct finite formulation of field equations, with-
out requiring a differential formulation [Tonti (2001)].
The first code for application of the CM to Fracture Me-
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chanics is due to Ferretti [Ferretti (2001)]. Generalities
of this code have been collected in Ferretti (2003a). In
particular, it has been shown how the code is able to auto-
matically update the domain geometry as the crack prop-
agates. The updating is achieved by means of a nodal
relaxation with intra-element propagation technique. Au-
tomatic remeshing is then activated on the new domain,
paying attention to refine the mesh on the crack edges.
Applications in Mode I and Mixed Mode loading were
presented to illustrate the robustness of the implementa-
tion. The numerical model incorporates an original tool,
which automatically estimates which part of the bound-
ary is subjected to Mode I loading, and which part is
subjected to Mode II loading. The tool subsequently es-
timates the size of the relative displacements between
nodes on the opposite sides of the crack surface sub-
jected to Mode II loading, allowing sliding contact to be
described. The tool thus represents the CM equivalent
of introducing FEM contact elements describing sliding
contact [Har (1998), Papadopoulos, Jones and Solberg
(1995), Zhong (1995)]. Finally, particular load condi-
tions, with transition from Mode I to Mode II and from
Mode II to Mode I as the crack propagates, can also be
studied [Ferretti (2003a)]. The tool automatically esti-
mates whether an opened crack re-closes. In this case,
the forces transmitted along the re-closed edges are auto-
matically computed from the moment of re-closure forth.

The numerical results presented in Ferretti (2003a) show
that the CM numerical code can give good predictions
for Fracture Mechanics problems. This validates the CM
theory for fracture analysis. It has also been shown [Fer-
retti (2003a), Ferretti (2003b)] how the use of the CM
allows us to easily treat multiple domains, internal holes,
heterogeneity, singularities on the domain contour, and
punctual forces.

Here, the accurateness of the code in describing the crack
path is emphasized. In particular, it will be shown how
the code is able to take into account crack-induced modi-
fications of the stress field at each step of crack propaga-
tion. By means of a crack stability analysis and an ade-
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quate criterion for computing the direction of crack prop-
agation, these modifications lead to the identification of
a polygonal crack path. The crack stability analysis with
updating of the crack propagation direction turned out to
be very efficient in describing the crack path.

2 Crack Stability Analysis

In crack propagation problems, the geometry of the mesh
must be modified as the crack propagates. The ability of
the CM code with remeshing to take a general change in
the mesh topology easily into account has been shown
in Ferretti (2003a). This ability is all the more relevant
since changes in mesh topology are rarely supported by
classical finite element method (FEM) numerical codes.
An example of a remeshing technique can be found in
Bouchard et al. (2000).

The remeshing CM code has been implemented in
displacement-control. The complete flow-chart for crack
propagation analysis and a scheme of the crack geometry
updating are given in Fig. 1. As can be seen from Fig.
1, the crack propagation analysis is performed by means
of a special element for stress analysis. This element is
created as follows, by means of a totally automatic tool:-

• six auxiliary nodes representing the vertexes of a
regular hexagon centered on the tip are added to the
modeling domain (Fig. 1.b1);

• seven new sides, which join the six new nodes and
the crack tip node in a counter-clockwise sense, are
added to the modeling domain, without crossing the
surfaces of the crack (Fig. 1.b1);

• a marker is associated with the seven new sides, in-
dicating that the polygon that starts and ends with
the crack tip node, and touches all six of the new
nodes (Fig. 1.b1), is a false hole.

False holes are node chains used to specify smaller or
larger elements for particular regions inside the domain.
Here, the false hole is used to specify a particular mesh
geometry in a region, for use by the mesh generator. This
false hole has been termed the “first hexagonal kernel”
[Ferretti (2003a)].

The CM uses two meshes, the one the dual of the
other. Here, a Delaunay/Voronoi mesh generator [George
(1995), Fig. 1.b1] is used to generate the two meshes in
two-dimensional domains. Once the mesh generator has

been activated, it creates a Delaunay mesh that divides
the first hexagonal kernel into five equilateral triangles
(Fig. 1.b1). This happens because the desired element
dimension chosen around the seven vertexes of the first
hexagonal kernel is equal to the hexagonal kernel side.
The dual mesh (the Voronoi mesh) is formed by the poly-
gons whose vertexes are at the circumcenters of the pri-
mal mesh. The Voronoi polygon centered on the crack tip
(the gray-shaded polygon shown in Fig. 1.b1) has been
termed the “crack tip Voronoi cell”. Due to the way it
is constructed, four of its sides are positioned equidis-
tant from the crack tip. These sides belong to a hexagon
centered on the crack tip, termed the “second hexagonal
kernel”.

Since the CM associates geometrical objects of the
Voronoi mesh (dual mesh) to source variables, the reg-
ularization of the mesh surrounding the tip due to the tip
Voronoi cell allows description of the stress field in a fi-
nite neighborhood of the tip [Ferretti (2003a)]. The limit
analysis for the tip neighborhood has been performed on
the Mohr plane. In Fig. 1.b4, the Mohr-Coulomb crite-
rion is used to compute the direction of crack propaga-
tion.

In plane problems, the crack shape does not vary nor-
mal to the plane of the mesh. In this case, the direction
of crack propagation will always lie in the plane of the
mesh. Then, it is not necessary to construct the complete
Mohr’s domain, but only the Mohr’s circle obtained ro-
tating the first hexagonal kernel, since this is the biggest
in the Mohr’s domain [Ferretti (2003a)]. Therefore, to
obtain the crack propagation direction for the case where
the Mohr’s circle is tangent to the limit surface, it is suffi-
cient to calculate the point in the Mohr-Coulomb domain
which lies on the limit surface (tangent point). Since the
simulation proceeds using finite increments of displace-
ment, it is not possible to capture the precise instant in
which the Mohr’s circle becomes tangent to the limit sur-
face. In general, it is only possible to find the first value
of displacement for which the Mohr’s circle intersects the
limit surface (limit condition). For this case, the tangent
point can be found as the point which lies furthest outside
the limit surface.

To construct Mohr’s circle, it is sufficient to know any
two points in the Mohr-Coulomb plane, and conse-
quently it is sufficient to know the stress field on two
attitudes of the same (finite) neighborhood. Since only
the sides of the tip Voronoi cell that lie on the second
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Figure 1 : a) Flow-chart for crack propagation analysis in displacement-control; b1) Scheme of the false hole
positioning; b2) First orientation of the false hole for analysis in the Mohr-Coulomb plane; b3) Second orientation
of the false hole for analysis in the Mohr-Coulomb plane; b4) Analysis in the Mohr-Coulomb plane and failure
criterion; c) Scheme of the false hole moving on the new tip node.

hexagonal kernel need to be taken into account [Ferretti
(2003a)], for a general position of the false hole, only
three distinct attitudes are available. Of the four sides
belonging to the second hexagonal kernel, two are paral-
lel to each other, and correspond to the same attitude. So,
one generic position of the false hole is sufficient to iden-
tify the circle. Nevertheless, the uncertainty of the false
hole orientation cannot guarantee a good accuracy during
numerical solution. It has been found [Ferretti (2001)]
that the accuracy is not satisfactory for side slopes near
to 0◦ and 90◦.
A numerical analysis [Ferretti (2001)] showed that higher
accuracy solutions are obtained for side slopes close to
30◦ and 60◦. Since the difference between the slopes of
two consecutive sides of the second hexagonal kernel is
equal to 60◦, it is impossible to insert a false hole giv-
ing the higher accuracy solution for at least two sides of
the hexagon. Thus, to identify the Mohr’s circle, two

different orientations of the false hole can be used. For
the first of these (Fig. 1.b2), a Voronoi side slope of 60◦

is available, while for the second (Fig. 1.b3), a Voronoi
side slope of 30◦ is available.

Once the limit condition (tangency condition) has been
reached, the crack propagation direction is given by the
direction of the line that joins the tangent point to the
Mohr’s pole (Fig. 1.b4 and Fig. 1.c). The length of crack
propagation is assumed equal to the length of the first
hexagonal kernel side (Fig. 1.a, Fig. 1.c). This length is
one of the inputs of the numerical code. It is fixed by the
operator in such a way that the stresses computed on the
tip Voronoi cell are stationary. Previous numerical inves-
tigations [Ferretti (2001)] show that an upper limit value
of the first hexagonal kernel side always exists, for which
the stresses on the tip Voronoi cell are stationary. This
result is one of the main implications following from the
direct discrete stress analysis by means of the CM. The
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same result cannot be achieved if a differential formu-
lation or an indirect finite formulation are used. From
this point of view, the difference between the CM and
other apparently similar methods, such as the finite vol-
ume method (FVM), is evident. Actually, even the FVM,
which uses integral formulation, is based on a differen-
tial formulation. It must be incidentally recalled [Tonti
(2001)] that the CM is also very similar to the direct or
physical approach initially used in the FEM [Huebner
(1975), Livesley (1983) and Fenner (1996)]. The CM
can be considered as a generalization of the finite differ-
ences method (FDM) as well. However, it was not possi-
ble to attain convergence greater than second order both
for FVM, physical approach, and FDM. This is the main
reason for which the physical approach fell out of favor.
The CM (based on a different philosophy) permits the
use of interpolation functions, as used in the FEM. This
allows the physical approach to be revived. A demon-
stration of fourth-order convergence with the CM can be
found in Cosmi (2000). Details on the differences be-
tween variational and discrete formulation can be found
in Tonti (2001).

Once the propagation direction has been computed, a
new tip node is inserted, the old tip node is relaxed, and
the false hole is moved on the new tip node (Fig. 1.a,
Fig. 1.c). A special tool has been developed [Ferretti
(2003a)] for updating the crack geometry automatically
when the limit condition is reached. In Fig. 1.a, the cycle
corresponding to the procedure of crack geometry updat-
ing for a given value of impressed displacement is the
one filled in gray color.

Crack updating is repeated for the same value of im-
pressed displacement until crack stability is achieved
(Fig. 1.a). That is, the crack is let to propagate until the
condition of no failure at the given impressed displace-
ment is reached. At this point, the value of impressed
displacement is incremented and the stress analysis re-
peated.

In Fig. 1.a, the crushing condition is reached when the
specimen is completely cracked. That is, crushing occurs
when the dominant crack has divided the specimen into
two distinct parts.

3 Direction of Crack Propagation

As shown in the former paragraph (Fig. 1.b4), the direc-
tion of crack propagation is evaluated on the Mohr plane,

by joining tangent point to Mohr’s pole. With this choice
for the criterion of crack propagation direction, the direc-
tions of crack propagation are always two, since two are
the tangent points. Nevertheless, the experimental evi-
dence shows that only one crack activates in most cases.
It must therefore provide the code with an auxiliary in-
formation, in order for the code to be able to answer the
question whether one or two cracks activate. In the first
case, the code must indicate along which of the two pos-
sible directions the crack activates. A way to find the
number of activating cracks is to compare the constraint
degrees along the two directions to each other. If the
constraint degree is the same along both directions, two
cracks activate, one for each direction. If the constraint
degree along one direction is predominant over the con-
straint degree along the other direction, only one crack
activates. In the latter case, the direction of crack ac-
tivation is the one along which the degree of constraint
(freedom) is minimum (maximum).
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Figure 2 : a) Scheme of the compression test on concrete
cylinders; b) Modeled domain on the specimen longitu-
dinal section

Degrees of constraint and freedom depend on the sin-
gle geometry and bond conditions. A simple example
can better illustrate the procedure. Consider the case
of a cylindrical concrete specimen subjected to mono-
axial load [Ferretti (2003a), Fig. 2]. Due to the cylin-
drical geometry, the problem is plane and no displace-
ments activate orthogonally to the longitudinal section.
That is, only Mode I, opening (Fig. 3.a), and Mode II,
sliding (Fig. 3.b), are possible on the longitudinal section
(Fig. 2b).

The modeled domain is the one marked in Fig. 2b. Re-
duction of the modeling to only one quarter of the section



Crack-Path Analysis for Brittle and Non-Brittle Cracks 231

a) b)

Figure 3 : a) Mode I displacements (opening); b) Mode
II displacements (sliding)
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Figure 4 : Mohr’s circle and directions of propagation
for the first propagation step

is possible, due to the double symmetry of the section
itself. For the modeled bottom left quarter, the initia-
tion point lies on the bottom platen, and belongs to the
cylindrical surface (Fig. 2b). The two directions of crack
propagation for the first propagation step are shown in
Fig. 4.

As can be appreciated by comparison between Fig. 2b
and Fig. 4, for the first step of propagation the crack
cannot develop along the first direction of propagation.
Since the initiation point belong to the specimen bound-
ary, indeed, a propagation along the first direction should
lead the crack tip to move outside the domain. Thus, for
the first step, only the second direction of propagation
activates.
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Figure 5 : Directions of propagation for an intermediate
propagation step

The directions of propagation do not change in the fol-
lowing propagation steps. Mohr’s circles similar to the
one of first propagation were found for an intermediate
step of propagation as well. Thus, the directions of prop-
agation were close to the first and second directions in
Fig. 4 for each propagation step. Along these two direc-
tions, the constraint degree is not the same. As shown in
Fig. 5, opening and sliding displacements along the sec-
ond direction of propagation are possible for an interme-
diate propagation step. This happens since the initiation
point moves on the bottom platen, giving a crack open-
ing direction which is oblique with respect to the second
direction of propagation (Fig. 5). Opening and sliding
displacements along the second direction of propagation
can therefore occur both for rigid displacements, due to
the oblique opening of the crack, and for deformation of
the compressed material. On the contrary, opening and
sliding displacements along the first direction of propa-
gation can only occur for deformation of the compressed
material. This gives to the first direction of propagation
a constraint degree greater than the one along the second
direction of propagation. Thus, only one crack develops
from the tip at an intermediate step of propagation, and
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the actual direction of crack propagation is the second.

4 Numerical Crack-Path

4.1 Example of Brittle Crack: The Beam in Skew-
Symmetric Four-Point Bending

Brittle crack is the term given to static failures caused by
crack propagation. It occurs when the crack propagates
very rapidly through the material. Such fractures release
a lot of energy and can be very loud, explosive and dan-
gerous, as fragments of the material may be cast long
distances.

We are faced with a brittle crack whenever the instant
of crack initiation is critical for crack propagation. In
a load (displacement)-controlled carrying process, this
means that, as the crack enucleates, the crack-path devel-
ops until crushing with no further need of incrementing
the applied load (displacement). Thus, the crack prop-
agation totally occurs for a single value of applied load
(displacement), the load (displacement) of crack initia-
tion. The sudden propagation of the crack is caused only
by the elastic energy stored in the material (Definition
Copyright c©1989 CRC Press LLC).

Brittle crack propagation has been intensely studied in
past years. Some examples can be found in Buliga
(1999), Hirsch et al. (1992), Holian et al (1997), Ohtsuka
(2000), Machida and Aihara (1996), and Kysar (2001).

The difficulty of brittle crack propagation problems con-
sists in the nature of the main unknown: the crack it-
self, at various moments in time. The research in this
field concerns mainly the constitutive behavior of a brit-
tle material. In almost all the studies the geometry of the
crack is prescribed. There are a few exceptions, such as
the papers of Ohtsuka (2000) or Stumpf and Le (1990).
Classical, constitutive oriented theories are useful for the
experiments, but they are based on hypotheses which are
unrealistic in the case of an elastic structure. Here, the
problem of finding the crack configuration at various mo-
ments in time has been solved numerically, by means of
the CM remeshing code developed in Ferretti (2003a).

At crack initiation, the CM numerical simulation of a
brittle failure involves repeating the gray-filled cycle in
Fig. 1.a time after time until crushing, since the no prop-
agation condition is never reached for the displacement
of crack initiation. That is, the crack never stabilizes for
the displacement of crack initiation, and the condition
for incrementing the impressed displacement is never

achieved.

F

F

Figure 6 : Scheme of the skew-symmetric four-point
bending test

As an example of brittle crack, consider the beam in
skew-symmetric four point bending in Fig. 6. The beam
has been pre-cracked at mid-span and a special element
for stress analysis has been inserted at both crack tips.
The stress analysis for a value of impressed displacement
not involving crack propagation is shown in Fig. 7. In this
figure, it can be seen how dealing with punctual forces
does not represent a problem with the CM. Forces can
be directly charged on zones of zero extension (points).
This gives a realistic representation of the punching ef-
fect in correspondence both of the applied load and the
rocker bearings.

The analysis of crack propagation has been performed in
displacement-control, in accordance with the flow-chart
in Fig. 1.a. From the value of impressed displacement
equal to zero up to the displacement of crack initiation,
the failure condition is never reached. Thus, crack geom-
etry updating is not required and the value of impressed
displacement can be incremented. The tip stress analy-
sis in the Mohr plane for this first stage of the carrying
process is shown in Fig. 8. As can be seen from this fig-
ure, in the first stage the maximum compressive stresses
are neglecting, while the maximum tensile stresses grow
rapidly. For the displacement of crack initiation, Mohr’s
circle is tangent to the limit domain. All Mohr’s circles
internal to the limit domain represent stable conditions
at the given value of impressed displacement. When the
circle becomes tangent to the limit domain, a first crack
propagation occurs along the directions individuated by
Mohr’s pole and tangent points. In Fig. 8, only one tan-
gent point has been marked, since only one crack actually
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Figure 7 : Stress analysis for a value of impressed displacement smaller than the displacement of crack initiation
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Figure 8 : Mohr’s circles for tip stress analysis in the first stage of the carrying process

activates, due to a different constraint degree along the
two propagation directions. The tangent point marked in
Fig. 8 is the actual limit point for the bottom crack tip in
Fig. 6.

As regards the length of crack propagation, this is related
to the side of the first hexagonal kernel, as previously
said. A preventive stress analysis has been performed for
a value of impressed displacement smaller than the dis-
placement of crack initiation, by varying the dimension
of the first hexagonal kernel. This parametric analysis re-
turned the greater side of the first hexagonal kernel mak-
ing stationary the stresses on the tip Voronoi cell, gener-
ated as previously shown. Stationarity of the stress field
with the dimensions of the tip mesh is required in order to
guarantee the objectiveness of the performed numerical
analysis. Due to geometrical implications (Fig. 1.c), the
lower limit for the length of crack propagation in a polyg-

onal crack path is equal to the side of the first hexagonal
kernel.

In order to maximize the accurateness in defining the
crack path, the length of crack propagation has been fixed
equal to its lower limit, the side of the first hexagonal ker-
nel.

After the crack geometry has been updated, a new tip
stress analysis is performed for the new tip. In Fig. 9, can
be seen how the Mohr’s circle corresponding to the tip
stress analysis for the first propagation step and the tan-
gent circle are more or less of the same dimensions. By
comparison between these two circles, we can also no-
tice that the new circle is shifted along the positive semi-
axis of normal stresses with respect to the former one.
Shifting along the positive semi-axis of normal stresses
leads to circles moving outside the limit domain. Since
circles which are outside of the limit domain involve fur-
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Figure 9 : Mohr’s circles for tip stress analysis in the second stage of the carrying process

Figure 10 : Stress analysis after ten propagation steps (second stage)

ther crack propagation, the new condition is not stable.
Thus, the condition for going outside the gray-filled cy-
cle in Fig. 1.a is not reached, and a new crack geometry
updating is performed for the displacement of crack ini-
tiation. This results in a Mohr’s circle still shifting along
the positive semi-axis of normal stresses (Fig. 9). Crack
geometry updating is therefore repeated, in order to reach
a stable condition for the displacement of crack initiation,
but the amount of shifting becomes greater and greater as
the crack propagates (Fig. 9). Moreover, the stress field is
locally enhanced by crack propagation, since the radius
of the tip Mohr’s circle becomes greater and greater as
the crack propagates (Fig. 9). Shifting along the positive
semi-axis of normal stresses and radius increasing lead
the degree of crack instability to grow as the crack prop-
agates at constant value of impressed displacement. This
states that the failure which has been activated is actually
brittle. The crack propagation steps involving shifting

along the positive semi-axis of normal stresses have been
termed the crack propagation steps of second stage. They
are all collected in Fig. 9, together with the last circle of
first stage. The stress analysis for an intermediate and
the last step of crack propagation in the second stage are
shown, respectively, in Fig. 10 and Fig. 11.

As regards the Mohr’s pole, in Fig. 9 we can notice a pro-
gressive anti-clockwise rotation as the crack propagates.

For the propagation steps successive to the first, speaking
of tangent point is not appropriate, since the circle is no
longer tangent but secant or external to the limit domain.
As limit point to consider together with the Mohr’s pole
for defining the crack propagation direction, the point ly-
ing furthest outside the limit domain has been chosen.
This point is marked in Fig. 9 for each Mohr’s circle.
Since the Coulomb criterion has been chosen as failure
criterion, the limit domain is represented by two lines in
the Mohr-Coulomb plane. Thus, the central angle de-
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Figure 11 : Stress analysis at the end of the second stage
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Figure 12 : Mohr’s circles for tip stress analysis in the third stage of the carrying process

scribing the position of the limit point with respect to the
positive semi-axis of normal stresses is the same for each
circle. Due to Mohr’s pole rotation, the propagation di-
rection following from these limit points turned out to be
progressively increasing for all propagation steps of the
second stage (Fig. 11).

At the end of the second stage, the Mohr’s circle
has reached its maximum radius and positive shifting.
From this moment forth, the circle becomes smaller and
smaller as the crack propagates. Moreover, the circle be-
gins to move along the negative verse of the normal stress
axis. All circles of this further stage of the carrying pro-
cess, the third stage, are collected in Fig. 12, together
with the last circle of second stage.

The inversion of tendency which characterizes the third
stage does not follow from a crack propagating in order to
approach a new stable condition. It is caused by the beam
downloading, following from the advanced state of crack

propagation. It must be recalled, in fact, that the simula-
tion is performed in displacement-control. For impressed
displacements smaller than the displacement of crack ini-
tiation, increasing of applied load follows from increas-
ing of impressed displacement. As the crack begins to
propagate, the beam stiffness begins to decrease. This
modifies the relationship between impressed displace-
ment and applied load. When the stiffness decreasing is
above a certain limit value, increasing of impressed dis-
placement is accompanied by decreasing of applied load.
Finally, if the decrease of applied load is consistent, the
stress field at crack tip vanishes as the crack propagates at
constant value of impressed displacement. This is what
actually happens in the third stage of the carrying pro-
cess.

In the third stage, the total rotation of the Mohr’s pole
reaches its maximum anti-clockwise value (Fig. 12). For
the last steps of propagation, the Mohr’s pole rotates in
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Figure 13 : Complete crack path for the second and third stage

Figure 14 : Interaction between tip stress field and punching zone for the point with the maximum slope of the crack
path

clockwise sense, leading to a propagation direction de-
creasing with crack propagation (Fig. 13). The crack
path following from this inversion of rotation is char-
acterized by a tip moving toward the applied load un-
til the tip reaches the punching zone under the applied
load (Fig. 14). From this moment forth, interaction be-
tween the stress field into the punching zone (compres-
sive stresses) and around the tip (tensile stresses) leads
the tip to deviate from its trajectory (Fig. 13). Orienta-
tion and deviation of the crack path are confirmed by the
experimental evidence.

The last Mohr’s circle in Fig. 12 represents the tip stress
analysis for the crack path in Fig. 15. At this point, the
beam was considered as completely cracked and the sim-
ulation stopped.

Stage two and three completely describe the stress field

at crack tip for the crack path which activates at the dis-
placement of crack initiation. The beam fails in brittle
manner for the displacement of crack initiation, since
each step of crack propagation leads to an unstable crack
path.

4.2 Example of Non-Brittle Crack: The Lok-Test

We are faced with a non-brittle crack whenever the crack
path develops in such a way as to lead the crack into a
new stable configuration. In a displacement-controlled
numerical simulation with fixed length of crack propa-
gation, this means that several crack propagations occur
for the same value of impressed displacement before a
stable condition is reached. In the flow-chart in Fig. 1.a,
for use with the CM, a non-brittle failure involves reach-
ing crack stabilization a number of times before crushing.
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Figure 15 : Stress analysis at the end of the third stage

Figure 16 : Application and configuration of Lok-Test
(all dimensions are in millimeters)

Thus, further increments of impressed displacement are
possible after having reached the displacement of crack
initiation.

As an example of non-brittle crack, consider the pullout
test on a concrete specimen. The test apparatus and pro-
cedure for the Danish version of the pullout test, the Lok-
Test, are illustrated in Fig. 16 [Ottosen (1981)].

In Fig. 17, the modeled domain is shown for the case
of Lok-test simulation [Ferretti (2003b)]. It corresponds
to the stress extinction zone of the load transferred by
the steel insert. Mohr’s circle for the limit condition in-
volving the first crack propagation is depicted in Fig. 18.
Also the two tangent points and the two propagation di-
rections are depicted in Fig. 18. Fig. 18 is equivalent to
Fig. 4 except for the limit surface since, this second time,
the Leon criterion was used. The Leon criterion is quite
adequate for describing the direction of propagation both
in the compressive and in the tensile field. It can be con-
sidered a refinement of the Coulomb criterion, previously
used.

Figure 17 : Geometry to model and stress extinction
zone of the load transferred by the steel insert
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Figure 18 : Limit condition and directions of first prop-
agation for the geometry of the Lok-Test
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Figure 19 : Mohr’s circles for tip stress analysis in the first stage of the carrying process

In accordance with Fig. 16, the initiation point is at the
bottom right corner of the disc stem in Fig. 17. At the
limit condition, both the cracks along the first and the
second propagation direction of Fig. 18 propagate from
the bottom right corner toward the counterpressure ring.
More precisely, the first propagation direction runs above
the counterpressure ring and the second propagation di-
rection runs below the counterpressure ring, resulting
in the same constraint degree along the two directions.
Thus, both cracks enucleate on the bottom right corner as
the limit condition is reached. This is in good agreement
with the experimental evidence [Krenchel and Bickley
(1985)]. Nevertheless, from the experimental evidence
[Krenchel and Bickley (1985)], it is also known that the
crack along the first propagation direction stops propa-
gating after a few propagation steps, due to the interac-
tion between the stress fields at the two crack tips. Thus,
only one failure surface is observed experimentally, the
one corresponding to the second propagation direction.
This is why only propagation along the second direction
has been considered when updating the modeled domain.

As in the case of brittle failure simulation, the analy-
sis of crack propagation was performed in displacement-
control (Fig. 1.a). This second time too, from the value

of impressed displacement equal to zero up to the dis-
placement of crack initiation, the failure condition was
never reached. Thus, the value of impressed displace-
ment can be incremented, going out from the gray-filled
cycle in Fig. 1.a. The tip stress analysis in the Mohr’s
plane from the zero displacement up to the condition
of crack initiation (first stage of the carrying process) is
shown in Fig. 19. The biggest circle in Fig. 19 intersects
the limit domain, involving crack propagation along the
two directions individuated by Mohr’s pole and tangent
points. Geometry updating is then activated, letting the
crack propagate along the second direction of propaga-
tion. The new tip stress analysis following from this up-
dating returns the smaller of the circles in Fig. 20. This
circle is internal to the limit domain, stating that the crack
configuration is stable for the displacement of crack ini-
tiation. The condition for going out of the gray-filled cy-
cle in Fig. 1.a is thus reached, and further displacement
increments can occur (second stage of the carrying pro-
cess). The circle following from the first increment of im-
pressed displacement is still internal to the limit domain
(Fig. 20). Thus, the crack configuration is still stable.
Two increments of impressed displacement are needed
in order to activate a new crack propagation (Fig. 20).
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Figure 20 : Mohr’s circles for tip stress analysis in the second stage of the carrying process

Also for this new crack propagation, the crack path de-
velops in such a way as to reach a new stable configura-
tion. The last circle of second stage, the one activating
the new propagation, is depicted in Fig. 21 together with
Mohr’s circles corresponding to each of the propagation
steps leading to the new crack stabilization. As can be
appreciated from Fig. 21, after seven steps of propaga-
tion at the same value of impressed displacement, Mohr’s
circle re-enters into the limit domain and the crack stabi-
lizes. The circle for which the crack is stable is depicted
in Fig. 21 in thick line.

The value of impressed displacement is then incremented
(third stage of the carrying process). A further crack
propagation was found to occur for this last value of im-
pressed displacement, since the corresponding tip stress
analysis involves a circle intersecting the limit surface.
This circle has been plotted in Fig. 22 together with the
circle involving stabilization in the second stage of the
carrying process.

This last time too, the failure which has activated is non-
brittle, and a stable configuration is reached after two
propagations. The circle of third stage re-activating crack
propagation is depicted in Fig. 23 together with Mohr’s
circles corresponding to the propagations steps after the

third stage.

In Fig. 23, the circle involving crack stabilization is de-
picted in thick line. Once the crack has stabilized, the
impressed displacement has been incremented, giving a
Mohr’s circle intersecting the limit domain. This circle
has been plotted in Fig. 24 brought together with the cir-
cle in thick line of Fig. 23.

Stabilization for this value of impressed displacement is
not possible, and the cracks which subsequently activate
are brittle. As can be appreciated in Fig. 25, indeed, from
this moment forth, crack propagation does not involve
circles approaching the limit surface, and the stable con-
dition can no longer be reached. This crack thus prop-
agates until crushing, for the same value of impressed
displacement.

In Fig. 25 one can also see how, during the brittle crack
propagation, the failure mechanism changes from shear-
compression to shear-tension and pure tension, since the
limit point passes from the negative to the positive semi-
plane of normal stresses.

The final crack path and stress analysis are shown in Fig.
26. As can be seen by comparison between Fig. 26 and
Fig. 27, the numerical crack path is in good agreement
with the trumpet shaped failure surface which has been
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Figure 21 : Mohr’s circles for tip stress analysis during the second crack propagation
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Figure 22 : Mohr’s circles for tip stress analysis in the third stage of the carrying process
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Figure 23 : Mohr’s circles for tip stress analysis during the third crack propagation
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Figure 24 : Mohr’s circles for tip stress analysis in the fourth stage of the carrying process
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Figure 25 : Mohr’s circles for tip stress analysis during the fourth crack propagation

Figure 26 : final crack path and stress analysis on the deformed configuration
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Figure 27 : Shape of the extracted concrete portion

found experimentally [Yener and Chen (1984), Krenchel
and Bickley (1985)].

5 Conclusions

Numerical results have been presented for propagation
of brittle and non-brittle cracks. The complete crack path
has been derived by means of the Cell Method (CM) and
a nodal relaxation with remeshing technique.

The CM with nodal relaxation and remeshing technique
is a discrete method, which stands as an alternate ap-
proach to the use of the differential formulation for crack
propagation analysis [Han and Atluri (2002), Han and
Atluri (2003), Nishioka et al. (2002)]. The use of the
CM allows us to treat punctual forces easily. Thus, the
punching effect can be studied easily as well. Moreover,
a finite value of stress was found in the neighborhood of
the crack tip, due to the direct discrete approach which is
the base of the CM. That is, the stress around the crack tip
does not approach infinity as the crack tip is approached.
This represents the physical nature of the problem, since
the 1

/√
r singularity at the crack tip is based on the hy-

pothesis of an idealized elastic material [Muskhelishvili
(1953), Westergaard (1939)].

It has been shown how an adequate choice of the prop-
agation length together with an iterative updating pro-
cedure allow an accurate description of the crack path
in brittle propagation. Thus, the problem of defining
the crack geometry at various moments in time during
a static propagation can be easily solved numerically.
The geometry of the crack is not prescribed, but iden-
tified iteratively through crack stability analysis. In par-
ticular, the direction of crack propagation is iteratively
computed, taking into account stress field modifications
induced by crack propagation. A polygonal crack path

is then derived, in good accordance with the experimen-
tal evidence. The iterative stress analysis on the crack
tip leads to considering interactions between stress fields
of opposite signs as the crack propagates. Implications
on the propagation direction of these interactions are au-
tomatically taken into account by the tool of geometry
updating. The resulting numerical crack path is charac-
terized by trajectory deviation as the tip stress field in-
teracts with compressed zones. Trajectory deviation has
been shown in the case of beam in four point bending.

The analysis of crack stability has been performed in the
Mohr’s plane. In this plane, brittle cracks are charac-
terized by Mohr’s circles going away from the limit do-
main. On the contrary, non-brittle cracks are character-
ized by Mohr’s circles approaching the limit domain after
few steps of crack propagation. Mohr’s circle path during
failure at constant displacement is here provided both for
the case of brittle and non-brittle crack. The analysis in
the plane of Mohr also allows evaluation of the modifi-
cation of the failure mechanism with crack propagation.
An example of failure mechanism evaluation is provided
here for the Lok-test simulation. This evaluation is all the
more relevant as defining the actual failure mechanism in
a Lok-test is an open problem, nowadays. No FEM code
developed in the past is decisive in solving this problem
[Yener (1994), Ferretti (2003b)].
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