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A Comparative Investigation of Different Homogenization Methods for Prediction
of the Macroscopic Properties of Composites

Qing-Sheng Yang1, 2, Wilfried Becker3

Abstract: The present paper focuses on the compar-
ative investigation of different homogenization methods
for fiber composites, void solids and rigid inclusion me-
dia. The effective properties of multi-phase media are
calculated by three methods, i.e. direct average method
of stress and strain, direct average method of strain en-
ergy and two-scale expansion method. A comprehensive
comparison, in principle and numerically, of these meth-
ods is emphasized. It is obvious that the two direct aver-
age methods are identical in principle and therefore they
give the same numerical results. It is shown that the two-
scale expansion method is the same as the direct average
concept of field quantities in principle but is expressed
by different mathematical form so that it gives very close
predictions with that of direct average methods.

keyword: composites; homogenization; effective
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1 Introduction

A composite body is an assembly of periodic mi-
croscopic unit cells or representative volume elements
(RVE), as shown in Fig.1. In a composite, all of global
characteristics are the same in any RVE, irrespective of
its position. Therefore, the analysis for the entire com-
posite body can be replaced by an analysis for a RVE
(Hashin, 1983; Mura, 1987).

Effective or macroscopic properties of the composites
depend on the geometric and physical properties of the
phases. The effective properties can be found by a ho-
mogenization approach, based on the microscopic fields
and local properties of the heterogeneous media. There
are many different homogenization approaches. For ex-
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ample, the direct average method of local field quantities,
equivalent inclusion method, bounding method and two-
scale expansion method are used to evaluate the effec-
tive properties of the composites and give a reasonable
prediction within allowable precision. The direct aver-
age method is based on the surface or volume average of
the field quantities like stresses, strains and strain energy
density on the microscopic level and then the effective
properties can be found on the macroscopic level, accord-
ing to the relations between the macroscopic stresses and
strains. The direct average of the local field quantities
can be performed by the concept of RVE and a numeri-
cal method, FEM or BEM, for instance. One of the ad-
vantages of applying the direct average method is that ar-
bitrary geometries and properties of components can be
easily treated.

The equivalent inclusion method is based on the Es-
helby’s eigenstrain solution on the single inclusion em-
bedded into an infinite matrix (Eshelby, 1957). This
method need not use the average of field quantities for
analysis of the effective properties of composites. But the
effective properties can be derived in terms of the volume
fraction, geometries of the inclusion and the properties of
the components. Self-consistent scheme (Hill, 1965; Bu-
diansky, 1965; Taya and Chou, 1981), generalized self-
consistent scheme(Christensen and Lo, 1979), differ-
ential method(Norries, 1985) and Mori-Tanaka method
(Mori and Tanaka, 1973; Weng, 1984; Benveniste, 1987)
have been developed from this approach and widely used
in evaluation of the elastic properties of various compos-
ite materials. However, arbitrary microstructural geome-
try that is frequently encountered in actual materials can-
not be deterministically treated with these models. Fortu-
nately, the situation is changing. A numerical procedure
that combines the self-consistent scheme with finite el-
ement method has been developed for prediction of the
effective properties of composites with arbitrary shaped
inclusions (Yang, Tang and Chen, 1994).
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Figure 1 : Periodic microstructure and RVE

Alternatively to direct average and equivalent inclusion
methods, the variational method is a unique one that can
give the upper and lower bounds of the elastic moduli of
composites (Hashin and Shtrikman, 1962). This method
has already improved the earlier results of approximate
bounds by Voigt (1889) and Reuss (1929).

A relatively new approach, named two-scale expansion
method, for homogenization of microstructure consists
in the mathematical homogenization based on a two-
scale expansion of the displacement field, which origi-
nated for analyzing physical systems containing two or
more length scales (Benssonusan et al, 1978; Sanchez-
Palencia, 1980). It is suitable for multi-phase materials in
which the natural scales are the microscopic heterogene-
ity scale and macroscopic structure scale. In this method,
the displacement field is expanded in micro-scale and
macro-scale, then following the same approach as direct
average method, the effective stiffness coefficients can be
found. Several homogenization methods have been com-
piled in the book by Nemat-Nasser and Hori (1993). A
critical review of different homogenization methods and
applications in cellular sandwich structures can be found
in recent article by Hohe and Becker (2002). The mi-
cromechanical theory has been extended into the inves-
tigation of flow in pulmonary tissue (Zhong et al 2002).
The homogenization of the particulate composites using
BEM technology was proposed (Okada et al 2004; Yang
and Qin 2004).

Although these homogenization approaches have been
widely applied to composites, cracked solids and other
multiphase media, the comparative research on different
homogenizations is very limited and the critical precision
analysis and comparison are lacking so far. Some con-
sistencies or inconsistencies in principle and in quantity
exist among these homogenization methods. The present
paper focuses on a comprehensive comparison and tends

to give a critical review for the different homogenization
concepts. Especially, the principles and numerical results
of the direct average methods and two-scale expansion
method are analyzed.

The article is organized as follows: In the next section,
the definition of the effective properties and the direct
average methods are reviewed. Then the consistency be-
tween the volume average and surface average proce-
dures is identified. In section 3, the two-scale expan-
sion method is outlined. Here the numerical procedure in
conjunction with finite element method is emphasized.
In section 4, the approximate estimation of the effec-
tive properties of composites based on two-scale expan-
sion method is presented. The periodic boundary condi-
tions of RVE are described in section 5. The numerical
comparisons of the different homogenization concepts
are performed for transversely isotropic composites, void
solids and rigid inclusion media in section 6 and then the
conclusions of the research are given in final section.

2 Direct average method of field quantities

In the direct average method, the average values of the
microscopic field quantities like the stresses, strains or
strain energy densities, are calculated by a volume or
surface average procedure in a domain, then the effec-
tive properties of the composites are predicted according
to the relations of the macroscopic stresses, strains and
strain energy density.

The volume average of local or microscopic stresses σ i j

and strains εi j can be defined by

σi j =
1
V

∫
Ω

σi jdΩ, εi j =
1
V

∫
Ω

εi jdΩ (1)

where the superscript bars denote the volume average
values of the quantities, e.g. macroscopic or effective
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quantities. The Ω denotes a domain over which the ho-
mogenization is performed and V is its volume. Gen-
erally, the domain can be represented by a RVE for the
composite with a periodic microstructure. For elastic
body, the volume average of the strain energy density can
be expressed by

w =
1
V

∫
Ω

wdΩ =
1
V

∫
Ω

1
2

σi j εi jdΩ

=
1
V

∫
Ω

1
2

Di jkl εi jεkldΩ

=
1
V

∫
Ω

1
2
Ci jkl σi jσkldΩ (2)

where 1
2 σi j εi j = w is strain energy density, Di jkl are lo-

cal stiffness coefficients and Ci jkl(C = D−1) are local
compliance coefficients which are different from phase
to phase.

The effective properties which are represented by effec-
tive stiffness Di jkl or compliance Ci jkl of the composites
can be defined by the elastic relation between the average
stresses and strains

σi j = Di jkl εkl, εi j = Ci jkl σkl (3)

or by equivalence of the strain energy

1
2

σi j εi j =
1
V

∫
Ω

1
2

σi j εi jdΩ (4)

This relation is referred to as the Hill’s principle (Hill,
1963; Kroner, 1972; Hazanov 1998).

The linear dependence of the average stresses and strains
for elastic body leads to

Di jkl =
∂2w

∂εi j ∂εkl
(5)

An explicit form of the effective stiffness coefficients for
3D elastic deformation has been obtained by Hohe and

Becker (2001), that is

Di jkl =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2w(εi j) 1
ε2

i j
i = j,k = l, i = k

w(εi j) 1
2ε2

i j
i �= j,k �= l, i = k, j = l

[w(εi j,εkl)−w(εi j)−w(εkl)] 1
εi j εkl

i = j,k = l, i �= k (nosum f or i, j)

[w(εi j,εkl)−w(εi j)−w(εkl)] 1
4εi j εkl

i �= j,k �= l, (i �= k or j �= l)

[w(εi j,εkl)−w(εi j)−w(εkl)] 1
2εi j εkl

i = j,k �= l

(6)

where w(εi j,εkl) denotes the strain energy density for a
reference strain state in which only ε i j and εkl have non-
zero values.

The effective quantities of the stresses, strains and strain
energy density can be calculated by a surface aver-
age procedure for corresponding boundary values. For
strains εi j = 1

2 (ui, j +u j,i), applying the divergence theo-
rem in the second equation of Eq.(1) yields

εi j =
1
V

∫
Ω

εi jdΩ =
1
V

∫
Γ

1
2
(uin j +u jni)dΓ (7)

where Γ is boundary of the domain Ω and ni is the out-
ward normal vector on the boundary Γ.

The surface average of the stresses can be carried out by
partial integration of the first equation of Eq.(1), that is

σi j =
1
V

∫
Ω

σi jdΩ =
1
V

∫
Γ

1
2
(Tix j +Tjxi)dΓ (8)

where Ti is the traction vector on the surface of Ω. This
implies that the relations Ti = σi jn j hold. It is shown
from Eq.(8) that the average stresses can be calculated by
the process of volume average of the stresses in a domain
or by the process of surface average of the corresponding
tractions on the boundary.

Let us consider, for illustration, that the RVE is a brick
shaped domain Ω, as shown in Fig.2, which has been
used in most research works. The surface averages of the
tractions can be expressed by the following form

σ11 =
1
b

∫
BC

σ11dΓ, σ22 =
1
a

∫
DC

σ22dΓ (a)
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Figure 2 : Traction condition of RVE

σ12 = σ21 =
1
b

∫
BC

σ12dΓ =
1
a

∫
DC

σ21dΓ (b)

The average value of the strain energy density can be
expressed also by the boundary values according to the
work-energy principle

w =
1
V

∫
Ω

1
2

σi j εi jdΩ =
1
V

∫
Γ

TiuidΓ (9)

In fact, using the Green’s theorem, one can easily prove
Eq.(9) mathematically.

As is well known, the average of stresses, strains and
strain energy density can be calculated by either volume
or surface average processes. Once the two of the three
quantities are found, then the effective properties of the
composites can be predicted according to Eq.(3) or (4).

It is worthwhile to note that the macroscopic stresses,
strains and strain energy density can be expressed by the
phase volume fractions. For a n-phase composite, the
stresses, strains and strain energy density can be written
as

σi j =
n

∑
i=1

viσ
(i)
i j , εi j =

n

∑
i=1

viε
(i)
i j , w =

n

∑
i=1

viw
(i) (10)

where superscript (i) corresponds with ith phase of the
composite and the quantities vi are referred to volume
fractions of the corresponding phases.

Remark 1: The volume or surface average method of
micro-stresses, strains or strain energy density is most

direct and basic approach to establish the connection be-
tween the micro- and macro-scale quantities. The defini-
tion of the effective properties is determinative and ex-
plicit.

3 Two-scale expansion method

In this section, we introduce two coordinate systems:
global coordinate x and local coordinate y. The global
coordinate x is related to the local coordinate y as

y = x/ε (11)

where ε is a very small positive number denoting the
ratio between the dimension of a RVE and a structure
body. When subjected to structural level loads and dis-
placements, the resulting evolutionary variables, e.g. de-
formation and stresses, vary from point to point at the
macroscopic scale x. Furthermore, a high level of hetero-
geneity in the microstructure causes a rapid variation of
these variables in a small neighborhood ε of the macro-
scopic point x. In present homogenization theory, a peri-
odic repetition of the microstructure about a macroscopic
point x has been assumed, from which the field functions
depend periodically on y = x/ε. This characteristic is of-
ten termed as Y - periodicity, where Y corresponds to a
RVE (Peng and Cao, 2002; Ghosh, Lee and Moorthy,
1996)

The displacement field can be asymptotically expanded
as

ui = uε
i (x) = u0

i (x,y)+εu1
i (x,y)+ε2u2

i (x,y)+ · · · (12)

The superscript ε denotes association of the function with
the two length scales.

It is noted that

∂Fε(x,y)
∂xi

=
∂F(x,y)

∂xi
+

1
ε

∂F(x,y)
∂yi

(13)

where F is a general function. For the strain tensor ε i j ,
one has

εi j =
1
2

(
∂ui

∂x j
+

∂u j

∂xi

)

=
1
ε

ε−1
i j (x,y)+ε0

i j(x,y)+εε1
i j(x,y)+ · · · (14)

where

ε−1
i j (x,y) =

1
2

(
∂u0

i

∂y j
+

∂u0
j

∂yi

)
(15a)
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ε0
i j(x,y) =

1
2

(
∂u0

i

∂x j
+

∂u0
j

∂xi

)
+

1
2

(
∂u1

i

∂y j
+

∂u1
j

∂yi

)
(15b)

ε1
i j(x,y) =

1
2

(
∂u1

i

∂x j
+

∂u1
j

∂xi

)
+

1
2

(
∂u2

i

∂y j
+

∂u2
j

∂yi

)
(15c)

The elastic coefficients Di jkl are periodic functions of x
and depend on ε,

Dε
i jkl = Di jkl(x/ε) = Di jkl(y) (16)

Thus the stresses can be expressed by

σε
i j

= Dε
i jklεkl

=
1
ε

Dε
i jklε

−1
kl (x,y)+Dε

i jklε
0
kl(x,y)+εDε

i jklε
1
kl(x,y)+ · · ·

=
1
ε

σ−1
i j (x,y)+σ0

i j(x,y)+εσ1
i j(x,y)+ · · · (17)

The elastic stress-strain relations are

σn
i j(x,y) = Dε

i jklε
n
kl(x,y), n = −1,0,1 (18)

From Eqs.(15) and (18), the stresses can be written as

σ−1
i j = Dε

i jkl
∂u0

k

∂yl
(19a)

σ0
i j = Dε

i jkl

(
∂u0

k

∂xl
+

∂u1
k

∂yl

)
(19b)

σ1
i j = Dε

i jkl

(
∂u1

k

∂xl
+

∂u2
k

∂yl

)
(19c)

The elastic problem with a periodic microstructure is de-
scribed by

σε
i j, j + fi = 0 in Ω (20a)

σε
i jn j = Ti on Γt (20b)

uε
i = ũi on Γu (20c)

where fi, Ti and ũi are specific body force, tractions
and boundary displacements. Substituting Eq.(17) into
Eq.(20), and equaling the powers of ε, the equilibrium
equations can be rewritten as

∂σ−1
i j

∂y j
= 0 (21a)

∂σ−1
i j

∂x j
+

∂σ0
i j

∂y j
= 0 (21b)

∂σ0
i j

∂x j
+

∂σ1
i j

∂y j
+ fi = 0 (21c)

For solving the system of Eq.(21), an important result is
introduced here. For a Y periodic function

− ∂
∂yi

(
ai j(y)

∂Φ
∂y j

)
= F (22)

has a unique solution if the mean value of F , defined by

F =
1
|Y |
∫

Y
FdY (23)

equals zero, where |Y | is the periodicity or the volume of
the RVE. Application of this condition to Eq.(21a) leads
to

σ−1
i j = 0 (24)

This implies that the stresses are independent of 1
/

ε.
Then from Eq.(18) and (15a), one has

u0
i (x,y) = u0

i (x) (25)

This shows that u0
i is a function of the global coordinate x

only. Therefore, the expansion of displacement field can
be rewritten as

ui = uε
i (x) = u0

i (x)+εu1
i (x,y)+ε2u2

i (x,y)+ · · · (26)

We can regard u0
i as the macroscopic displacement, while

u1
i ,u

2
i , · · · are the microscopic displacements. The physi-

cal interpretation of Eq.(26) is that the real displacement
ui is rapidly oscillating around the mean displacement u 0

i
due to the inhomogeneity from the microscopic point of
view. u1

i ,u
2
i , · · · are the perturbing displacements accord-

ing to the microstructure.

The final microscopic equilibrium equations are reduced
as, through substituting (24) into Eqs.(21a) and (21b),

∂σ0
i j

∂y j
= 0 in Ω (27)

Taking the mean of Eq. (21c) on Ω and applying the con-

dition (23) in the second term,
∂σ1

i j

∂y j
, leads to the macro-

scopic equilibrium equations

∂σ0
i j

∂x j
+ fi = 0 in Ω (28)



324 Copyright c© 2004 Tech Science Press CMES, vol.6, no.4, pp.319-332, 2004

where σ0
i j are macroscopic stresses.

For evaluation of the stresses σ0
i j , we must know the dis-

placements u0
i and u1

i , as shown in Eq.(19b). For this
purpose, we assume that the displacement fields u0

i and
u1

i are related by

u1
i = −ψkl

i (x,y)
∂u0

k

∂xl
(29)

Then, substituting Eq.(29) into (19b) yields the stresses

σ0
i j =

(
Di jkl −Di jmn

∂ψkl
m

∂yn

)
∂u0

k

∂xl
(30)

Then integrating over the domain Ω leads to the effective
stress-strain relations for an elastic medium

σ0
i j = Di jkl

∂u0
k

∂xl
(31)

where the macroscopic stresses, , and the effective stiff-
ness coefficients, Di jkl, are expressed by

σ0
i j =

1
V

∫
Ω

σ0
i j(x,y)dΩ (32)

Di jkl =
1
V

∫
Ω

[
Di jkl −Di jmn

∂ψkl
m

∂yn

]
dΩ (33)

It can been seen from Eq.(33) that the function ψ(x,y)
must be known before the determination of the homog-
enized stiffness coefficients. Generally, evaluation of
ψ(x,y) can be achieved by a finite element method.

Remark 2: With Eq.(30), we can see that the micro-
stresses consist of two parts: first part is uniform stresses
caused by the uniform micro-strains and second part is
the perturbing stresses caused by the perturbing strains.
From the homogenization process appearing in Eq.(31)
to (33), it is clear that the principle of the two-scale ex-
pansion method is completely the same as the direct av-
erage method of the stresses and strains. The definition
of the effective stiffness of the composites is also entirely
identical between two methods.

For application of the two-scale expansion method in
conjunction with the finite element method, a variational
form of the microscopic equilibrium equations should be
established. Here, another important result is introduced.

For a Y-periodic function φ(y), we define a mean opera-
tor as follows

lim
ε→0

∫
Ωε

φ
(x

ε

)
dΩ =

1
|Y |
∫

Ω

∫
Y

φ(y)dYdΩ (34)

The variational form for Eq.(21a) is

∫
Ωε

∂σ−1
i j

∂y j
δu0

i dΩ =
∫

Ωε

(
Dε

i jkl
∂u0

k

∂yl

)
, j

δu0
i dΩ = 0 (35)

where δu0
i are arbitrary virtual displacements. Since the

homogenization method consists of finding the limit of
the solutions to Eqs.(21a)-(21c) as ε tends to zero, so we
have

lim
ε→0

∫
Ωε

(
Dε

i jkl
∂u0

k

∂yl

)
, j

δu0
i dΩ

=
1
|Y |
∫

Ω

∫
Y

(
Di jkl

∂u0
k

∂yl

)
, j

δu0
i dYdΩ = 0 (36)

Using the divergence theorem on Eq.(36) yields:

1
|Y |
∫

Ω

∫
Y

(
Di jkl

∂u0
k

∂yl

)
, j

δu0
i dYdΩ

=
1
|Y |
∫

Ω

∮
s
Di jkl

∂u0
k

∂yl
n jδu0

i dsdΩ = 0 (37)

where S is the boundary of the RVE. Thus we have

∂u0
k

∂y j
= 0 (38)

It is shown again that u0
i is only a function of x.

Substituting Eq. (19b) into the variational form, with ar-
bitrary virtual displacements δu1

i , of Eq. (21b) yields:

∫
Ωε

∂σ0
i j

∂y j
δu1

i dΩ =
∫

Ωε
Dε

i jkl

(
∂u0

k

∂xl
+

∂u1
k

∂yl

)
, j

δu1
i dΩ = 0

(39)

Then using Eq.(34), Eq.(39) becomes

lim
ε→0

∫
Ωε

Dε
i jkl

(
∂u0

k

∂xl
+

∂u1
k

∂yl

)
, j

δu1
i dΩ

=
1
|Y |
∫

Ω

∫
Y

Di jkl

(
∂u0

k

∂xl
+

∂u1
k

∂yl

)
, j

δu1
i dYdΩ = 0 (40)
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Integrating by parts, and noting that virtual displace-
ments δu1

i = 0 at the boundary of RVE, and u0
i is a func-

tion of x only, we have the relations between the displace-
ments u0

i and u1
i in integration form

∫
Ω

∂u0
k

∂xl

(∫
Y

Di jkl
∂δu1

i

∂y j
dY

)
dΩ

+
∫

Ω

∫
Y

Di jkl
∂u1

k

∂yl

∂δu1
i

∂y j
dYdΩ = 0 (41)

Substantially, Eq.(41) is equivalent to Eq.(29) which con-
nects the displacements u0

i and u1
i . In fact, we introduce

the function ψ(x,y), which satisfies

∫
Y

Di jpq
∂ψkl

p

∂yq

∂δu1
i

∂y j
dY =

∫
Y

Di jkl
∂δu1

i

∂y j
dY (42)

Substituting Eq.(42) into Eq.(41) yields

∫
Ω

∂u0
k

∂xl

∫
Y

Di jpq
∂ψkl

p

∂yq

∂δu1
i

∂y j
dYdΩ

+
∫

Ω

∫
Y

Di jkl
∂u1

k

∂yl

∂δu1
i

∂y j
dYdΩ = 0 (43)

Applying the divergence theorem in Eq.(43) leads to

∫
Ω

∮
S
Di jpqψkl

p nq
∂u0

k

∂xl

∂δu1
i

∂y j
dsdΩ

+
∫

Ω

∮
S
Di jpqu1

pnq
∂δu1

i

∂y j
dsdΩ = 0 (44)

It is clear that this equation is the integration form of
Eq.(29).

Actually, Eq.(42) provides a basic equation for solving
the function ψ(x,y) by the finite element method. The
interpolation of the finite element form for the function
ψ(x,y) can be expressed by

ψkl
i = (Nαψα)kl

i = (Nψ)kl
i ,α = 1, · · · ,M (45)

where N is a shape function and ψ stands for the nodal
generalized coordinates, M is the total number of free-
dom degrees of the system. Then the derivative of the
function ψ(x,y) can be expressed by

∂ψkl
p

∂yq
= (Bqψ)kl

p (46)

and the derivative of the displacements is

∂δu1
i

∂y j
= (B jψ)kl

i
∂u0

k

∂xl
(47)

where Bi corresponds to the derivatives of the shape func-
tion N with respect to yi. It is noted that the function u0

i
is independent of y.

Then we can rewrite Eq.(42) in the standard form of a
finite element(∫

Y
BT DBdY

)
ψkl =

∫
Y

BT DkldY (48)

where D is the stress-strain matrix of the components of
the composite, B is the discrete displacement-strain ma-
trix depending on the element shape functions. D kl is a
vector of column kl (kl=11,22,33,23,31,12) of the stress-
strain matrix D. ψkl is the characteristic displacement
vector associated with the kl mode. Six equations should
be solved for different strain states. A conventional finite
element can be used to calculate Eq.(48).

Therefore, the homogenized elastic constants defined by
Eq.(43) can be expressed by

D =
1
|Y |
∫

Y
D(I−Bψ)dY (49)

where

ψ = (ψ11,ψ22,ψ33,ψ23,ψ31,ψ12) (50)

In summary, the two-scale expansion method provides a
procedure to calculate the effective properties of the com-
posite with a periodic microstructure. ψkl in Eq.(48) is
solved by a finite element method and then the effective
properties can be calculated from Eq.(49).

4 Approximate estimation of effective properties

In this section, let us estimate approximately the effec-
tive properties based on the two-scale expansion method.
Two specific cases, equal strain model and equal stress
model, are considered here.

By analyzing the basic assumption made in the two-scale
expansion method, Eq.(29), and the effective stiffness,
Eq. (33), we can see that the first term in Eq. (33) is
the well-known rule of mixture, while the second term is
a correction with the perturbing strain due to the hetero-
geneity of the microstructure.
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In the equal strain model, it is assumed that the strains
undergone in each phase are of the same values. Thus
the perturbing parts of the displacement do not exist. As
a result, Eq.(29) becomes

u1
i = −ψkl

i (x,y)
∂u0

k

∂xl
= 0 (51)

Then the effective stiffness coefficients according to
Eq.(33) can be reduced as

Di jkl =
1
V

∫
Ω

[
Di jkl −Di jmn

∂ψkl
m

∂yn

]
dΩ

=
1
V

∫
Ω

Di jkldΩ (52)

This is the known rule of mixture. The simple expression
under uniaxial state is

E11 =
1
V

∫
Ω

E11dΩ = v1E(1)
11 +v2E(2)

11 + · · · (53)

where E11 is the Young’s modulus, vi and E(i)
11 are the

volume fraction and Young’s modulus of phase i, respec-
tively. Eq.(53) is referred to as the Voigt’s approximation
(Voigt, 1889) and usually is used to predict the effective
axial modulus of the unidirectional fiber composite ma-
terial. It is noted that Eq.(53) gives the upper bound of
the elastic modulus.

The equal stress state means that the stresses in each
phase are uniform and equal everywhere. In this case,
the perturbing part of the stress does not exist and the
macro-stress is equal to the applied stress. Then from
Eq.(19), one has

σ−1
i j = 0, σ1

i j = 0 (54)

and

σ0
i j = σi j (55)

According to the local elastic stress-strain relations, the
strains are

ε−1
i j = 0, ε1

i j = 0 (56)

and

ε0
i j = Cε

i jklσ
0
kl = Cε

i jklσkl (57)

Taking the integration over the domain Ω, one can obtain

∫
Ω

ε0
i jdΩ =

∫
Ω

Cε
i jklσkldΩ (58)

Then, dividing both sides in Eq.(58) by volume of the
domain yields homogenized stress-strain relations

εi j = Ci jklσkl (59)

with the homogenized compliance coefficients

Ci jkl =
1
V

∫
Ω

Ci jkldΩ (60)

The equations (60) can be interpreted as the rule of mix-
ture for the compliance coefficients. For the uniaxial
state, the Young’s modulus can be expressed by

1

E22
=

1
V

∫
Ω

1
E22

dΩ =
v1

E(1)
22

+
v2

E(2)
22

+ · · · (61)

This equation is referred to as the Reuss’s approximation
(Reuss, 1929) and usually is used to predict the trans-
verse modulus of the unidirectional fiber composite ma-
terials. It is verified that this equation gives a simple
lower bound of the effective elastic modulus of a com-
posite.

It should be noted that the Voigt’s and Reuss’s approxi-
mations provide generous upper and lower bounds. They
are the most simply cases of the Hashin and Strikman’s
variational solutions (Hashin and Shtrikman, 1962).

Remark 3: The rule of mixture for the effective prop-
erties described by Eq.(52),(53) or Eq. (60),(61), can
be easily derived with the direct average method if the
equal stress or equal strain model is assumed, respec-
tively. This shows that the direct average method and
two-scale expansion method give the same upper and
lower bound values.

5 Periodic boundary conditions

The periodicity is one of the main characteristics of the
composites. The microscopic displacement and stress
fields are the Y periodic solutions and a RVE is a Y pe-
riodic cell. In the homogenized properties calculation,
the periodic boundary conditions must be imposed on
the RVE to reflect the repeatability of the microstructure.
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Without lose of generality, the periodic conditions of the
displacement and stress fields can be expressed by

ui(y) = ui(y+Y) ∀y ∈ Ω (62)

σi j(y) = σi j(y+Y) ∀y ∈ Ω (63)

where Y = (Y1,Y2,Y3) is the periodicity. Here domain
Ω represents a RVE and Γ is its boundary. For arbitrary
y0 ∈ Γ, the periodic displacement boundary conditions of
the RVE can be expressed by [Havner 1971]

ui(y0) = ui(y0 +Y), ∀y0 ∈ Γ (64)

The stress periodicity requires anti-periodic traction
boundary conditions

Ti(y0) = −Ti(y0 +Y), ∀y0 ∈ Γ (65)

where y0 +Y is the boundary of the periodic RVE.

For a 2D square or rectangular RVE, as shown in Fig.4,
the periodic displacement boundary conditions can be
expressed by

u1(y0
1,y2) = u1(y0

1 +Y1,y2) (66a)

u2(y0
1,y2) = u2(y0

1 +Y1,y2) (66b)

on the left and right opposite sides and

u1(y1,y
0
2) = u1(y1,y

0
2 +Y2) (67a)

u2(y1,y
0
2) = u2(y1,y

0
2 +Y2) (67b)

on the upper and lower opposite sides. The anti-
periodicity of the traction boundary conditions leads to

σ11(y0
1,y2) = −σ11(y0

1 +Y1,y2) (68a)

σ12(y0
1,y2) = −σ12(y0

1 +Y1,y2) (68b)

on the left and right sides and

σ22(y1,y
0
2) = −σ22(y1,y

0
2 +Y2) (69a)

σ21(y1,y
0
2) = −σ21(y1,y

0
2 +Y2) (69b)

on the upper and lower sides.

In the present study, only the symmetric rectangular RVE
is considered. This case can reflect many model compos-
ites that the inclusion may have, in a 2D state, a shape
of circle, ellipse, rectangle and so on. The work for the
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Figure 3 : Periodic and symmetric RVE

general case of the periodic boundary conditions will be
reported elsewhere.

Firstly, consider the normal (extension and compression)
deformation modes of the RVE. The periodicity and sym-
metry of the RVE (see Fig.3) yields

u1(y0
1,y2) = u1(y0

1 +Y1,y2)
= −u1(y0

1 +Y1,y2)
= 0 (70)

on the left and right opposite sides and

u2(y1,y
0
2) = u2(y1,y

0
2 +Y2)

= −u2(y1,y
0
2 +Y2)

= 0 (71)

on the upper and lower opposite sides. Eqs.(70) and (71)
imply that the normal displacements for the all external
edges of the RVE are fixed, as shown in Fig.4a. Clearly,
these constraints can satisfy the anti-periodic and sym-
metric requirements of the traction boundary conditions.

Secondly, let us consider the pure shear deformation of
the RVE. An anti-symmetric deformation mode happens
in this case. Then we can obtain

u2(y0
1,y2) = u2(y0

1 +Y1,y2)
= −u2(y0

1 +Y1,y2)
= 0 (72)
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(a)                                (b) 

Figure 4 : The constraints on the periodic and symmetric RVE for normal deformation (a) and pure shear deforma-
tion (b)

on the left and right opposite sides and

u1(y1,y
0
2) = u1(y1,y

0
2 +Y2)

= −u1(y1,y
0
2 +Y2)

= 0 (73)

on the upper and lower opposite sides. Eq.(72) and
Eq.(73) mean that the tangent displacements on the
boundary of the RVE are fixed, as shown in Fig.4b.

The periodic and symmetric boundary conditions can be
used in the two-scale expansion method where the initial
strains are loaded (Hassani and Hinton, 1998). For the
symmetric RVE, only one quarter of the RVE is analyzed.

6 Numerical results

The above mentioned analysis has shown that the direct
methods and two-scale expansion method are the same
in principle. Some numerical examples are given in this
section in order to compare these methods numerically.

The effective properties are calculated for three kinds of
the composite materials, e.g. transversely isotropic fiber
composite, void solid and rigid inclusion medium. The
numerical results are compared for three homogeneous
methods: the direct average method of stress and strain,
the direct average method of strain energy density and
the two-scale expansion method.

A plane strain model is considered here and the in-plane
or transverse properties of the composites are calculated.
For the direct average methods of stress, strain and strain
energy density, there are two classes of the boundary con-
ditions of the RVE, the uniform traction- and uniform
displacement-loading boundary conditions that result in

different deformations and effective stiffness coefficients
(Miehe and Koch, 2002). Here the boundary conditions
with specific displacements are imposed and then the fi-
nite element method is applied in calculation of the aver-
age stresses, strains and strain energy density on a RVE
with a uniaxial strain state. The resulting effective stiff-
ness coefficients of the plane strain problem are used to
calculated the engineering constants by

µ =
D11

D11 +D12
(74a)

E =
D11(1+µ)(1−2µ)

1−µ
(74b)

G = D66 (74c)

where the subscripts take the compact form, that is D11 =
D1111, D12 = D1122, D66 = D1212.

6.1 FE mesh dependence

Three kinds of mesh are investigated in order to examine
the mesh-dependence. The first case, Mesh 1 has 39 ele-
ments and 140 nodes. The Mesh 2 has 64 elements, 221
nodes and the Mesh 3 has 85 elements and 288 nodes.
The meshes are illustrated in Fig. 5. Here the 8-node
quadratic isoparameter elements are used in the finite el-
ement analysis.

The numerical results for different FE meshes are listed
in Table 1. Here three methods are used. ASS denotes
the direct average of stress and strain, ASE the direct
average of strain energy density and TEM the two-scale
expansion method. It is shown that the effective stiff-
ness coefficients are not sensitive to the FE meshes. Only
the shear stiffness coefficients slightly vary with the FE
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Mesh 1           Mesh 2           Mesh 3 

Figure 5 : Three kinds of mesh for test the mesh-dependence

Table 1 : Stiffness coefficients for different FE meshes
D11 (GPa) D12 (GPa) D33 (GPa) 

ASS ASE TEM ASS TEM ASS ASE TEM 

Mesh 1 10.4874 10.4874 10.4873 4.2879 4.2879 2.2315 2.2315 2.2315 

Mesh 2 10.4874 10.4874 10.4875 4.2879 4.2880 2.2314 2.2314 2.2314 

Mesh 3 10.4873 10.4873 10.4874 4.2879 4.2879 2.2313 2.2313 2.2314 

Table 2 : Transverse stiffness coefficients for fiber composite

 D11 (GPa) D12 (GPa) D66 (GPa) 

 ASS ASE TEM ASS TEM ASS ASE TEM 

0.1 6.3147 6.3147 6.3148 3.2920 3.2920 1.4726 1.4726 1.4727 

0.2 7.3218 7.3218 7.3218 3.6171 3.6171 1.6824 1.6824 1.6824 

0.3 8.6606 8.6606 8.6606 3.9511 3.9511 1.9255 1.9255 1.9255 

0.4 10.4873 10.4873 10.4874 4.2879 4.2879 2.2313 2.2313 2.2314 

0.5 13.0754 13.0755 13.0758 4.6347 4.6346 2.6549 2.6550 2.6551 

0.6 17.0605 17.0606 17.0608 5.0817 5.0817 3.3356 3.3356 3.3357 

meshes. The richest mesh, Mesh 3, is used in the follow-
ing calculations though the results are not sensitive to the
FE meshes.

6.2 Transversely isotropic composite

A composite reinforced by the unidirectional continuous
fibers demonstrates the transversely isotropic properties.
For this case, the following material data is used:

E-glass fiber: the Young’s modulus is 73.1 GPa, the Pois-
son’s ratio is 0.22.

Epoxy Matrix: the Young’s modulus is 3.45 GPa, the

Poisson’s ratio is 0.35.

The effective transverse stiffness coefficients of the trans-
versely isotropic composite are listed in Table 2. It
is shown that the three methods give completely iden-
tical stiffness coefficients. This is not surprising be-
cause of the same homogenization principle used in all
of the three methods. The engineering constants can be
found by Eq.(74) for the comparison with the approxi-
mate bounds and experimental data. Fig.6 illustrates the
transverse Young’s modulus E22 as a function of the fiber
volume fraction. The lower bound was calculated by
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Eq.(61). It is shown that ASS, ASE and TEM provide
good agreeable results with the experimental data (Tsai,
1964).
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Figure 6 : Transverse Young’s modulus

0.0 0.1 0.2 0.3 0.4 0.5 0.6
1.0

1.5

2.0

2.5

3.0

3.5

T
ra

n
s
v
e

rs
e

 s
h

e
a

r 
m

o
d

u
lu

s

Fiber volume fraction

 Present

 Lower bound

Figure 7 : Transverse shear modulus

Fig.7 shows the transverse shear modulus G of the com-
posite with different fiber volume fraction. No experi-
mental data for the transverse shear modulus is available
for comparison. An approximate estimation for the trans-
verse shear modulus by

1
G

=
vm
Gm

+
vf
Gf

(75)
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Figure 8 : Transverse Poisson’s ratio

is plotted in Fig.7. It is easy to prove that Eq.(75) pro-
vides a lower bound for the shear modulus.

The transverse Poisson’s ratio is shown in Fig.8. The
nonlinear relation between effective transverse Poisson’s
ratio and the fiber volume fraction is demonstrated. No
appropriate bounds and experimental data are available
for comparison.

6.3 Rigid inclusion medium

An inclusion with very large elastic modulus is used to
model a rigid inclusion. The elastic modulus of the inclu-
sion is 104 times that of the modulus of the matrix. The
Poisson’s ratio of the matrix is 0.35. The present results
have been normalized by the modulus of the matrix. The
effective stiffness coefficients of rigid inclusion medium
are listed in Table 3 for a detailed precision comparison.
It is shown that the three methods give mostly identical
results except for the slight differences in a few cases.

6.4 Void solid

An inclusion with very small elastic modulus is used to
model a void in an isotropic solid. The elastic modulus
of the void inclusion is 10−6 times that of the modulus
of the matrix. The Poisson’s ratio of the matrix is 0.35.
Table 4 lists normalized effective stiffness coefficients of
this medium. Same, the identical results are obtained by
the three methods.

Remark 4: The example provides numerical illustration
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Table 3 : Stiffness coefficients for rigid inclusion medium
D11/E0 D12/E0 D66/E0

v1 ASS ASE TEM ASS TEM ASS ASE TEM 

0.1 1.8560 1.8560 1.8673 0.9678 0.9678 0.4324 0.4311 0.4325 

0.2 2.1900 2.1900 2.1967 1.0791 1.0784 0.4952 0.4968 0.5007 

0.3 2.6504 2.6504 2.6577 1.1957 1.1986 0.5721 0.5738 0.5821 

0.4 3.3123 3.3123 3.3464 1.3128 1.3150 0.6638 0.6724 0.6797 

0.5 4.3297 4.3297 4.4308 1.4206 1.4195 0.8096 0.8140 0.8273 

0.6 6.1427 6.1427 6.2106 1.5056 1.5047 1.0548 1.0548 1.0766 

that the direct average method of stresses, strains and
strain energy density is the same as two-scale expan-
sion method. The effective stiffnesses calculated by the
three methods are not only completely identical but also
in good agreements with the experimental data.

7 Conclusions

The paper gives the detailed comparison for three ho-
mogenization concepts, e.g. direct average method of
stress and strain, direct average method of strain energy
density and two-scale expansion method. It is shown in
principle and numerically that direct average methods are
the same as the two-scale expansion method. Although
they have different expressions in mathematics, the iden-
tical calculation results are obtained for the composites
with a large range of elastic mismatch of the compo-
nents. The effective properties obtained from the three
methods are in agreements with the experimental data.
Future work will include the prediction and comparison
of composites with non-anisotropic inclusion and non-
symmetric RVE.
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