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Meshless Local Petrov-Galerkin (MLPG) Formulation for Analysis of Thick Plates

J. Sorić1, Q. Li2, T. Jarak1 and S.N. Atluri2

Abstract: An efficient meshless formulation based on
the Local Petrov-Galerkin approach for the analysis of
shear deformable thick plates is presented. Using the
kinematics of a three-dimensional continuum, the local
symmetric weak form of the equilibrium equations over
the cylindrical shaped local sub-domain is derived. The
linear test function in the plate thickness direction is as-
sumed. Discretization in the in-plane directions is per-
formed by means of the moving least squares approx-
imation. The linear interpolation over the thickness is
used for the in-plane displacements, while the hierarchi-
cal quadratic interpolation is adopted for the transversal
displacement in order to avoid the thickness locking ef-
fect. The numerical efficiency of the proposed meshless
formulation is illustrated by the numerical examples.

keyword: meshless formulation, thick plates, three-
dimensional solid concept, moving least squares approx-
imation.

1 Introduction

During recent years, meshless approaches have attracted
considerable attention due to their capability to solve a
boundary value problem without a meshing procedure.
In contrast to the finite element formulation, computa-
tional model is described only by a set of nodes which
don’t need to be connected into elements. Thus, the
nodes can be easily added and removed without burden-
some remeshing of the entire structure. Furthermore, by
using the meshless formulation a many other difficulties
associated with the finite element method may also be
overcome.

In the available literature, the meshless methods for anal-
ysis of shear deformable thick plates have mostly been
performed by employing Mindlin-Reissner theory [Don-
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ning and Liu (1998); Noguchi, Kawashima and Miya-
mura (2000); Liew, Huang and Reddy (2003); Wang and
Chen (2004)]. These methods are not truly meshless be-
cause they require a background mesh for numerical in-
tegration. Furthermore, these formulations do not allow
the use of general three-dimensional material law which
is usual necessary for modeling of plate structural com-
ponents, especially in the case of material nonlinearities.
Some other formulations may be found in the literature,
where a high order plate theory [Qian, Batra and Chen
(2003 and 2004)] is used, but they are coupled with a
large computation effort and they are time consuming.
Therefore, a more efficient meshless approach for mod-
eling of plate structures is desirable.

In this contribution, an efficient truly meshless method
based on the local Petrov-Galerkin approach, originally
proposed by Atluri and Zhu (1998), and later also dis-
cussed in Atluri and Shen (2002b) and Aturi (2004) is
applied to the analysis of shear deformable plates with
thickness to length ratio beyond 1/20. This numerical
approach requires no elements or background cells in ei-
ther interpolation or integration and it allows the use of
complete three-dimensional constitutive laws. Using the
kinematics of a three-dimensional continuum, the local
symmetric weak form of the equilibrium equations over
the cylindrical sub-domain, surrounding the nodes on the
plate surfaces, is derived. The essential boundary con-
ditions are enforced by a penalty method. Discretization
is performed by employing the moving least squares ap-
proximation [Atluri and Shen (2002a); Li, Shen, Han
and Atluri (2003)] in the in-plane directions. Analo-
gous to the finite element formulation in Hauptmann and
Schweizerhof (1998), the interpolation through the thick-
ness is performed separately. The linear interpolation
over the thickness is used for the in-plane displacements,
while the hierarchical quadratic interpolation is adopted
for the transversal displacement in order to avoid the
undesired thickness locking effect [Sorić, Li, Jarak and
Atluri (2004a and 2004b)]. The nodal unknown variables
are three fictitious displacement components associated
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with the nodes on the upper and lower plate surfaces.
An additional unknown variable due to the hierarchical
quadratic interpolation appears, and it can be eliminated
by means of the static condensation. The numerical ef-
ficiency of the proposed meshless formulation is illus-
trated by the numerical examples.

2 Meshless formulation

According to a three-dimensional solid concept, the equi-
librium equations in a domain of the volume Ω, which is
bounded by the surface Γ, are given by

σi j, j +bi = 0, in Ω, (1)

where σi j is the stress tensor and bi denotes the body
force. The indices i, j, which take the values 1, 2, 3, refer
to the Cartesian coordinates x, y, z. On the boundary Γ,
the following boundary conditions are assumed

ui = ui, on Γu,

ti = σi j n j = t i, on Γt , (2)

where ui are the displacement components and t i stands
for the surface traction components. Γu is the boundary
with the prescribed displacement u i and Γt is the bound-
ary with the prescribed traction t i. n j denotes direction
cosines of the outward normal on the boundary of the
volume Ω.

On applying the Meshless Local Petrov-Galerkin
(MLPG) method, the equilibrium equations may be writ-
ten in a weak form over the local sub-domain Ω s∫
Ωs

(σi j, j +bi) vidΩ−α
∫

Γsu

(ui−ui)vidΓ = 0. (3)

Herein ui is the trial function describing the displacement
field, while v i is the test function. In the MLPG method
applied, the test and trial functions may be chosen from
different functional spaces. The local sub-domain Ω s is
a small region inside the domain Ω and could be of any
geometric shape and size. Γ su is a part of the bound-
ary ∂Ω s of the local sub-domain with the prescribed dis-
placement ui, and α denotes a penalty parameter, α >>
1, which is introduced in order to satisfy the geometric
boundary conditions. For plate analysis, the test function
is assumed as

vi = voi + zvi1, (4)

where voi and v1i are arbitrary constant values. On ap-
plying the divergence theorem, after inserting (4) and
some suitable rearrangement, the following local sym-
metric weak form is obtained

⎛
⎝∫

Ls

tidΓ+
∫

Γsu

tidΓ+
∫

Γst

tidΓ+
∫
Ωs

bidΩ−α
∫

Γsu

(ui −ui)dΓ

⎞
⎠voi

+

⎛
⎝∫

Ls

tizdΓ+
∫

Γsu

tizdΓ+
∫

Γst

tizdΓ+
∫
Ωs

(biz−σi3) dΩ

− α
∫

Γsu

(ui −ui) zdΓ

⎞
⎠v1i = 0 . (5)

As evident, the boundary ∂Ωs of the local sub-domain
is divided into three parts, ∂Ω s = Ls ∪ Γst ∪ Γsu. Ls is
the part of the local boundary inside the global domain,
while Γst and Γsu are the parts of the local boundary
which coincide with the global traction boundary and the
global geometric boundary, respectively. Since relation
(5) holds for all choices of voi and v1i, it yields the fol-
lowing expressions

∫
Ls

tidΓ+
∫

Γsu

tidΓ−α
∫

Γsu

uidΓ =

−
∫

Γst

tidΓ−
∫
Ωs

bidΩ−α
∫

Γsu

uidΓ,

∫
Ls

tizdΓ+
∫

Γsu

tizdΓ−
∫
Ωs

σi3dΩ−α
∫

Γsu

uizdΓ =

−
∫

Γst

tizdΓ−
∫
Ωs

bizdΩ−α
∫

Γsu

uizdΓ, (6)

which represent a set of six equations for each local sub-
domain. If the local sub-domain is entirely within the
global domain, all integrals over the boundaries Γ st and
Γsu are omitted. Under the assumption of zero body
force, the two domain integrations of b i may also be
eliminated.

3 Discretization and numerical implementation

The plate continuum is discretized by the nodes located
on the upper and the lower surfaces, as shown in Fig-
ure 1. The nodal variables are three fictitious displace-
ment components in the Cartesian coordinate system x,
y, z. The axes x and ylie in the middle surface, while
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z is directed over the thickness. According to the fi-
nite element formulation in Hauptmann and Schweiz-
erhof (1998), the linear interpolation over the thickness
is employed for the in-plane displacement components,
while the quadratic hierarchical distribution is assumed
for the transversal displacement component. Using the
quadratic interpolation for the transversal displacement,
the undesired so-called thickness locking effect demon-
strated in Sorić, Li, Jarak and Atluri (2004a and 2004b)
will be overcome. The approximation in the in-plane di-
rections for all components is performed separately by
using the Moving Least Squares (MLS) approach. Thus,
the displacement distribution over the domain of influ-
ence with N couple of nodes located on the upper and the
lower plate surfaces may be expressed as

u =
N

∑
J=1

φJ(x,y)ΨΨΨ(z) v̂J, (7)

where

uT =
[

u v w
]
, (8)

v̂T
J =

[
ûu v̂u ŵu ûl v̂l ŵl λ

]
J, (9)

ΨΨΨ(z) =⎡
⎣ 1

2 + z
h 0 0 1

2 − z
h

0 1
2 + z

h 0 0
0 0 1

2 + z
h 0

. . .

. . .

0 0 0
1
2 − z

h 0 0

0 1
2 − z

h
1
2 − 2z2

h2

⎤
⎦ (10)

The in-plane components of the displacement vector
u are represented as u and v, while w designates its
transversal component. v̂J is the vector with the ficti-
tious nodal displacement components on the upper and
lower surfaces, denoted by indices u and l, respectively;
the parameter λ is associated with the quadratic term of
the transversal displacement interpolation. ΨΨΨ(z) is the
interpolation matrix in the thickness direction. The value
h represents the plate thickness. In relation (7), φ J (x,y)
stands for the shape function of the MLS approximation.
The domain of influence mentioned above is a region
where the weight functions of the nodes within it do not
vanish in the local sub-domain surrounding the current

nodes [Atluri and Shen (2002a)]. Equation (7) may be
rewritten in the matrix form as

u =
N

∑
J=1

ΦΦΦJ(x,y, z) v̂J, (11)

where ΦΦΦJ(x,y, z) = φJ(x,y)ΨΨΨ(z). Using the derivation
procedure described in Atluri and Shen (2002) and Li,
Shen, Han and Atluri (2003), the shape function is ob-
tained in the following form

φJ(x) =
m

∑
i=1

pi(x)
[
A−1(x)B(x)

]
i J (12)

with the matrices A(x) and B(x) defined as

A(x) =
N

∑
J=1

WJ(x)p(xJ)pT (xJ), (13)

B(x) =
[

W1(x)p(x1) W2(x)p(x2) · · ·
. . . WJ(x)p(xJ) . . . WN(x)p(xN)

]
. (14)

In the above relations WJ(x) is the weight func-
tion associated with the node J, and p(x) denotes
a complete monomial basis of order m, pT (x) =
[p1(x) p2(x) · · · · · · pi(x) · · · pm(x)]. x is
the vector which contains in-plane coordinates, x T =[

x y
]
. Here the quadratic basis and the 4 th order

spline type weight function are assumed

pT (x) =
[

1 x y x2 y2 xy
]
, (15)

WJ(x) ={
1−6

(
dJ
rJ

)2
+8

(
dJ
rJ

)3 −3
(

dJ
rJ

)4
0 ≤ dJ ≤ rJ

0 dJ > rJ

(16)

The stress tensor components σ i j may be written in a
Cartesian coordinate system as 6-dimensional stress vec-
tor σσσ

σσσT =
[

σx σy σz τxy τyz τzx
]
. (17)

Using a generalized Hooke’s law, the stress tensor com-
ponents may be expressed in terms of the nodal unknown
variables by the relation

σσσ =
N

∑
J=1

DBJ vJ, (18)
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where D is the three-dimensional stress-strain matrix
and BJ denotes the strain-displacement matrix obtained
by differentiation of the shape function in a three-
dimensional space

BJ =⎡
⎢⎢⎢⎢⎢⎢⎣

(φJα),x 0 0 (φJβ),x

0 (φJα),y 0 0
0 0 (φJα),z 0

(φJα),y (φJα),x 0 (φJβ),y

0 (φJα),z (φJα),y 0
(φJα),z 0 (φJα),x (φJβ),z

. . .

. . .

0 0 0
(φJβ),y 0 0

0 (φJβ),z (φJγ),z

(φJβ),x 0 0
(φJβ),z (φJβ),y (φJγ),y

0 (φJβ),x (φJγ),x

⎤
⎥⎥⎥⎥⎥⎥⎦

,

(19)

where the following substitutions are introduced

φJ = φJ(x,y), (20)

α = α(z) =
1
2

+
z
h
, β = β(z) =

1
2
− z

h
,

γ = γ(z) =
1
2
− 2z2

h2 , (21)

and (...),x denotes the partial derivative with respect to
the coordinate x.

The surface traction components t i may also be ex-
pressed in a vector form by the relation

t = Nσσσ =
N

∑
J=1

NDBJ vJ (22)

with N as the matrix describing the outward normal on
∂Ωs

N =

⎡
⎣ n1 0 0 n2 0 n3

0 n2 0 n1 n3 0
0 0 n3 0 n2 n1

⎤
⎦ . (23)

By means of (11), (18) and (22), equations (6) are trans-
formed in the discretized system of linear equations

which may be written in the matrix form

N

∑
J=1

⎡
⎣∫

Ls

NDBJdΓ+
∫

Γsu

NDBJdΓ−α
∫

Γsu

ΦΦΦJdΓ

⎤
⎦vJ =

−
∫
Γst

tdΓ−
∫
Ωs

bdΩ

−α
∫

Γsu

udΓ
N

∑
J=1

⎡
⎣∫

Ls

NDBJ zdΓ+
∫

Γsu

NDBJ zdΓ

−
∫
Ωs

D′B′
JdΩ−α

∫
Γsu

ΦΦΦJ zdΓ

⎤
⎦vJ =

−
∫
Γst

t zdΓ−
∫
Ωs

bzdΩ−α
∫

Γsu

u zdΓ, (24)

where D′ and B′
J are the matrices relating to the stress

components σi3. The local sub-domain, where the inte-
gration is performed, is chosen as a cylinder surrounding
the nodes on the upper and lower surfaces, Figure 1.

Figure 1 : Plate geometry with the local sub-domain and
the weight function

If the zero body force is assumed, the two domain inte-
grations of b are omitted.

As evident from (24), the six equations with seven ficti-
tious unknowns are generated for each local sub-domain.
Therefore, an additional equation is required for the so-
lution of a boundary value problem. To obtain the addi-
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tional equation, the equilibrium is enforced at the mid-
point located on the middle surface within the local sub-
domain Ωs, between the nodes on the upper and the lower
surfaces. The collocation method with the Dirac’s Delta
function δ(x−xI) as the test function is employed. Ac-
cordingly, the equilibrium at the mid-point I with the po-
sition xI =

[
x y

]
I is expressed by the relation

σi j, j(xI)+bi(xI) = 0, (25)

which represents the three equations. Only one equation
representing the equilibrium in the transversal direction
is used, which is evaluated in the following discretized
form under assumption of zero body force

N

∑
J=1

D0
[

ku
uJ (xI) ku

vJ (xI) ku
wJ (xI) kl

uJ (xI)

kl
vJ (xI) kl

wJ (xI) kl
λJ (xI)

]
v̂J = 0,

I = 1, 2, . . . , J, . . . , N. (26)

Here the following abbreviations are introduced

D0 =
E(1−ν)

(1+ν)(1−2ν)
,

ku
uJ(xI) =

ν
1−ν

(φJα),xz +
1−2ν

2(1−ν)
(φJα),zx,

ku
vJ(xI) =

ν
1−ν

(φJα),yz +
1−2ν

2(1−ν)
(φJα),zy,

ku
wJ(xI) =

(φJα),zz +
1−2ν

2(1−ν)
(φJα),yy +

1−2ν
2(1−ν)

(φJα),xx,

kl
uJ(xI) =

ν
1−ν

(φJβ),xz +
1−2ν

2(1−ν)
(φJβ),zx,

kl
vJ(xI) =

ν
1−ν

(φJβ),yz +
1−2ν

2(1−ν)
(φJβ),zy,

kl
wJ(xI) =

(φJβ),zz +
1−2ν

2(1−ν)
(φJβ),yy +

1−2ν
2(1−ν)

(φJβ),xx,

kλJ(xI) =

(φJγ),zz +
1−2ν

2(1−ν)
(φJγ),yy +

1−2ν
2(1−ν)

(φJγ),xx, (27)

In relations (27), (...),xx denotes the second partial deriva-
tive with respect to the coordinate x. The partial deriva-
tives with respect to the other coordinates are denoted
analogously. The values E and ν are material constants.

Now, for each local sub-domain, the system of the seven
equations, expressed by (24) and (26), with seven un-
knowns, is derived. For the domain of influence with N
couple of nodes, the set of 7N equations with the equal
number of unknowns is evaluated. However, the param-
eter λ can be eliminated on the level of the domain of in-
fluence by employing a static condensation, which yields
the set of equations with only fictitious nodal displace-
ment components as unknowns.

According to the static condensation, the vector of nodal
values in the domain of influence may be written as

V̂T =
[

V̂S ΛΛΛ
]
, (28)

where two subvectors V̂S and ΛΛΛ are introduced. The sub-
vector V̂S describes the nodal values on the upper and
the lower plate surfaces, while ΛΛΛ contains the N values
of parameter λ

V̂T
S =

[
û1u v̂1u ŵ1u · · · ûN l v̂N l ŵN l

]
, (29)

ΛΛΛ =
[

λ1 λ2 · · · λN
]
. (30)

Then, the system of equations on the domain of influence
level, obtained by means of (24) and (26), may be written
in the following matrix form

[
KVV KV Λ
KΛV KΛΛ

] [
V̂S

ΛΛΛ

]
=

[
FV

0

]
, (31)

where KVV , KV Λ, KΛV , KΛΛ are the submatrices con-
taining the terms associated with the unknown variables,
while the vector FV stands for the prescribed loading and
displacement. From (31), the subvector ΛΛΛ can be ex-
pressed as

ΛΛΛ = −KΛΛKΛV V̂S. (32)

Finally, after substitution (32) in the first matrix equation
of the system (31), the following condensed equation is
obtained on the domain of influence level

(
KVV −KV Λ K−1

ΛΛ KΛV
)

V̂S = FV . (33)

On the structural level, the global set of equations is de-
rived by using the well-known numerical procedure.
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4 Numerical examples

4.1 Clamped square plate

A clamped square plate subjected to the uniformly dis-
tributed load over the upper surface is considered first.
The plate thickness to span ratio is h/a = 0.1. The mate-
rial data are Young’s modulus E = 10.92 · 105 and Pois-
son’s ratio ν = 0.3. Due to symmetry, only one quarter
of the plate is discretized by the various uniformly dis-
tributed grid points on the upper and lower plate surfaces.
The discretization by 9x9 nodes is shown in Figure 2.

x

symmetry

symmetry

fixed

fixed

a / 2

a
 /

 2

Figure 2 : Discretization of one quarter of the square
plate surface

The influence of the radius of the weight function circu-
lar support on the plate central deflection is investigated.
It is found that the weight function support significantly
affects the numerical solutions. Dependency of the plate
central deflection on the ratio of the support radius to the
radius of local sub-domain for different number of grid
points is plotted in Figure 3.

The deflection is normalized by using the exact analytic
solution from Srinivas and Rao (1973). As evident, the
noticeable oscillations around the exact value are exhib-
ited. The convergence to the exact solution with the in-
crease of the grid size is achieved for the ratio of the
support radius to the radius of local sub-domain of 2.9.
The convergence rate of the central deflection is plotted
in Figure 4.

In this figure, the results are compared with the values
obtained by the algorithm derived in Sorić, Li, Jarak
and Atluri (2004a), where the linear distribution of the
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Figure 3 : Central deflection of the clamped plate
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Figure 4 : Convergence of the central deflection of the
clamped plate

transversal displacement in the plate thickness direction
is assumed. As may be seen, the curve representing the
linear interpolation shows the significant locking effect
[Hauptmann and Schweizerhof (1998)] which is elimi-
nated by using the present formulation. The results of the
convergence study are also compared with the finite ele-
ment solutionsobtained by linear 3D brick-type elements
by using the program package NASTRAN, as shown in
Figure 5.

The figure represents the normalized transversal dis-
placement on the center of the middle plate surface ver-
sus the number of degrees of freedom plotted on a log-
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Figure 5 : Convergence study in comparison with the
finite element solutions for the clamped plate

arithmic scale. As obvious, in contrast to the meshless
results which converge to the analytical solution, the con-
vergence of the finite element solutions is not exhibited.
Like the MLPG formulation from Sorić, Li, Jarak and
Atluri (2004a), the linear brick elements show a tendency
to lock because of coupling between the normal stress in
the thickness direction and the strains in the in-plane di-
rections. To improve the finite element results, more el-
ements in the thickness direction are necessary [Haupt-
mann and Schweizerhof (1998)]. The deformed plate
configuration discretized by the grid of the 17x17 nodes
on each plate surfaces is plotted in Figure 6.

Figure 6 : Deformed plate configuration

4.2 Simply supported square plate

As the second example, the simply supported square
plate under uniformly distributed load over the upper sur-
face is analyzed. The geometry and material data are the
same as in the first example. Here only the boundary
conditions are replaced. Instead of the fixed boundary of
the clamped plate, only the transversal displacements are
suppressed along the simply supported boundary. Like
in the first example, the convergence rate is presented
in Figure 7, where the normalized central deflection is
compared with the finite element solutions obtained by
NASTRAN.
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Figure 7 : Convergence study in comparison with the
finite element solutions for the simply supported plate

The analytical value used for the normalization is also
taken from Srinivas and Rao (1973). As in the case of the
clamped plate, the results obtained by the linear brick el-
ements do not achieve the exact solution. The normalized
displacements computed by the present formulation in
comparison with those obtained by the formulation pre-
sented in Sorić, Li, Jarak and Atluri (2004) are plotted in
Figure 8. The differences between the curves associated
with the present formulation and the formulation from
Sorić, Li, Jarak and Atluri (2004) are also exhibited.

5 Conclusion

An efficient meshless formulation based on the Local
Petrov-Galerkin approach has been applied to the analy-
sis of thick plates. This numerical method is truly mesh-
less because no elements or background cells are in-
volved in either interpolation or integration. Using the
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Figure 8 : Convergence of the central deflection of the
simply supported plate

kinematics of a three-dimensional continuum, the local
symmetric weak form of the equilibrium equations over
the cylindrical local sub-domain is derived. The linear
test function over the plate thickness is adopted, and the
essential boundary conditions are enforced by applying
the penalty method. The moving least squares approxi-
mation is employed for discretization in the in-plane di-
rections. In contrast to the linear interpolation over the
thickness for the in-plane displacement components, the
hierarchical quadratic approximation is applied for the
transversal displacement, which yields the elimination of
the thickness locking effect. The nodal unknown vari-
ables are three fictitious displacement components asso-
ciated with the nodes on the upper and lower plate sur-
faces. An additional unknown variable due to the hierar-
chical quadratic interpolation is eliminated by using the
static condensation on the domain of influence level. By
properly choosing the radius of the circular support of the
weight function, a good convergence rate of the numeri-
cal results is exhibited as shown by numerical examples.
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