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Asymptotic Postbuckling Analysis of Composite and Sandwich Structures via the
Assumed Strain Solid Shell Element Formulation

Jihan Kim1, Yong Hyup Kim1 and Sung Won Lee2

Abstract: The Koiter’s asymptotic method is com-
bined with the assumed strain solid shell element formu-
lation for postbuckling analysis of composite and sand-
wich structures. The assumed strain solid shell element is
free of locking and the small angle assumption, and it al-
lows multiple plies through the element thickness. While
laminated composite structures are modeled with single
element through the thickness, sandwich structures are
modeled with three elements stacked through the thick-
ness to model the face sheets and the core independently.
The Koiter’s method is used to trace initial postbuckling
path. Subsequently, the Koiter’s method is switched to
the arc-length method to investigate postbuckling behav-
ior involving large deflections. The transition point at
which the switching occurs is determined using the post-
buckling coefficients, obtained from the asymptotic anal-
ysis with the fourth order expansion. Numerical tests
demonstrate the validity and effectiveness of the present
approach.

keyword: Koiter’s method; buckling and postbuck-
ling; finite element formulation; assumed strain solid
shell element formulation; composite sandwich plates;
transition point.

1 Introduction

Structural components are often subjected to compres-
sive loading, and they must be designed against buck-
ling. However, buckling does not necessarily mean that
a structure cannot resist additional load above the initial
buckling load. For example, a column or a thin plate
can take additional compressive load as they bend fur-
ther. Accordingly, one of the important considerations
for structural integrity is the buckling and postbuckling
behavior.

The postbuckling analysis can be conducted by using the

1 Seoul National University, Seoul, Korea
2 University of Maryland, College Park, MD, U.S.A

branch switching followed by a nonlinear analysis such
as the arc-length method [Hao, Cho, and Lee (2000)].
Alternately, the asymptotic method such as the Koiter’s
method [Byskov and Hutchinson (1977)] can be used for
initial postbuckling analysis. When the Koiter’s method
was incorporated within the context of the finite element
method, problems have arisen in the calculation of the
second-order postbuckling coefficient. The locking ef-
fect was identified as the cause, and researches have been
conducted to resolve the problems observed in simple
frame structures, beams and isotropic plates.

Structural analyses can be often carried out by using solid
shell elements [Lee, Cho, and Lee (2002)] or plate el-
ements [Glaessgen, Riddell, and Raju (2002)]. In this
paper, the assumed strain solid shell element formu-
lation is combined with the Koiter’s method for post-
buckling analysis of isotropic, composite and sandwich
structures. The formulation for the assumed strain solid
shell element has been introduced and verified for com-
posite structures by Kim and Lee (1988). The as-
sumed strain formulation introduces independently as-
sumed strain field at an element level in addition to the
assumed displacement to alleviate element locking. The
added assumed strain parameters are eliminated at the el-
ement level, leaving the nodal displacements as the de-
grees of freedom as in the case of the assumed displace-
ment formulation. The solid shell element is attractive
in that it does not use any rotational angles as degrees of
freedom. The kinematics of deformation is described by
purely vectorial variables, and large deflection problems
can be solved without adopting the small angle assump-
tion. Also, the solid shell element can be easily stacked
through the thickness. Accordingly, it is convenient for
the analysis of sandwich structures with composite face-
sheets and a core.

The Koiter’s method is used to trace initial postbuckling
path of composite plates and sandwich plates. However,
in order to investigate subsequent behavior, the Koiter’s
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method is switched to nonlinear analysis using the arc-
length method [Clarke and Hancock (1990)]. The transi-
tion point at which the switching occurs is determined
using the postbuckling coefficients, obtained from the
asymptotic analysis with the fourth order expansion. Nu-
merical tests are conducted to demonstrate the validity
and effectiveness of the present approach. Example prob-
lems include composite and sandwich structures. For
sandwich structures, the interaction between the stiff face
sheets and flexible core may have significant influence
on the initial postbuckling path and the subsequent post-
buckling behavior. Accordingly, the postbuckling behav-
iors of sandwich plates with various core densities are
investigated.

2 Formulation

In this section the assumed strain formulation of the Koi-
ter’s method is introduced. For a solid in equilibrium,∫

V
δεεεT ·σσσdV −δW = 0 (1)

where δεεε is the virtual strain vector, σσσ is the second
Piola-Kirchhoff stress vector, δW is the external virtual
work due to applied load and V is the volume. The exter-
nal virtual work can be expressed as

δW = λδuuuT ·RRR (2)

where λ is the load parameter, δu is the virtual nodal
displacement vector and R is the reference load vec-
tor. For the assumed strain formulation, an inde-
pendent strain field is introduced in addition to the
displacement-dependent strain field. The compatibil-
ity between the independent strain vector εεε and the
displacement-dependent strain vector εεε can be expresses
as∫

V
δεεεTCCC(εεε−εεε)dV = 0 (3)

where δεεε is the virtual independent strain vector and εεε is
the virtual independent strain vector. The stress vector is
related to the independent strain vector as follows:

σσσ =CCCεεε (4)

where C is the 6×6 elastic constitutive matrix. In a man-
ner consistent with the kinematics of shell deformation,

the constitutive matrix is constructed such that in-plane
normal stresses and transverse normal stress are decou-
pled to remove undesirable constraints.

The displacement-dependent strain vector εεε can be re-
lated to the nodal displacement vector u such that

εεε = BuBuBu+
1
2

A(B′uB′uB′u,B′uB′uB′u) (5)

In equation (5), the first term represents a linear strain
and the second term is a nonlinear strain. The BBB is a
matrix relates εεε and u linearly, B′B′B′ is a matrix relating
the displacement vector and its derivatives with respect
to each coordinates and the A-operator represents a non-
linear Green strain in terms of displacement vector.

In the Koiter’s method, the deformation path is divided
into two segments; the prebuckling path and the post-
buckling path as shown in Fig. 1. The prebuckling path
is assumed linear in the present study.

c
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Prebuckling

Figure 1 : Asymptotic paths of prebuckling and post-
buckling

In the postbuckling region, the nodal displacement field u
and load parameter λ are expanded into the perturbation
series in terms of the buckling amplitude (or expansion
parameter) ξ as follows:

uuu = λuuu0 +uuu1ξ+uuu2ξ2 +uuu3ξ3 +uuu4ξ4 + · · · (6)

λ
λc

= 1+aξ+bξ2 +cξ3 +dξ4 + · · · (7)

where u0 is the displacement field with respect to the unit
load vector R, u1 is the buckling mode, u2 is second order
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displacement field, u3 is third order displacement field,
u4 is fourth order displacement field, λc is the buckling
load and a, b, c and d are the postbuckling coefficients.
In this section the fourth order expansion of the Koiter’s
method is formulated.

The displacement-dependent strain vector can then be ex-
pressed as follows:

εεε = λεεε0 +εεε1ξ+εεε2ξ2 +εεε3ξ3 +εεε4ξ4 + · · · (8)

where

εεε0 = BuBuBu0

εεε1 = BuBuBu1

εεε2 = BuBuBu2 + 1
2 A(B′uB′uB′u1,B′uB′uB′u1)

εεε3 = BuBuBu3 +A(B′uB′uB′u1,B′uB′uB′u2)
εεε4 = BuBuBu4 +A(B′uB′uB′u1,B′uB′uB′u3)+ 1

2 A(B′uB′uB′u2,B′uB′uB′u2)

(9)

The independently assumed strain vector εεε is expressed
in terms of the assumed parameter vector ααα such that

εεε = PαPαPα (10)

where P is a matrix of assumed strain shape functions.
The assumed parameter vector can also be written in an
expanded form as

ααα = λααα0 +ααα1ξ+ααα2ξ2 +ααα3ξ3 +ααα4ξ4 + · · · (11)

Placing equation (11) into equation (10),

εεε = λεεε0 +εεε1ξ+εεε2ξ2 +εεε3ξ3 +εεε4ξ4 + · · · (12)

where

εεε0 = PαPαPα0

εεε1 = PαPαPα1

εεε2 = PαPαPα2

εεε3 = PαPαPα3

εεε4 = PαPαPα4

(13)

Substituting equations (5)∼(13) to equation (3), one can
find the relationships between the assumed strain param-
eters and element nodal displacement vectors as follows:

ααα0 = HHH−1GuGuGu0

ααα1 = HHH−1GuGuGu1

ααα2 = HHH−1[GuGuGu2 + 1
2PPPTCCCA(B′uB′uB′u1,B′uB′uB′u1)]

ααα3 = HHH−1[GuGuGu3 +PPPTCCCA(B′uB′uB′u1,B′uB′uB′u2)]
ααα4 = HHH−1[GuGuGu4 +PPPTCCC[A(B′uB′uB′u1,B′uB′uB′u3)

+1
2 A(B′uB′uB′u2,B′uB′uB′u2)]]

(14)

where HHH =
∫

Ve
PPPTCPCPCPdV , GGG =

∫
Ve

PPPTCBCBCBdV .

Note that equation (14) holds at element level, and the
integrations are carried out over element volume Ve.

All defined fields and obtained fields can be substituted
to the equilibrium equation (1) and can be reduced. The
reduced equation can be divided into different orders in
terms of ξ as follows:

2.1 The zero-order problem

The equation for the zero-order problem is expressed as

GGGTHHH−1GuGuGu0 = KuKuKu0 = RRR (15)

where K is the linear stiffness matrix of the assumed
strain formulation.

2.2 The first-order problem

The first-order problem is a linear eigenvalue problem
with the equation expressed as

[GGGTHHH−1GGG+λc
∫

V B′B′B′TSSS0B′B′B′dV ]uuu1

= [KKK +λcKKKs]uuu1 = 0
(16)

where Ks is the initial stress stiffness matrix, S0 is the
matrix with initial stress (σσσ0) components.

The Si matrix is related to the i th order stress vector (σσσi)
such that

σσσT
i A(B′uB′uB′u j,B

′uB′uB′uk) = uuuT
j B′B′B′TSSSiB

′uB′uB′uk (17)

where σσσi =CεCεCεi =CPαCPαCPαi.

2.3 The second-order problem

The equations for the second-order problem are

[KKK +λcKKKs]uuu2

= −∫
V [B′B′B′T (aλcSSS0 +SSS1)B′uB′uB′u1]dV

−∫
V [GGGTHHH−1 1

2 PTCCCA(B′uB′uB′u1,B′uB′uB′u1)]dV
(18)

uuuT
1 KuKuKu2 = 0 (19)

The left hand side of the equation (18) is similar to the
one of the first order problem and equation (18) is singu-
lar. To resolve this, equation (19) is added. To determine
postbuckling constant a, one may premultiply equation
(18) with uuuT

1 such that

uuuT
1 [KKK +λcKKKs]uuu2

= −∫
V [uuuT

1 B′B′B′T (aλcSSS0 +SSS1)B′uB′uB′u1]dV
−∫

V [uuuT
1 GGGTHHH−1 1

2PPPTCCCA(B′uB′uB′u1,B′uB′uB′u1)]dV
(20)
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The left hand side of equation (20) is equal to zero, and
the right hand side (RHS) of equation (20) can be ex-
pressed as

RHS
= −∫

V [uuuT
1 B′B′B′T (aλcSSS0 +SSS1)B′uB′uB′u1]dV

−∫
V [αααT

1
1
2PPPT CA(B′uB′uB′u1,B′uB′uB′u1)]dV

= −∫
V [uuuT

1 B′B′B′T (aλcSSS0 +SSS1)B′uB′uB′u1]dV

−∫
V [ 1

2σσσT
1 A(B′uB′uB′u1,B′uB′uB′u1)]dV

= −∫
V [uuuT

1 B′B′B′T (aλcSSS0 +SSS1)B′uB′uB′u1]dV

−∫
V [ 1

2uuuT
1 B′B′B′T S1B′uB′uB′u1]dV

= −∫
V [aλcuuuT

1 B′B′B′TSSS0B′uB′uB′u1]dV

−∫
V [ 3

2uuuT
1 B′B′B′T S1B′uB′uB′u1]dV

= 0

(21)

From equation (21),

aλc = −3
2

uuuT
1 [

∫
V B′B′B′TSSS1B′B′B′dV ]uuu1

uuuT
1 [

∫
V B′B′B′TSSS0B′B′B′dV ]uuu1

(22)

where S1 is the matrix with the first order stress (σσσ1)
components similar to S0. The postbuckling coefficient
a is expressed by u0 and u1 which are known fields. Ac-
cordingly, the postbuckling coefficient a can be calcu-
lated using equation (22) before solving the second order
problem. Subsequently, the second order displacement
field u2 can be obtained by solving equation (18) and (19)
simultaneously. Note that the right hand side of the sec-
ond order problem can be written in a single vector form,
and the solution procedure for the second order problem
is almost same as that for a linear problem.

2.4 The third-order problem

The equations for the third-order problem are

[KKK +λcKKKs]uuu3

= −∫
V [B′B′B′T (aλcSSS0 +SSS1)B′uB′uB′u2]dV

−∫
V [B′B′B′T (bλcSSS0 +SSS2)B′uB′uB′u1]dV

−∫
V [GGGTHHH−1PPPTCCCA(B′uB′uB′u1,B′uB′uB′u2)]dV

(23)

uuuT
1 KuKuKu3 = 0 (24)

The orthogonality condition between u1 and u3 shown in
equation (24) is added to avoid singularity. Premultiply-

ing equation (23) with uuuT
1 ,

uuuT
1 [KKK +λcKKKs]uuu3

= −∫
V [uuuT

1 B′B′B′T (aλcSSS0 +SSS1)B′uB′uB′u2]dV

−∫
V [uuuT

1 B′B′B′T (bλcSSS0 +SSS2)B′uB′uB′u1]dV

−∫
V [uuuT

1 GGGTHHH−1PPPTCCCA(B′uB′uB′u1,B′uB′uB′u2)]dV

(25)

The left hand side of equation (25) is equal to zero. Ac-
cordingly,

RHS
= −∫

V [uuuT
1 B′B′B′T (aλcSSS0 +SSS1)B′uB′uB′u2]dV

−∫
V [uuuT

1 B′B′B′T (bλcSSS0 +SSS2)B′uB′uB′u1]dV

−∫
V [αααT

1 PPPTCCCA(B′uB′uB′u1,B′uB′uB′u2)]dV

= −∫
V [uuuT

1 B′B′B′T (aλcSSS0 +SSS1)B′uB′uB′u2]dV

−∫
V [uuuT

1 B′B′B′T (bλcSSS0 +SSS2)B′uB′uB′u1]dV

−∫
V [σσσT

1 A(B′uB′uB′u1,B′uB′uB′u2)]dV

= −∫
V [uuuT

1 B′B′B′T (aλcSSS0 +SSS1)B′uB′uB′u2]dV

−∫
V [uuuT

1 B′B′B′T (bλcSSS0 +SSS2)B′uB′uB′u1]dV

−∫
V [uuuT

1 B′B′B′TSSS1B′uB′uB′u2]dV

= −∫
V [aλc uuuT

1 B′B′B′TSSS0B′uB′uB′u2︸ ︷︷ ︸
=0 f rom eq. (16) & (19)

]dV

−∫
V [uuuT

1 B′B′B′T (bλcSSS0 +SSS2)B′uB′uB′u1]dV

−∫
V [2uuuT

1 B′B′B′TSSS1B′uB′uB′u2]dV

= −∫
V [bλcuuuT

1 B′B′B′TSSS0B′uB′uB′u1]dV

−∫
V [uuuT

1 B′B′B′TSSS2B′uB′uB′u1]dV

−∫
V [2uuuT

1 B′B′B′TSSS1B′uB′uB′u2]dV

= 0

(26)

From equation (26), one obtains the equation to deter-
mine the postbuckling coefficient b as follows:

bλc = −uuuT
1 [

∫
V B′B′B′T S2B′B′B′dV ]uuu1

uuuT
1 [

∫
V B′B′B′TSSS0B′B′B′dV ]uuu1

−2uuuT
1 [

∫
V B′B′B′TSSS1B′B′B′dV ]uuu2

uuuT
1 [

∫
V B′B′B′TSSS0B′B′B′dV ]uuu1

(27)

where S2 is the matrix with the second order stress (σσσ2)
components similar to S0 and S1.

2.5 The fourth-order problem

The fourth-order problem is similar to the second and the
third order problems. The fourth order displacement field
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u4 can be calculated from the following two equations.

[KKK +λcKKKs]uuu4

= −∫
V [B′B′B′T (aλcSSS0 +SSS1)B′uB′uB′u3]dV

−∫
V [B′B′B′T (bλcSSS0 +SSS2)B′uB′uB′u2]dV

−∫
V [B′B′B′T (cλcSSS0 +SSS3)B′uB′uB′u1]dV

−∫
V [GGGTHHH−1PPPTCCCA(B′uB′uB′u1,B′uB′uB′u3)]dV

−∫
V [GGGTHHH−1PPPTCCC 1

2 A(B′uB′uB′u2,B′uB′uB′u2)]dV

(28)

uuuT
1 KuKuKu4 = 0 (29)

Premultiplying equation (28) with uuuT
1 ,

uuuT
1 [KKK +λcKKKs]uuu4

= −∫
V [uuuT

1 B′B′B′T (aλcSSS0 +SSS1)B′uB′uB′u3]dV

−∫
V [uuuT

1 B′B′B′T (bλcSSS0 +SSS2)B′uB′uB′u2]dV

−∫
V [uuuT

1 B′B′B′T (cλcSSS0 +SSS3)B′uB′uB′u1]dV

−∫
V [uuuT

1 GGGTHHH−1PPPTCCCA(B′uB′uB′u1,B′uB′uB′u3)]dV

−∫
V [uuuT

1 GGGTHHH−1PPPTCCC 1
2A(B′uB′uB′u2,B′uB′uB′u2)]dV

(30)

The left hand side of equation (30) is equal to zero, and
thus

RHS
= −∫

V [uuuT
1 B′B′B′T (aλcSSS0 +SSS1)B′uB′uB′u3]dV

−∫
V [uuuT

1 B′B′B′T (bλcSSS0 +SSS2)B′uB′uB′u2]dV

−∫
V [uuuT

1 B′B′B′T (cλcSSS0 +SSS3)B′uB′uB′u1]dV

−∫
V [αααT

1 PPPTCCCA(B′uB′uB′u1,B′uB′uB′u3)]dV

−∫
V [αααT

1 PPPTCCC 1
2A(B′uB′uB′u2,B′uB′uB′u2)]dV

= −∫
V [uuuT

1 B′B′B′T (aλcSSS0 +SSS1)B′uB′uB′u3]dV

−∫
V [uuuT

1 B′B′B′T (bλcSSS0 +SSS2)B′uB′uB′u2]dV

−∫
V [uuuT

1 B′B′B′T (cλcSSS0 +SSS3)B′uB′uB′u1]dV

−∫
V [σσσT

1 A(B′uB′uB′u1,B′uB′uB′u3)]dV

−∫
V [σσσT

1
1
2A(B′uB′uB′u2,B′uB′uB′u2)]dV

(31)

= −∫
V [aλc uuuT

1 B′B′B′TSSS0B′uB′uB′u3︸ ︷︷ ︸
=0 f rom eq. (16) & (24)

+uuuT
1 B′B′B′TSSS1B′uB′uB′u3]dV

−∫
V [bλc uuuT

1 B′TSSS0B′uB′uB′u2︸ ︷︷ ︸
=0 f rom eq. (16) & (19)

+uuuT
1 B′B′B′TSSS2B′uB′uB′u2]dV

−∫
V [cλcuuuT

1 B′B′B′TSSS0B′uB′uB′u1 +uuuT
1 B′B′B′TSSS3B′uB′uB′u1]dV

−∫
V [uuuT

1 B′B′B′TSSS1B′uB′uB′u3 + 1
2uuuT

2 B′B′B′T S1B′uB′uB′u2]dV

= −∫
V [cλcuuuT

1 B′B′B′TSSS0B′uB′uB′u1 +uuuT
1 B′B′B′TSSS3B′uB′uB′u1]dV

−∫
V [uuuT

1 B′B′B′TSSS2B′uB′uB′u2 +2uuuT
1 B′B′B′TSSS1B′uB′uB′u3]dV

−∫
V [ 1

2uuuT
2 B′B′B′T S1B′uB′uB′u2]dV

= 0

From equation (31),

cλc = −uuuT
1 [

∫
V B′B′B′T S3B′B′B′dV ]uuu1

uuuT
1 [

∫
V B′B′B′TSSS0B′B′B′dV ]uuu1

−uuuT
1 [

∫
V B′B′B′TSSS2B′B′B′dV ]uuu2

uuuT
1 [

∫
V B′TSSS0B′B′B′dV ]uuu1

−2uuuT
1 [

∫
V B′B′B′TSSS1B′B′B′dV ]uuu3

uuuT
1 [

∫
V B′TSSS0B′B′B′dV ]uuu1

−
1
2uuuT

2 [
∫

V B′B′B′T S1B′B′B′dV ]uuu2

uuuT
1 [

∫
V B′B′B′TSSS0B′B′B′dV ]uuu1

(32)

where S3 is the matrix with the third order stress (σσσ3)
components similar to S2. Postbuckling coefficient c can
be determined using equation (32).

2.6 The postbuckling coefficient d

To determine the fourth order postbuckling coefficient d,
one may look at the following equation corresponding to
the fifth-order problem:

[KKK +λcKKKs]uuu5

= −∫
V [B′B′B′T (aλcSSS0 +SSS1)B′uB′uB′u4]dV

−∫
V [B′B′B′T (bλcSSS0 +SSS2)B′uB′uB′u3]dV

−∫
V [B′B′B′T (cλcSSS0 +SSS3)B′uB′uB′u2]dV

−∫
V [B′B′B′T (dλcSSS0 +SSS4)B′uB′uB′u1]dV

−∫
V [GGGTHHH−1PPPTCCCA(B′uB′uB′u1,B′uB′uB′u4)]dV

−∫
V [GGGTHHH−1PPPTCCCA(B′uB′uB′u2,B′uB′uB′u3)]dV

(33)

Premultiplying equation (33) with uuuT
1 ,

uuuT
1 [KKK +λcKKKs]uuu5

= −∫
V [uuuT

1 B′B′B′T (aλcSSS0 +SSS1)B′uB′uB′u4]dV

−∫
V [uuuT

1 B′B′B′T (bλcSSS0 +SSS2)B′uB′uB′u3]dV

−∫
V [uuuT

1 B′B′B′T (cλcSSS0 +SSS3)B′uB′uB′u2]dV

−∫
V [uuuT

1 B′B′B′T (dλcSSS0 +SSS4)B′uB′uB′u1]dV

−∫
V [uuuT

1 GGGTHHH−1PPPTCCCA(B′uB′uB′u1,B′uB′uB′u4)]dV

−∫
V [uuuT

1 GGGTHHH−1PPPTCCCA(B′uB′uB′u2,B′uB′uB′u3)]dV

(34)

Then, noting that the left hand side of equation (34) is
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equal to zero,

RHS
= −∫

V [uuuT
1 B′B′B′T (aλcSSS0 +SSS1)B′uB′uB′u4]dV

−∫
V [uuuT

1 B′B′B′T (bλcSSS0 +SSS2)B′uB′uB′u3]dV

−∫
V [uuuT

1 B′B′B′T (cλcSSS0 +SSS3)B′uB′uB′u2]dV

−∫
V [uuuT

1 B′B′B′T (dλcSSS0 +SSS4)B′uB′uB′u1]dV

−∫
V [αααT

1 PPPTCCCA(B′uB′uB′u1,B′uB′uB′u4)]dV

−∫
V [αααT

1 PPPTCCCA(B′uB′uB′u2,B′uB′uB′u3)]dV

= −∫
V [uuuT

1 B′B′B′T (aλcSSS0 +SSS1)B′uB′uB′u4]dV

−∫
V [uuuT

1 B′B′B′T (bλcSSS0 +SSS2)B′uB′uB′u3]dV

−∫
V [uuuT

1 B′B′B′T (cλcSSS0 +SSS3)B′uB′uB′u2]dV

−∫
V [uuuT

1 B′B′B′T (dλcSSS0 +SSS4)B′uB′uB′u1]dV

−∫
V [σσσT

1 A(B′uB′uB′u1,B′uB′uB′u4)]dV

−∫
V [σσσT

1 A(B′uB′uB′u2,B′uB′uB′u3)]dV

(35)

= −∫
V [aλc uuuT

1 B′B′B′TSSS0B′uB′uB′u4︸ ︷︷ ︸
=0 f rom eq. (16) & (29)

+uuuT
1 B′B′B′TSSS1B′uB′uB′u4]dV

−∫
V [bλc uuuT

1 B′TSSS0B
′uB′uB′u3︸ ︷︷ ︸

=0 f rom eq. (16) & (24)

+uuuT
1 B′B′B′TSSS2B′uB′uB′u3]dV

−∫
V [cλc uuuT

1 B′TSSS0B′uB′uB′u2︸ ︷︷ ︸
=0 f rom eq. (16) & (19)

+uuuT
1 B′B′B′TSSS3B′uB′uB′u2]dV

−∫
V [dλcuuuT

1 B′B′B′TSSS0B′uB′uB′u1 +uuuT
1 B′B′B′TSSS4B′uB′uB′u1]dV

−∫
V [uuuT

1 B′B′B′TSSS1B′uB′uB′u4 +uuuT
2 B′B′B′TSSS1B′uB′uB′u3]dV

= −∫
V [dλcuuuT

1 B′B′B′TSSS0B′uB′uB′u1 +uuuT
1 B′B′B′TSSS4B′uB′uB′u1]dV

−∫
V [uuuT

1 B′B′B′TSSS3B′uB′uB′u2 +uuuT
1 B′B′B′TSSS2B′uB′uB′u3]dV

−∫
V [2uuuT

1 B′B′B′TSSS1B′uB′uB′u4 +uuuT
2 B′B′B′TSSS1B′uB′uB′u3]dV

= 0

From equation (35),

dλc = −uuuT
1 [

∫
V B′B′B′T S4B′B′B′dV ]uuu1

uuuT
1 [

∫
V B′B′B′TSSS0B′B′B′dV ]uuu1

−uuuT
1 [

∫
V B′B′B′TSSS3B′B′B′dV ]uuu2

uuuT
1 [

∫
V B′TSSS0B′B′B′dV ]uuu1

−uuuT
1 [

∫
V B′B′B′TSSS2B′B′B′dV ]uuu3

uuuT
1 [

∫
V B′TSSS0B′B′B′dV ]uuu1

−2uuuT
1 [

∫
V B′B′B′TSSS1B′B′B′dV ]uuu4

uuuT
1 [

∫
V B′TSSS0B′B′B′dV ]uuu1

−uuuT
2 [

∫
V B′B′B′TSSS1B′B′B′dV ]uuu3

uuuT
1 [

∫
V B′TSSS0B′B′B′dV ]uuu1

(36)

where S4 is the matrix with the fourth order stress (σσσ4)
components similar to S3. Postbuckling coefficient d can
be calculated using equation (36).

3 Determination of the transition point

The initial postbuckling behavior can be obtained us-
ing the Koiter’s method, but in order to examine sub-
sequence behavior, it is necessary to conduct the arc-
length method. Accordingly, determination of the tran-
sition point at which the Koiter’s method is switched to
the arc-length method is very important. A method that
can determine the transition point is derived using the 2nd

order and 4 th order load parameters written as follow:

λ2 = 1+aξ+bξ2

λ4 = 1+aξ+bξ2 +cξ3 +dξ4 (37)

Because the odd order coefficients such as the first and
the third orders, can be “zero” in the case of perfect struc-
tures, two even order polynomials is selected.

The relative difference of two different orders of the load
parameters can be defined as error tolerance (ER) such
that

ER =
|λ4 −λ2|

λ2
=

∣∣cξ3 +dξ4
∣∣

1+aξ+bξ2 (38)

Setting ER to maximum error tolerance ERm,∣∣cξ3
t +dξ4

t

∣∣
1+aξt +bξ2

t
= ERm (39)

where ξt corresponds to ERm. The transition point ξt can
be determined from equation (39).

In the case of perfect structures, the odd order coefficient
a and c are “zero”, and equation (39) can be reduced to

ξt =

√
bERm +

√
(bERm)2 +4 |d|ERm

2 |d| (40)

In this paper the maximum error tolerance ERm is set to
“0.0001” or “0.01%”.

4 Numerical examples

In this paper, an eighteen-node solid shell element as
shown in Fig. 2 is used to test Koiter’s method com-
bined with the assumed strain formulation for postbuck-
ling analysis. This element has nine nodes on top and
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bottom surfaces respectively. There are three degrees of
freedom per node. The first three examples are chosen
to validate the present approach by comparing with the
existing solutions.

Figure 2 : 18-node solid shell element

4.1 Simply supported slender beam-column

A simply supported slender beam-column under com-
pressive load shown in Fig. 3 is considered. The beam-
column is 100m long, 1m wide and thick. The material
is isotropic with Young’s modulus E=2.1×1011Pa and
Poisson’s ratio ν=0. Half of the beam-column is mod-
eled using fifteen elements. For comparison with the
analytical solution, the parameter ξ is defined as the ro-
tation angle at the edge. The results are shown in Tab.
1, and compared with analytical solution [Lanzo, Garcea
and Casciaro (1995)]. The postbuckling coefficients ob-
tained by the present method are in good agreement with
the analytical values.

t

L

P

Figure 3 : Simply supported slender beam-column

4.2 Rectangular plate problem

Example A1 is simply supported on all four edges and
a compressive load is applied to two opposite edges as

Table 1 : Simply supported slender beam-column

 Present Analytic 

c 1.727 107 1.727 107

a 0 0 

b 0.1247 0.1250 

shown in Fig. 4. Example A2 is shown in Fig. 5. The
plate width Ly is 100 inch, thickness t is 1 inch and the
length varies with the width and aspect ratios. The ma-
terial is isotropic with Young’s modulus E=2.1×106psi
and Poisson’s ratio ν=0.25. The parameter ξ is defined
as the maximum out of plane displacement normalized
by plate thickness t.

Lx

Ly

Figure 4 : Example A1

Lx

Ly

Figure 5 : Example A2
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The results of the isotropic rectangular plate problem
using present method are compared with Lanzo’s re-
sults[Lanzo, Garcea and Casciaro (1995)] shown in Tabs.
2 and 3. Lanzo used the high continuity (HC) element
based on the von-Karman’s nonlinear plate theory. In the
tables, the Lanzo’s results are listed in parenthesis. The
buckling load and the postbuckling coefficients obtained
by the present method are in good agreement with the
reference solutions.

Table 2 : Example A1 result

Lx/Ly=1

 (8 8 mesh) 

Lx/Ly=2

(17 7 mesh) 

Lx/Ly=3

(20 7 mesh) 

c 7.286 

(7.374) 

7.304 

(7.375) 

7.309 

(7.382) 

b 1.832 10-1

(1.824 10-1)

2.139 10-1

(2.118 10-1)

2.228 10-1

(2.217 10-1)

Table 3 : Example A2 result

Lx/Ly=1

 (17 7 mesh) 

Lx/Ly=2

(20 7 mesh) 

c 1.410 101

(1.421 101)

1.280 101

(1.292 101)

b 1.972 10-1

(1.958 10-1)

2.644 10-1

(2.654 10-1)

4.3 Roorda’s frame

Roorda’s frame shown in Fig. 6 is solved. Two types
of loading conditions are considered. One is the case
of ϕ=0 ˚ and the other is the case of ϕ=45 ˚ .The
length of each leg is 1m and thickness and width are
0.01m. The material is isotropic with Young’s modulus
E=2.1×1011Pa and Poisson’s ratio ν=0. Two different
models are used. In the first model, each leg of the frame
is modeled with ten elements as shown in Fig. 7. In the
second model, twenty elements are used per each leg.
The differences between the two models are less than
0.1%. The parameter ξ is defined as the rotation angle
at the loading point. Table 4 shows the results of the sec-
ond model. In the table, the analytical solutions [Olesen

and Byskov (1982)] are listed in the parentheses. One
can observe the buckling load and the postbuckling co-
efficient a are in good agreement with analytical values.
However, the postbuckling coefficient b is different from
the analytical solution. This discrepancy is perhaps due
to the small angle assumption adopted in the reference
solution, while the present solid shell element formula-
tion is free of this limitation.

P

L

L

t

Figure 6 : Roorda’s frame

Table 4 : Roorda’s frame
=0 =45

c 2.430 105

(2.430 105)

2.430 105

(2.443 105)

a 0.3818 

(0.3805) 

-0.0006 

(0) 

b 0.3814 

(0.1421) 

-0.1248 

(-0.25) 

4.4 Composite plates

The loading and boundary conditions of the composite
plates are shown in Fig. 8. The plate length Lx is 100
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Figure 7 : The model of Roorda’s frame (21 elements)

inch, width Ly is 30 inch and thickness t is 1 inch. Ma-
terial properties are shown below [Hao, Cho, and Lee
(2000)] and composite plate lay-up is [60/-60/0]s.

♦ Graphite/epoxy laminate:

E1=22.48Msi, E2 = E3=1.755Msi,

ν12=ν13=0.248, ν23=0.458,

G12 = G31=0.638Msi, G23=0.464Msi

♦ Glass/epoxy laminate:

E1=7.25Msi, E2 = E3=2.204Msi,

ν12=ν13=0.254, ν23=0.428,

G12 = G31=0.6815Msi, G23=0.4756Msi

A quarter of plate is modeled with a 4×4×1 element
mesh. The parameter ξ is defined as the maximum out of
plane displacement normalized by plate thickness t. The
buckling load, the postbuckling coefficients and the tran-
sition point of the composite plates are listed in Tab. 5.
Figures 9 and 10 show the postbuckling behavior of com-
posite plates. In the vertical axis, applied load P is nor-
malized by buckling load Pcr and in the horizontal axis,
maximum out of plane displacement w is normalized by
plate length Lx. In the figures “Koiter-NL” represents the
postbuckling path obtained with the Koiter’s method fol-
lowed by the arc-length method. The Koiter’s method is
used until the transition point at which it is switched to

Lx

Ly

t

Figure 8 : The composite sandwich plate under uniform
compressive load

the arc-length method. The Koiter’s method with a sec-
ond order expansion is labeled “Koiter 2” while “Koi-
ter 4” represents the Koiter’s method with 4 th order ex-
pansion. The transition point is also shown in the figure.

Table 5 : Composite plate problems

 Graphite/epoxy 

laminate 

Glass/epoxy

laminate 

c 2.909 104 2.305 104

b 6.178 10-3 3.120 10-3

d -2.627 10-4 -1.209 10-4

t 0.786 0.954 

4.5 Sandwich plates

The loading and boundary conditions of sandwich plates
are same as the composite plate shown in Fig. 8. The
plate length Lx is 100 inch, width Ly is 30 inch and thick-
ness t is 1 inch. Also, upper skin thickness is 1/12 inch,
lower skin thickness is 1/12 inch and core thickness is
10/12 inch. In the case of sandwich plates, composite
face sheets lay-up is [60/-60/0]s and the material prop-
erties are identical to those for the composite plates in
the previous example. Core properties are shown below
[Hao, Cho, and Lee (2000)].

♦ HC (Honeycomb) core:

E1=44.48psi, E2=40.31psi, E3=0.556Msi,
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Figure 9 : Graphite/epoxy laminate composite plate

0.00 0.01 0.02 0.03 0.04 0.05

0.99

1.00

1.01

1.02

1.03

1.04

1.05

The transition point

 Koiter_NL

 Koiter_2

 Koiter_4

P
/P

c
r

w/L
x

Figure 10 : Glass/epoxy laminate composite plate

ν12=0.99, ν23=0.00003, ν13=0.00003,

G12=3.36ksi, G23=0.1098Msi, G31=91.74ksi

♦ PVC foam core:

Case 1: ρ=3.669×10−5slug/in3 : E=3.915ksi,
G=1.659ksi

Case 2: ρ=1.347×10−4slug/in3 : E=23.91ksi,
G=7.185ksi

Case 3: ρ=2.693×10−4slug/in3 : E=54.52ksi,

G=14.79ksi

A quarter of plate is modeled with a 4×4×3 element
mesh. Three elements are used through the thickness to
model the face sheets and the core separately, with two
elements for the face sheets and one element for the core.
The parameter ξ is defined as the maximum out of plane
displacement normalized by plate thickness t. For the
honeycomb core and the foam core of low density (case
1), the buckling loads, the postbuckling coefficients and
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Figure 11 : Graphite/epoxy laminate face sheet and HC core sandwich plate
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Figure 12 : Graphite/epoxy laminate face sheet and PVC core sandwich plate

the transition point of the sandwich plates are listed in
Tabs. 6 and 7. Figures 11-14 show the postbuckling
behaviors of the same sandwich plates. Figures 12 and
14 indicate that, for the low density foam core, the post-
buckling behavior of the sandwich plate with glass/epoxy
face sheets is more stable than that of the plate with
graphite/epoxy face sheets.

Also, two other foam cores (Cases 2 and 3) are consid-
ered to investigate the effect of core densities on the post-

Table 6 : Graphite/epoxy laminate face sheet sandwich
plates

 HCH core PVC core (Case 1) 

c 3.678 104 2.100 104

b 7.384 10-4 5.197 10-4

d -1.030 10-5 -5.178 10-5

t 1.766 1.179 
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Figure 13 : Glass/epoxy laminate face sheet and HC core sandwich plate

0.00 0.01 0.02 0.03 0.04 0.05

0.99

1.00

1.01

1.02

1.03

The transition point

 Koiter-NL

 Koiter_2

 Koiter_4

P
/P

c
r

w/L
x

Figure 14 : Glass/epoxy laminate face sheet and PVC core sandwich plate

Table 7 : Glass/epoxy laminate face sheet sandwich plate

 HCH core PVC core (Case 1) 

c 1.598 104 1.193 104

b 6.996 10-4 7.358 10-4

d -9.373 10-6 -3.070 10-5

t 1.808 1.344 

buckling behavior. The postbuckling behaviors of the
sandwich plates with various core densities are shown
in Figs. 15 and 16. One can observe that, as the core
density increases, the postbuckling behavior comes to
more stable. But the differences between Case 2 and
Case 3 are small, especially for the sandwich plates with
glass/epoxy face sheets.
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Figure 15 : Graphite/epoxy laminate face sheet and PVC cores with various densities sandwich plate
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Figure 16 : Glass/epoxy laminate face sheet and PVC cores with various densities sandwich plate

5 Conclusion

In this paper, the assumed strain solid shell element
formulation is combined with the Koiter’s asymptotic
method for postbuckling analysis of composite and sand-
wich structures. The solid shell element can be easily
stacked through the thickness. Accordingly, it is conve-
nient for analysis of sandwich structures with composite
face sheets and a core.

The results of the isotropic beam-column and the rect-
angular plate problems using the present method are in
good agreement with the reference solutions. However,
in the case of Roorda’s frame, the second-order post-
buckling coefficient is different from the reference solu-
tions. This discrepancy is perhaps due to the small angle
assumption adopted in the reference solution, while the
present solid shell element formulation is free of this lim-
itation.



276 Copyright c© 2004 Tech Science Press CMES, vol.6, no.3, pp.263-276, 2004

Numerical results demonstrate that, for postbuckling
analysis of composite and sandwich structures, the Koi-
ter’s method combined with the assumed strain solid
shell element formulation can be used to trace initial
postbuckling path. Subsequently, the Koiter’s method
is switched to the arc-length method to investigate post-
buckling behavior involving large deflections. The tran-
sition point at which the switching occurs is determined
using the postbuckling coefficients, obtained from the
asymptotic analysis with the fourth order expansion. Nu-
merical results show that, for sandwich plates, the initial
postbuckling behavior is stable. However, for plates with
a soft core, it can become unstable as the load increases
beyond the initial buckling load.
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