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PDE-Driven Level Sets, Shape Sensitivity and Curvature Flow for Structural
Topology Optimization

Michael Yu Wang1 and Xiaoming Wang2

Abstract: This paper addresses the problem of struc-
tural shape and topology optimization. A level set
method is adopted as an alternative approach to the pop-
ular homogenization based methods. The paper focuses
on four areas of discussion: (1) The level-set model of
the structure’s shape is characterized as a region and
global representation; the shape boundary is embedded in
a higher-dimensional scalar function as its “iso-surface.”
Changes of the shape and topology are governed by a
partial differential equation (PDE). (2) The velocity vec-
tor of the Hamilton-Jacobi PDE is shown to be naturally
related to the shape derivative from the classical shape
variational analysis. Thus, the level set method provides
a natural setting to combine the rigorous shape variations
into the optimization process. (3) Perimeter regulariza-
tion is incorporated in the method to make the optimiza-
tion problem well-posed. It also produces an effect of
the geometric heat equation, regularizing and smoothing
the geometric boundaries as an anisotropic filter. (4)We
further describe numerical techniques for efficient and
robust implementation of the method, by embedding a
rectilinear grid in a fixed finite element mesh defined on
a reference design domain. This would separate the is-
sues of accuracy in numerical calculations of the physical
equation and in the level-set model propagation. Finally,
the benefit and the advantages of the developed method
are illustrated with several 2D examples that have been
extensively used in the recent literature of topology opti-
mization, especially in the homogenization based meth-
ods.
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1 Introduction

Structural optimization, in particular the shape and topol-
ogy optimization, has been identified as one of the most
challenging tasks in structural design. Various tech-
niques have been developed in the past decades. Typi-
cal procedures are based on an explicit boundary repre-
sentation with a fixed topology of the structure (Bendsoe
(1997); Rozvany (1998); Sokolowski et al. (1992)). In
the direct approach, the problem of structural optimiza-
tion is a well-posed mathematical problem, and numeri-
cal algorithms can be developed based on rigorous analy-
ses for shape sensitivity and necessary optimality condi-
tions (Haug et al. (1986); Sokolowski et al. (1992)). As a
result, these optimization procedures are widely available
in commercial finite element software systems. However,
these procedures do not admit changes in the connectiv-
ity of the geometry of the structure, imposing a signif-
icant constraint on the design and thus limiting the po-
tential of the structural performance. Perhaps as a ma-
jor motivation to overcome the fixed-topology limitation,
the concept of topology optimization has been introduced
in recent years (Bendsoe (1989, 1997); Bendsoe et al.
(1988, 1993)), often with a “raster” geometric model of a
refined finite element grid covering the candidate design
domain. Over the past decade, there have been some ex-
tensive developments of various approaches to this prob-
lem.

Unfortunately, the problem of topology optimization of a
structure is an ill-posed problem in its mathematical the-
ory and numerical methods (Haber et al. (1996)). As
first observed numerically in (Cheng et al. (1981)) for
a variable-thickness plate design problem, the optimiza-
tion problem may not admit a solution. Particularly for
the problem of minimizing the structural compliance of
an elastic body for a specified set of loads and supports,
it has been illustrated that a non-convergent design se-
quence can be constructed such that the compliance re-
duces monotonically (Bendsoe (1997)). The resulting
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design has a configuration with an unbounded number of
microscopic holes, rather than a finite number of macro-
scopic holes.

For the reason to generate a well-posed topology opti-
mization problem, the so-called homogenization method
has been extensively developed in recent years and
evolved into the state-of-the-art (Bendsoe (1989, 1997);
Bendsoe et al. (1988, 1993)). In this approach, the de-
sign space is first extended to explicitly include mate-
rials with periodic, perforated microstructures and then
homogenization theory is utilized to compute effective
material properties. This procedure is known as relax-
ation and, as a result, solutions to the relaxed problem
are guaranteed to exist. A “side-effect” of the relaxation
is that the optimal solutions generated by homogeniza-
tion methods commonly have perforated microstructures
in the resulting design, as expected in consistence with
the relaxation. Unfortunately, perforated microstructures
are difficult to manufacture. Thus, the “relaxed” optimal
solutions may not lead directly to useful designs.

Therefore, it becomes necessary to be able to suppress
perforated microstructures in the optimal design by mod-
ifying the relaxed formulation. Several suppression tech-
niques have been developed. Introducing a priori re-
strictions on the configuration of the microstructure is
an approach presented in (Bendsoe (1997); Bendsoe et
al. (1988)), while the suppression may also be achieved
by explicitly penalizing intermediate values of the bulk
density. The later technique becomes quite popular, es-
pecially with the “solid isotropic material with penaliza-
tion” (SIMP) approach for its conceptual and practical
simplicity (Bendsoe (1997); Mlejnek (1992); Rozvany
(2001)). It has been pointed out that certain configuration
restrictions are equivalent to explicit penalties on inter-
mediate densities (Bendsoe et al. (1999)), thus yielding
similar designs. Various “engineering approaches” have
also been suggested, including adding more constraints
into the problem such as perimeter controls (Petersson
(1999)) and slope constraints (Petersson et al. (1998)),
and employing filters for chattering solutions (Bourdin
(2001); Sigmund (2000, 2001); Sigmund et al. (1998);
Wang and Zhou (2004); Tapp et al. (2004)). Although
these suppression techniques have been widely applied
to problems with multiple physics and multiple materials
(Bendsoe (1997); Bourdin (2001); Bulman et al. (2001);
Rozvany (2001); Suzuki et. al. (1991)), the solutions are
often mesh dependent. Further, numerical instabilities

are inherent and may introduce “non-physical” artifacts
in the results to make the designs sensitive to variations in
the physical and numerical parameters of the system such
as loading (Bourdin (2001); Bulman et al. (2001); Roz-
vany (2001); Sigmund et al. (1998)). The suppressions
do not directly address the chattering problem underlying
the relaxation concept.

An alternative approach for generating a well-posed
topology optimization problem is to define the design
space to exclude chattering designs (Ambrosio et al.
(1993); Larsen et al. (2001)). A common approach is
to introduce an upper bound constraint on the perimeter
of the design (Haber et al. (1995)). A numerical investi-
gation of the “perimeter constraint method” was given
in (Haber et al. (1995)), which shows that a perime-
ter constraint can effectively exclude perforated material
and result in a well-posed macroscopic design. A more
fundamental approach is to use the perimeter as a pe-
nalization for regularizing the ill-posedness of the topol-
ogy optimization problem. A mathematical analysis of
the perimeter regularization method was first presented
in (Ambrosio et al. (1993)). Other studies also provide
more mathematical support for the approach (Larsen et
al. (2001)), which in fact has been extensively utilized
in the field of digital image processing over the years
(Sapiro (2001)).

Another essential feature of most of the existing topol-
ogy optimization approaches is the “raster” geometric
model. A finite element grid is used both for represent-
ing the structure and for physical analysis of the struc-
tural mechanics. In the final optimal design, an effective
indicator value of either 0 or 1 (or in between) is obtained
for each element to define the design geometry implicitly.
In the end, the designer must interpret the resulting dis-
tribution and extract the boundaries of the solid region
(Lin et al. (2000)). This is in contrast to the boundary
models that are commonly used in finite element proce-
dures for shape optimization. Boundary representations
are always essential for design description and for design
automation with CAD and CAE systems. These funda-
mental issues are still argued in the literature (Rozvany
(2001)).

Adopting the same spirit of using boundary-
representation geometric models, a new approach
was recently proposed using the versatile level-set
models (Osher et al. (2001); Sethian et al. (2000);
Wang et al. (2003); Sheen et al. (2003)). The level
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set method was developed in (Osher et al. (2003)) to
provide an efficient way of describing time evolving
curves and surfaces which may undergo topological
changes. It has been recognized that the level-set models
are well suited to the structural topology optimization,
as they can form holes, split into multiple pieces, or
merge with others to form a single one (Osher et al.
(2001); Wang et al. (2003); Wang et al. (2004)). They
are used in (Sethian et al. (2000)) to accommodate an
evolutionary procedure of removing (or adding) material
in regions according to the stress levels computed with
an explicit jump immersed interface method without
using meshes. The general topology optimization
problem can be formulated as a problem of tracking the
geometric boundaries as motion of level sets driven by
the optimization conditions (Allaire et al. (2002); Wang
et al. (2003); Wang et al. (2004)).

In this paper we address the topology optimization prob-
lem of a linearly elastic structure with the level-set for-
mulation. For a given design objective and a set of con-
straints, a global minimization criterion is introduced,
consisting of the design objective and a perimeter penalty
proportional to the Hausdorff measure of the design
boundary. In using the level-set model, the boundary of
the structure is embedded in a scalar function of a higher
dimensionality. Based on the level set theory, the dy-
namic change of the structural boundary is governed by
a partial differential equation (PDE) of Hamilton-Jacobi
type. Thus, the topology optimization is described as a
solution of the Hamilton-Jacobi equation. More specif-
ically, the paper focuses on the following three areas of
discussions:

1. Evolution of geometric boundary embedded in a
higher-dimensional space. The level set model is de-
fined as a region representation of the structure’s shape.
A comprehensive understanding of the structural shape
involves both the notions of its boundary and its in-
terior. While the classical shape optimization has fo-
cused mainly on the process of changing the boundaries
of the shape, the modern notion of topology optimiza-
tion captures the regions bounded by the boundaries.
The level set model provides this extra “dimension” of
information by allowing for an evolution of the three-
dimensional boundaries in a higher four-dimensional
space constrained to embed the original problem. The
permissible changes of the boundaries are further con-
strained by the dynamic motions of the level sets defined

by their partial differential equations. Within this global
and region-based framework, the topology optimization
of the structure is transformed into a process of motion
of the PDE-driven level-set.

2. The velocity field in level-set evolution and the
classical shape derivative. We will further examine the
role of the velocity field in the Hamilton-Jacobi equation
and its relationship to the shape derivative of the classical
shape optimization. We will show that the shape deriva-
tive defined in the framework of shape diffeomorphism
is naturally associated with the flow of the velocity field
of the evolution of the level set model. Thus, the level
set representation can be naturally combined with an ap-
plication of the classical shape analysis. Such a combi-
nation provides a proper and determinant choice of the
velocity field to lead a convergent process of minimizing
the objective functional.

3. Perimeter regularization and curvature-based diffu-
sion. We will study the regularizing effect of the perime-
ter penalty for the topology optimization problem. The
primary effect of a perimeter penalization is that it en-
sures the existence of smooth solutions. For the level
set representation, this effect is shown to be equivalent
to curvature diffusion. In other words, the regulariza-
tion effect can be viewed as running the geometric shape
through a nonlinear heat equation. Since the geometric
heat equation may be regarded as a nonlinear Guassian
smoothing process, the perimeter regularization can also
be related to an anisotropic filtering which gives a num-
ber of advantages as widely used in imaging processing.

4. Numerical computations for approximated solu-
tions. We shall describe numerical techniques for effi-
cient and robust implementation of the proposed method.
Since it is convenient to numerically solve the level set
PDE with a fixed rectilinear spatial grid, we suggest that
such a grid is embedded as nodes in a finite element mesh
which is defined in a fixed reference domain for numeri-
cal calculations of the linear elastic system. This scheme
would allow for a complete separation in the accuracy
of the geometric model and the accuracy of numerical
calculations of the physical system. A local computa-
tion scheme can be used to keep the computational com-
plexity linear to the complexity of the physical boundary
of the structure, while either first order or higher order
approximation methods are available for the space-time
discretization.

We have developed a numerical implementation of the
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level set method for the structural optimization problem.
The benefit and the advantages of the proposed method
are illustrated with several 2D examples that have been
extensively used in the recent literature of topology opti-
mization, especially in the homogenization based meth-
ods.

2 The Optimization Problem

In this paper we use a linear elastic structure to describe
the problem of structural optimization. Conceptually,
the approach presented here would apply to a general
structure model. Let Ω ⊆ Rd (d = 2 or 3) be an open
and bounded set occupied by a linear isotropic elastic
structure. The boundary of Ω consists of three parts:
Γ = ∂Ω = Γ0 ∪Γ1 ∪Γ2, with Dirichlet boundary condi-
tions on Γ1 and Neumann boundary conditions on Γ2. It
is assumed that the boundary segment Γ0 is traction free.
The displacement field u in Ω is the unique solution of
the linear elastic system

−div σ(u) = f in Ω
u = u0 on Γ1

σ(u) ·n = h on Γ2 (1)

where the strain tensor ε and the stress tensor σ at any
point x ∈ Ω are given in the usual form as

ε(u) =
1
2

(
∇u+∇uT )

σ(u) = Eε(u) (2)

with E as the elasticity tensor, u0 the prescribed displace-
ment on Γ1, f the applied body force, h the boundary
traction force applied on Γ2 such as an external pressure
load exerted by a fluid, and n the outward normal to the
boundary.

The general problem of structure optimization is speci-
fied as

Minimize
Ω

Q(u,Ω) =
∫

Ω
F (u)dΩ+µ |∂Ω|

sub ject to :
∫

Ω
dΩ ≤ M (3)

where |∂Ω| is the Hausdorff measure of the boundary, or
perimeter of ∂Ω and µ is a positive parameter. The in-
equality describes the limit on the amount of material in
terms of the maximum admissible volume M of the de-

sign. The variational equation of the linear elastic equi-
librium is written as
∫

Ω
Eε(u) : ε(v)dΩ

=
∫

Ω
f · vdΩ+

∫
Γ2

h · vdΓ, for all v ∈U

U =
{

u : u ∈ H1 (Ω) ; u = u0 on Γ1
}

(4)

with U denoting the space of kinematically admissible
displacement fields and ‘:’ representing the second or-
der tensor operator. The goal of optimization is to find
a minimizer Ω for the global criterion Q(u,Ω) which
yields an optimized structure with respect to a specific
function described by F (u). This is a standard notion
of structural optimization (Bendsoe (1997); Sethian et
al. (2000)) augmented with the perimeter regularization
(Ambrosio et al. (1993)).

The design function F (u) may involve any physical or
geometric quantity of the design. While the most com-
mon choice for F (u) might be the mean compliance of
the structure, i.e.,

J(u,Ω)≡
∫

Ω
F (u)dΩ =

∫
Ω

Eε(u) : ε(u)dΩ (5)

it may deal with a stress consideration F (σ(u)) or a dis-
placement function F (u,x0) = u(x)δ(x−x0) for x, x0 ∈
Ω and δ(·) being the Dirac delta function.

A fundamental question regarding this class of struc-
tural optimization problems (3) is about the existence and
smoothness of the solutions. The issue and its signifi-
cance has been a subject of extensive studies in a class
of more general problems of domain identification with
regularization (Bourdin et al. (2000); Chenais (1975)).
For the structural problems of displacement fields satis-
fying the linear elasticity system, the issue has been in-
vestigated in (Ambrosio et al. (1993); Bourdin (2000);
Larsen (2001)) with some substantial analysis results
suggesting that this class of perimeter-regularized prob-
lems are well-posed with the existence of smooth solu-
tions. While the mathematical analyses are yet com-
plete, various numerical experiences seem to confirm that
the problem formulation provides a well-behaved frame-
work for seeking meaningful optimal solutions, particu-
larly when the models of the structure have finite perime-
ter. The level set model is indeed such a model as to be
presented next.
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(a). The reference design domain D  and the design region .
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        (b). The embedding function x  and the level set model .

Figure 1 : The shape boundary, the design region, and the embedding with a level set model.

3 The Level-Set Model of Shape

The level-set method was developed in (Osher et al.
(2003)) for problems involving the motion of curves and
surfaces. It has found many applications (Osher et al.
(1988); Sethian (1999)) because it allows for automatic
changes of topology, such as merging and breaking. One
attractive attribute of the method is that it gives a natural
way of describing closed boundaries (curves or surfaces)
and its calculations can be easily made on a fixed recti-
linear grid. With this concept, we can embed the struc-
tural boundary surface as the zero level-set of the implicit
function, Φ : R d �→ R, such that

Γ = {x : Φ (x) = 0} (6)

The embedding Φ of (d +1) dimension accommodates
not only the shape boundary but also the global and
regional attribute of the shape, i.e., the shape interior.
While the boundary is the zero level-set of the embed-
ding surface, points distant along the shape boundary but

close through the interior are connected through the re-
gions of the embedding surface above (or below) the zero
level. Thus, the level set is an explicit representation of
the solid region of interest by considering the simplest
scheme of the following form:

Φ (x) > 0 ∀x ∈ Ω\∂Ω (inside the region)

Φ (x) = 0 ∀x ∈ ∂Ω (on the boundary)

Φ (x) < 0 ∀x ∈ D\Ω (outside the region) (7)

where D ⊂ Rd is introduced as a fixed design domain
which contains all admissible shapes Ω, i.e., Ω ⊆ D, for
the convenience of numerical implementation. There-
fore, we may refer to the level-set model as a global or
region-based representation (Kimia et al. (1995)). These
regions of embedding are illustrated in Fig. 1 for a two-
dimensional structure. In this case, the boundary curves
are embedded in three-dimensional function Φ (x) with a
fixed topology.

The topology optimization can be described as a dynamic
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process of level set changing in pseudo-time t. The sur-
face of the embedding function may move up and down
on a fixed coordinate system without ever altering its
topology. The structural boundary embedded on Φ (x)
can undergo drastic topological changes. However, there
is no need to directly track these structural topological
changes. The evolution of the implicit function Φ (x) is
obtained by differentiating both sides of (6) with respect
to time and by applying the chain rule, yielding the sim-
ple Hamilton-Jacobi convection equation

∂Φ (x)
∂t

+∇Φ (x) ·V (x) = 0 (8)

where V (x) is the velocity vector of x and it is often re-
ferred to as the velocity function of the level-set evolu-
tion, i.e.,

V (x) =
dx
dt

(9)

Furthermore, by definition of (7), we have n =
−∇Φ

/|∇Φ| with |∇Φ| = (∇Φ ·∇Φ)1/2, and ∇Φ ·V =
−(V ·n) |∇Φ|. Then, equation (8) can be written as

∂Φ (x)
∂t

= Vn |∇Φ (x)| Vn = V ·n (10)

This is known as the level set equation (Osher et al.
(1998, 2003); Sethian (1999)).

Several features and advantages of this method represent-
ing the unknown solid shape through the level-set func-
tion Φ (x) become apparent:

1. First, level set models are topologically flexible.
The scalar function Φ is defined to always have a simple
topology; the representation does not rely on any kind of
explicit parameterization. The shape representation is as
general as the underlying physical theory. These capabil-
ities would allow the boundary models to easily change
the structural topology while undergoing optimization in
that they can form holes, split to form multiple bound-
aries, or merge with other boundaries to form a single
surface, in contrast to any conventional boundary shape
design (Sethian (1999)).

2. Since the geometric shape is constrained to be the
zero level-set of the embedding function Φ (x), motion of
the level set in (10) is permitted only along the normal di-
rection of Φ (x), driven by the normal velocity Vn =V ·n.
Therefore, the change in the embedded geometric shape

is also only in its normal direction. It is well known
in differential geometry (Kimia et al. (1995); Sapiro
(2001)) that for a general velocity vector V = dx

/
dt its

tangential component does not influence the geometry of
the shape deformation; it changes only its parameteriza-
tion. Therefore, the level set equation will not change the
parameterization of the solid shape; the level set formu-
lation is a parameterization free formulation.

3. In the classical shape optimization theory, there
exists an important concept of velocity field of shape de-
formation (Haug et al. (1986); Sokolowski et al. (1992)).
Based on ideas of continuum mechanics, it has been
found that shape derivatives for a diffeomorphism per-
turbation of a solid exist only in the normal direction of
the geometric boundary. The underlying principle of the
classical shape optimization is to find a suitable choice
of the normal velocity field Vn = V · n to ensure a con-
vergent sequence for the optimal solution. Clearly, the
level set model provides a natural way to accommodate
this requirement. We need to enforce the velocity func-
tion Vn in the level set equation to ensure a decrease of
the objective functional Q(u,Ω) such that it is necessary
that Vn (x) = 0 everywhere on the design boundary Γ at
an optimal solution. This will be discussed in detail in
next section.

4. Further, a number of numerical techniques have
been developed (Osher et al. (1998, 2003); Sethian
(1999)) to make the initial value problem of (10) com-
putationally robust and efficient. In fact, in the general
case of a three dimensional solid structure, the compu-
tational complexity can be made proportional to the sur-
face area of the structure rather than the size of its vol-
ume. The solutions to the level-set PDE can be accurately
computed even when the boundary is not smooth and sin-
gularities develop in classical derivatives (Sapiro (2001);
Sethian (1999)). This robust property is determined by
the unique entropy condition of the Hamilton-Jacobi con-
vection equation (Osher et al. (2003)).

With the level set model we can describe the topology
optimal problem in terms of the scalar function Φ. It is
most convenient to use the Heaviside function H and the
Dirac delta function δ defined as

H (Φ) =
{

1 if Φ ≥ 0
0 if Φ < 0

and δ(Φ) =
dH
dΦ

(11)

Therefore, the optimization problem is now written as
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follows:

Minimize
Φ

Q(u,Φ)

=
∫

D
F (u)H (Φ)dΩ+µ

∫
D

δ(Φ) |∇Φ|dΩ

sub ject to : g(Φ) =
∫

D
H (Φ) dΩ − M ≤ 0 (12)

while the variational equation is written in the energy bi-
linear and the load linear form as

a(u,v,Φ) = L(ν,Φ) (13)

where

a(u,v,Φ) =
∫

D
Eε(u) : ε(v)H(Φ)dΩ

L(v,Φ) =
∫

D
( f · v)H(Φ)dΩ +

∫
D

(h · v)δ(Φ) |∇Φ|dΩ

(14)

It is useful to note that

|∂Ω| =
∫

Γ
dΓ =

∫
D

δ(Φ) |∇Φ|dΩ

4 Shape Derivative and Velocity Field

4.1 Material Derivatives

In the classical shape optimization theory, shape deriva-
tive is an important concept as it relates a variation in the
shape with the resulting variation in the objective func-
tional. In this case, the design variable is not a function
but the direct shape of a geometric domain Ω. (Haug et
al. (1986); Sokolowski et al. (1992)). In order to define
the shape derivative, it is convenient to treat Ω. as a con-
tinuous medium and to use the material derivative idea of
continuum mechanics (Haug et al. (1986)). Shape defor-
mation can be viewed as a transformation defined by the
mapping T : x → xt (x) , x ∈ Ω, such that

xt = T (x, t) Ωt = T (Ω, t) (15)

This mapping may be regarded as a dynamic process of
deforming the shape with pseudo-time t as illustrated in
Fig. 2. In a more general method, this transformation can
be represented by its velocity

V (xt , t) =
dxt

dt

xt

x

n

tV

tVn

t

Figure 2 : Shape mapping and variation of shape.

Under sufficient regularity conditions, such as that T −1

exists, then the velocity field is given by

V (xt , t) =
∂T
∂t

◦T−1 (xt , t)

Therefore, the shape deformation can be described by the
initial-value problem

dxt

dt
= V (xt , t) x0 = x (16)

This shape deformation analysis leads to the so-
called Lagrangian formulation of boundary propagation
(Sokolowski et al. (1992)). When the steady state of
this equation is achieved (i.e.,dxt

/
dt = 0), an optimal

shape of the structure is obtained (Haug et al. (1986));
Sokolowski et al. (1992)). The method has been ex-
tensively studied and there are well-established numeri-
cal implementations and software systems for boundary
shape design (Haug et al. (1986)). Unfortunately, this
formulation has a sever limitation that only geometry of
a fixed topology can be handled. In contrast, our level set
equation (10) is known as the Eulerian formulation of the
boundary propagation since the boundary is captured by
the implicit function Φ (x).

Within this context, the shape transformation is defined
by the identity

xt = T (x, t) = x+ tV (x) V (x) = V (x,0) (17)
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This diffeomorphism was introduced by Murat and Si-
mon (see, e.g., (Sokolowski et al. (1992)). Thus, a
unique velocity field is given as similar to what is de-
fined in the level-set equation (10). Since our global cost
Q(u,Φ) is a functional that depends on the displacement
field u and on the shape domain Ω rather than a direct
function, we need to use the concept of material deriva-
tives in order to derive the shape derivative of the objec-
tive functional (Haug et al. (1986)). A comprehensive
analysis of the concept has been extensively described
in the literature (Haug et al. (1986); Sokolowski et al.
(1992)). We shall utilize three most relevant lemmas
that are presented in Appendix. The reader is referred
to (Haug et al. (1986)) for their proofs.

4.2 Shape Derivative of the Objective Functional

For a given velocity vector V , we now can find the shape
derivative of an objective functional. First, we take the
material derivative of both sides of the variational equa-
tion (14). For the self-adjoint energy bilinear form

a(u,v,Ω) =
∫

Ω
Eε(u) : ε(v)dΩ

we obtain the following form, by applying Lemma 1,

a ′ (u,v,Ω)

=
∫

Ω
Eε(u̇) : ε(v)dΩ +

∫
Γ

Eε(u) : ε(v) (V ·n)dΓ (18)

For the load linear form,

l (v,Ω) =
∫

Ω
f · vdΩ +

∫
Γ2

h · vdΓ

we consider first the conservative loading in which the
traction h in (4) depends on position only. Applying
Lemma 1 and Lemma 2, it yields the following material
derivative

l′ (v,Ω)

=
∫

Γ
( f · v) (V ·n)dΓ

+
∫

Γ2

(∇(h · v) ·n+κh · v) (V ·n)dΓ (19)

We can also consider the more general non-conservative
loading case. For example, the traction force of pressure
loading in (4) is given as

h(x) = −p(x)n(x) , x ∈ Γ2 (20)

Then the material derivative becomes the following, us-
ing Lemma 3,

l′ (v,Ω)

=
∫

Γ
( f · v)(V ·n)dΓ −

∫
Γ2

(div(pv)) (V ·n)dΓ (21)

Further, consider our optimization objective functional in
the general form

J(u,Ω)≡
∫

Ω
F (u)dΩ

Its Eulerian derivative in the direction of the velocity vec-
tor V is obtained by applying Lemma 1, such that,

J′(u,Ω)≡ dJ (Ω,V)
/

dt

=
∫

Ω
F ′ (u) u̇dΩ+

∫
Γ

F (u) (V ·n)dΓ (22)

Finally, the general variable formulation gives rise to the
following adjoint equation

a(u̇,v) =
∫

Ω
F ′ (u) u̇dΩ (23)

Thus, equating (18) with (19) and (21) respectively and
then using (22) and (23), we obtain the Eulerian deriva-
tive of the objective functional, respectively for the con-
servative traction loading as,

J ′(u,Ω)

=
∫

Γ
[F (u)+ f · v+κh · v+∇(h · v) ·n−Eε(u) : ε(v)]

(V ·n)dΓ (24)

and for the non-conservative loading of pressure traction
as,

J ′(u,Ω)

=
∫

Γ
[F (u)+ f · v−div(pv)−Eε(u) : ε(v)] (V ·n)dΓ

(25)

Therefore, this derivative can then be expressed in terms
of the level set model Φ as

J ′(u,Φ) =
∫

Ω
δ(Φ)G(Φ)Vn |∇Φ|dΩ (26)
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where, respectively

G(u,v,Φ)
= −(F (u)+( f +κh) · v+∇(h · v) ·n−Eε(u) : ε(v))

and

G(u,v,Φ)
= −(F (u)+ f · v−div(pv)−Eε(u) : ε(v))

In the gradient of the objective functional (26) G(u,Ω) is
known as the shape gradient density (Haug et al. (1986)).
Here, we use the identity that dΓ = δ(φ) |∇φ|dΩ and
the fact that Γ = {x : Φ (x) = 0} in changing the bound-
ary integral into the use of the level set geometric rep-
resentation. Also, n(Φ) = −∇Φ

/|∇Φ| and κ(Φ) =
−∇ · (∇Φ

/|∇Φ|).

It should be particularly noted that the gradient of the
objective functional J(u,Ω) with respect to a shape per-
turbation with a given velocity vector V is only effective
along the normal direction n as specified by the normal
velocity component Vn = V · n, as illustrated in Fig. 3.
Recalling the level set equation (10), the shape boundary
represented by the zero level set of the function Φ ac-
commodates its change exactly in the normal direction.
Therefore, the level set embedding is complete to repre-
sent any shape changes that yield a perturbation of the
objective functional.

The gradient of the objective functional may be obtained
in a number of different ways. Since the material deriva-
tive u̇ is linear in V , it is in fact the Fréchet derivative with
respect to the shape boundary, evaluated in the direction
of V . Thus, one may apply the general Fréchet derivative
method for the design gradient as given in (Osher et al.
(2001); Wang et al. (2003)). The use of only the normal
component Vn = V · n of the velocity field is justified by
the linearity and continuity of the mapping V → u̇ (Haug
et al. (1986)). Re-parameterization of the shape has no
effect on the design objective, and it is cannot be accom-
modated by the level-set model.

4.3 Steepest Descent Velocity Field

With the above gradient analysis of (26) we can define
“naturally” a velocity field Vn = V · n for the level set
equation (10) to facilitate an optimization process. In the
simplest form of optimization, it amounts to choose a de-
scent direction. The steepest descent direction is directly

f

Figure 3 : Normal velocity field in the variation of the
shape boundary.

obtained from (25) by setting

Vn = −G(Φ) or V = −G(Φ)n

This particular direction for V is called the shape gradi-
ent, and it would yield

J ′(u,Φ) = −
∫

Ω
δ(Φ)G2 |∇Φ|dΩ ≤ 0 (27)

Thus, this choice would give a computational framework
for obtaining an approximate solution such as the algo-
rithms used in (Osher et al. (2001); Wang et al. (2003,
2004)). Theoretical results for the convergence of the
steepest descent method are yet known. However, there
are now sufficient numerical experiences to support the
potential of this formulation (Wang et al. (2003, 2004)).
In such a numerical implementation, any constraint such
as the volume limit is usually incorporated by using a
Lagrange multiplier, as detailed in (Osher et al. (2001);
Wang et al. (2003, 2004)).

5 Perimeter Regularization and Geometric Heat
Flow

As we have described in the Introduction section the
perimeter penalty term |∂Ω| introduced in the global cri-
terion of the topology optimization (12) is primarily for
the purpose of regularizing the problem to exclude or pre-
vent occurrences of chattering solutions. Further, dur-
ing the course of shape optimization with the level set
models, it is possible that the boundary may not able to
maintain certain level of smoothness due to numerical
errors of discrete solutions. The boundary may exhibit
“fast oscillations”. It is highly desirable that the irregu-
larities are removed to enhance the fidelity of the level
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sets, while the meaningful discontinuities in the bound-
ary representing topological changes remain to be kept.
This is similar to the problem of “denoising” in image
processing (Sapiro (2001); Sethian (1999)).

The perimeter regularization used in (12) is essentially
defined as a variational problem (Sapiro (2001)). For the
boundary perimeter

E (Ω)≡ |∂Ω|=
∫

Γ
dΓ =

∫
D

δ(φ) |∇φ|dΩ (28)

by applying Lemma 2, we have its Eulerian gradient as

E ′ (Ω)≡ dE (Ω)
/

dt =
∫

Γ
κ(V ·n)dΓ

=
∫

Ω
δ(Φ)κ(Φ)Vn |∇Φ|dΩ

Again, the steepest descent direction for E (Ω) can be
obtained if we set

Vn = V ·n = −κ (29)

and this would yield

E ′(Ω) = −
∫

Ω
δ(Φ)κ2 |∇Φ|dΩ ≤ 0 (30)

Once we introduce this velocity field Vn = V · n = −κ
into the level set equation (10), we include an important
class of shape changes (or deformations) into the pro-
cess of optimization: curvature deformation. It is well
known that the curvature deformation corresponds to a
parabolic diffusion equation (Kimia et al. (1995); Sapiro
(2001)). This is also known as the geometric heat equa-
tion or nonlinear heat equation since the mean curvature
1
/
(d−1)κ is a function of time. It represents a global

process. In fact, the geometric heat equation would even-
tually shrink any embedded surface to a circular point
(Sapiro (2001)). This property serves as a strong means
to prevent any microscopic holes from existing in the
process of optimization, thus making the problem well-
posed. In addition, the geometric heat deformation has a
remarkable smoothing effect: it decreases the local max-
ima of κ while increases its local minima. Thus, large os-
cillations are immediately smoothed out, and a long term
solution results from dissipation of information about the
initial state of ∂Ω (Sapiro (2001); Sethian (1999)). More
importantly, this mean curvature flow is an anisotropic
diffusion (Wang and Zhou (2004)), unlike a linear heat

equation of the Gaussian filtering (Bourdin (2001)). The
geometric boundary gets diffused only in the tangential
direction of the surface, and there is no “side-effect” of
“averaging”. Therefore, the regularization term of (27)
plays a role in fairing the level sets only without any ef-
fect on their normal motion. This property can also be
explained from the point of view of the so-called total
variation energy (Osher et al. (1988); Sapiro (2001)),
since the perimeter regularization has the identical re-
sult as reducing the total variation of the boundary. The
advantages of anisotropic smoothing have been widely
exploited in imaging processing (Sapiro (2001)), i.e., in
edge detection and image segmentation.

In a perspective of nonlinear heat equations, there might
be other successful regularization strategies rather than
the perimeter measure, such as affine geometric heat
flow

(
Vn = −κ1/3

)
and constant velocity flow (Vn = −1).

In the level-set framework, a heat equation is naturally
accommodated for geometric singularities defined by
topology changes. Based on the theory of viscosity solu-
tions, the level set equation allows for extensions of flows
such as the geometric heat flow to non-smooth curves and
surfaces, as to be discussed in the next section.

6 Numerical Computations

Now, we can combine the Eulerian gradients of the ob-
jective functional (27) and the perimeter penalty (30) to
obtain the velocity field for minimizing the global cri-
terion G(u,Ω) (12), expressed in terms of the level set
model, as follows

Vn(u,w,Φ) = −G(u,w,Φ)−µκ(Φ) (31)

Therefore, by substituting (31) into the level set equation
(10), we need to solve a final PDE to obtain the steepest
descent solution for an optimal solution of Q(u,Ω):

∂Φ (x)
∂t

− [G(Φ)+µκ(Φ)] |∇Φ (x)| = 0 (32)

There are a number of computational issues that are
important to the proposed level set method. First, the
level set embedding is defined at the particular zero
level Φ (x, t) = 0. This fact can be exploited to develop
highly efficient algorithms which reduce the computa-
tional complexity to the physical level of the structural
(Osher et al. (1988); Sethian (1999)). Second, a set
of highly accurate and robust numerical algorithms have
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been developed for a discrete solution of the PDE of (10)
(Osher et al. (1988, 2003); Peng et al. (1999)). Third, an
approximate solution to the system equation of the lin-
ear elasticity is usually obtained with a finite element
method. In this section, we discuss a numerical imple-
mentation of the level set method with a structure finite
element mesh and a rectilinear spatial grid. Some key
aspects of the implementation are described here, while
other details related to the standard level set calculus are
referred to (Sethian, (1999)).

6.1 Numerical and Finite Element Approximation

Numerical approximation for the level set equation (32)
can be easily implemented using the standard approach
of discretizing x −t space into a collection of grid points
with ∆x = hx and ∆t = ht . For convenience, usually a
rectilinear grid for x ∈ R d is used.

In general, the linear elastic equation (4) may be solved
by using a finite element method. For the purpose, one
may chose to use an adaptive meshing scheme with a
more explicit description of the boundary as discussed in
(Bourdin et al. (2000)). Such an implementation is typ-
ically complicated. Another technique is to use a fixed,
structured mesh, as it is often seen in homogenization-
based topology optimization (Bendsoe (1997); Bendsoe
et al. (1988); Haber et al. (1996)). This has an added
advantage that a fixed, rectilinear grid for the numerical
approximation of the level set PDE can be made coinci-
dental to some nodes of a rectilinear finite element mesh,
rendering a more straightforward numerical implementa-
tion.

Based on this idea, the permissible design space D ⊆
Rd is first specified for the given problem, in a sim-
ilar manner that the “ground structure” is specified
in a homogenization-based approach (Bendsoe (1997)).
Proper boundary conditions are specified on ∂D such as
Neumann conditions and Dirichlet conditions as shown
in Fig. 4. The reference space D is then discretized with
a rectilinear mesh for a specific spatial interval ∆x = hx,
1
/

2hx, or coarser (finer). Note that the resolution of spa-
tial grid ∆x = hx is essentially determined based on the
numerical accuracy required for an approximated solu-
tion of the level set PDE (32), while the resolution of
the finite elements determines the accuracy of the ap-
proximation of the linear elastic equation (4). This ac-
curacy can also be improved by using a high order inter-
polation scheme in finite element calculations (i.e., using

p-version elements). In contrast to a homogenization-
based method with a “raster geometry” model, the ac-
curacy of geometric representation is entirely separated
with the accuracy of the finite element solution of the
system mechanics. For example, if the design objective
is only the mean compliance of the structure, the accu-
racy of its approximation is not nearly as important as
that of the Hamilton-Jacobi equation. In that case, we
may select a finite element mesh coarser than the rectilin-
ear grid without any major compromise of the accuracy
of the final numerical solution.

In the process of level-set based optimization, the design
represented by the level-set model is initialized as Ω 0

at t = 0 such that its boundary fully contains that of D,
∂D ⊆ ∂Ω0. As the optimization proceeds, the geometric
boundary ∂Ω will be changed as motion defined by the
level-set partial differential equation (10) until a termina-
tion as illustrated in Fig. 4. At a successful optimization,
the final optimal shape Ω will be a subset of the fixed
reference domain, Ω ⊆ D, as required by the optimality
conditions and the constraints.

f

D

Figure 4 : Finite elements of a rectilinear grid in the fixed
reference domain D and the solid shape embedded by the
level set model Ω. The boundary condition on Γ 1 is spec-
ified on the fixed reference domain D.

Since the finite elements are fixed during the optimiza-
tion procedure, we must ensure that the structural system
is non-singular. This can be dealt with by the classical as-
sumption that the set D\Ω is filled with a “fictitious ma-
terial” of small mass density ρ

/
ρ0 = ερ, where ρ0 rep-

resents the mass density of the homogeneous material.
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Therefore,

ρ(Φ) = ρ0[
(
1−ερ

)
H (Φ)+ερ] (33)

Further, in the numerical implementation, functions δ(Φ)
and H(Φ) have to be approximated with a first order ac-
curate, smoothed version such as defined in (Osher et al.
(1988, 2001)). Thus, we define the following approxima-
tion functions (Wang et al. (2003))

H(Φ) =

⎧⎪⎨
⎪⎩

0 Φ < −ξ
3
4

(
Φ
ξ − Φ3

3ξ3

)
+ 1

2 −ξ ≤ Φ < ξ
1 Φ ≥ ξ

δ(Φ) = dH (Φ)
/

dΦ (34)

where ξ is a parameter of choice to determine the size of
the bandwidth of numerical smoothing.

In this fashion, the geometric boundary of the structure
under optimization is always implicitly described as the
zero level set of Φ (x, t) = 0. There is no need to explic-
itly recover the boundary until the end of the optimiza-
tion (Wang et al. (2003)). There exist many techniques
in most of the popular scientific software systems to com-
pute iso-curves and iso-surfaces. For example, the well-
known marching-cubes technique in computer graphics
can be directly applied to recover 2D and 3D level sets.

6.2 Discrete Computation Schemes

The discrete solution to the Hamilton-Jacobi equation
(10) is computed using finite differences over discrete
time steps ∆t = ht and on the discrete grid ∆x = hx over
the level set function. A highly robust and accurate com-
putational method was developed by Osher and Sethian
(1988) to address the problem of overshooting. Based
on the notion of weak solutions and entropy limits, a so
called “up-wind scheme” is proposed to solve (10) with
the following first order update equation

φn+1
i jk

= φn
i jk −∆t

(
max

(
(Vn)i jk ,0

)
∇++min

(
(Vn)i jk ,0

)
∇−

)
(35)

where

∇+ = {max(D−x
i jk,0)2 +min(D+x

i jk,0)2

+max(D−y
i jk,0)2 +min(D+y

i jk,0)2

+max(D−z
i jk,0)2 +min(D+z

i jk,0)2}1/2,

∇− = {max(D+x
i jk,0)2 +min(D−x

i jk,0)2

+max(D+y
i jk,0)2 +min(D−y

i jk,0)2

+max(D+z
i jk,0)2 +min(D−z

i jk,0)2}1/2

and, ∆t is the time step, and D±x
i jk,D

±y
i jk and D±z

i jk are the re-
spective forward (+) and backward (−) difference oper-
ators on Φ n

i jk in the three dimensions of x ∈R3 separately.
In addition, the time steps ∆t must be limited to ensure
the stability of the up-wind scheme (35). The Courant-
Friedrichs-Lewy (CFL) condition requires ∆t to satisfy

∆t max
∣∣∣(Vn)i jk

∣∣∣ ≤ ∆min ∆min = min(∆x,∆y,∆z) (36)

where ∆min stands for the minimum grid space among the
three spatial dimensions (Osher et al. (2003)).

Higher order schemes can also be obtained for the
space quantities ∇+ and ∇− for discrete approximation.
They are typically constructed with an essentially non-
oscillatory (ENO) interpolation as fully described in (Shu
et al. (1988)). We have implemented this so-called “high
resolution” scheme and fount that it is indeed more ac-
curate than the first order scheme (Wang et al. (2003)).
The first order time-explicit scheme (35) is well known
for its numerical stability. It can be made of higher or-
der through a total variation diminishing (TVD) Runge-
Kutta scheme (Shu (1988)). As outlined in the literature
(Sethian (1999); Shu (1988); Wang et al. (2003)), these
schemes are explicit schemes and hence can be imple-
mented in a straightforward manner.

6.3 Local Schemes of Level Set Computation

While the up-wind scheme makes the level set method
numerically robust, the level set equation can also be
made with its computational complexity proportional to
the boundary area of the structure being optimized rather
than the size of the volume in which it is embedded. This
is because the structural boundary is defined to be a sin-
gle level set (at the zero level), thus the calculation of
solutions over the entire range of the function Φ is un-
necessary.
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An efficient method has been developed in (Peng et al.
(1999)) by making the embedding function Φ as a dis-
tance function. Then, while the function Φ is maintained
to be a signed distance function, a local computation
of the level set requires update only those points where
Φ ≈ 0. This local computation scheme is simple and ef-
ficient. It has been shown that this method has a formal
complexity of O(N) in the 2D case and O(N 2) in the 3D
solid case, where N is the size of the spatial grid in each
direction of the level set (Peng et al. (1999)). In other
words, the complexity of the level set model computa-
tion remains at the level of its physical dimension, not
of the higher dimension of its embedding function. This
advantage makes the local level set method practically
attracting.

In this scheme we compute the signed distance function
as defined as the Eikonal equation

|∇Φ(x, t)|= 1 (37)

This gives rise to another PDE to solve for its steady
state,

∂Φ
∂t

= sign(Φ)(1−|∇Φ|) (38)

where sign(Φ) = 2H (Φ)−1 is the signed distance func-
tion (Osher et al. (1988)). This approach allows us to
avoid finding the design boundary explicitly. Further-
more, it also serves a purpose of re-initialization of the
level set function Φ(x, t) in order to obtain highly accu-
rate numerical results (Osher et al. (1988)). The solution
of this PDE would prevent Φ(x, t) from deviating away
from the signed distance function.

6.4 Velocity Extension and Smoothing

In the level set formulation, we need the normal velocity
Vn in a neighborhood of the design boundary or the zero
level set Γ(t). As suggested in (Sethian (1999)), the most
natural way to extend Vn off the design boundary is to let
the velocity Vn be constant along the normal to Γ(t) such
that

∇Vn ·∇Φ = 0 (39)

This leads to the following hyperbolic partial differential
equation

∂Vn

∂t
+ sign(Φ)

∇Φ
|∇Φ| ·∇Vn = 0 (40)

Accurate and robust numerical schemes, such as the first
order upwind method, exist to compute discrete solu-
tions to partial differential equations of velocity exten-
sion (Sethian (1999)). For simplicity of the presentation,
the reader is referred to (Osher et al. (1988); Peng et al.
(1999)) for detailed formulae.

As a notable advantage of the level set method, the struc-
tural boundary is not tracked explicitly while the level set
equation is solved over the rectilinear grids. Therefore,
the velocity field defining the level set movement cannot
be directly evaluated for the boundary surface. We use a
smoothing method to evaluate the velocity field over the
finite element nodes. We may introduce a general and
positive function with tight support as a weighting func-
tion, such as the Gaussian function

α(x) =
1√

2π∆min
e−Φ2(x)

/
∆2

min (41)

with a constant ∆min representing the minimal width of
the along the level sets. The purpose is to use it to smooth
the velocity vector Vn with an effect on the gradient of the
objective functional such that

min
Ṽn

∫
D

(
α (x)Ṽn (Φ)−Vn (u,w,Φ)δ(Φ)

)2
dΩ (42)

By solving this least squares smoothing equation, we ob-
tain a new non-local velocity field Ṽn (Φ) defined on the
rectilinear grid of computation.

7 Numerical Examples

Numerical examples are presented in this section for
mean compliance optimization problems that have been
widely studied in the relevant literature (Bendsoe (1997);
Bulman et al. (2001)). The objective function of the
problem is the strain energy of the structure with a mate-
rial volume constraint,

J(u,Ω) =
∫

D
Eε(u) : ε(u)dΩ (43)

For all examples, the material used is steel with a mod-
ulus of elasticity of 200 GPa and a Poisson’s ratio of ν=
0.3. For clarity in presentation, the examples are in 2D
under plane stress condition.

7.1 MBB Beams

This example is known as MBB beams related to a prob-
lem of designing a floor panel of a passenger airplane in
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(a)
(b)

(c) (d)

(e) (f)

(g) (h)

Figure 5 : A mid-point loaded MBB beam with fixed-simple supports and a volume ratio of 0.3. (a) Initial design
of the right half. (b – g) Intermediate results. (h) Final solution.

Figure 6 : The mean compliance and the volume of the
structure over iteration for example of Fig. 5.

Germany. The floor panel is loaded with a concentrated
vertical force P = 80N at the center of the top edge. It
is has a fixed support and a simple support at its bottom
corners respectively. The design domain has a length to
height ratio of 12:2.

In Fig. 5 the volume ratio is specified to be 0.3, and we
use 22×62 quadrilateral elements to model a half of the
structure due to the geometric symmetry. The numerical
width ξ of the Heaviside function is taken the same with
the grid width. The changes of the objective function and
the structure volume over the iteration are shown in Fig.
6. In Fig. 7 the volume ratio is specified to be 0.35, and
56×156 quadrilateral elements are used. The numerical
width ξ of the Heaviside function is taken as 0.8 times of
the grid width. The changes of the objective function and
the structure volume over the iteration are shown in Fig.
8. In Fig. 9 the volume ratio is increased to 0.355, while
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7 : A mid-point loaded MBB beam with a volume ratio of 0.35. (a) Initial design of the right half. (b – g)
Intermediate results. (h) Final solution.

Figure 8 : The mean compliance and the volume of the structure over iteration for example of Fig. 7.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 9 : A mid-point loaded MBB beam with a volume ratio of 0.355. (a) Initial half design. (b – g) Intermediate
results. (h) Final solution.

ξ is taken as 0.5 times of the grid width. The changes of
the mean compliance and the volume over the iteration
are shown in Fig. 10.

7.2 Cantilever Beam

The second example is a cantilever beam with a concen-
trated vertical force P = 80N at the bottom of its free
vertical edge. The design domain has a length to height
ratio of 3.2:2. In Fig. 11 the volume ratio is specified to
be 0.3, and we use 22×34 quadrilateral. The numerical
width ξ of the Heaviside function is taken the same with
the grid width. The changes of the mean compliance and
the structure volume over the iteration are shown in Fig.
12.

Figure 10 : The mean compliance and the volume of the
structure over iteration for example of Fig. 9.
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(a) (b)

(c) (d)

(e) (f)

(g)
(h)

Figure 11 : A cantilever beam with volume ratio of 0.3. (a) Initial design. (b – g) Intermediate results. (h) Final
solution.

Figure 12 : The mean compliance and the volume of the
structure over iteration for example of Fig. 11.

7.3 Bridge Structures

A bridge type structure is considered next. A rectangu-
lar design domain of L long and H high with a ratio of
L : H = 12 : 6 is loaded vertically at the center point of
its bottom with P = 30N as shown in Fig. 13. The left
bottom corner of the beam is fixed, while it is simply
supported at the right bottom corner. The volume ratio of
0.31 is considered. The initial design and some interme-
diate and the final optimization results are shown in Fig.
13. The final optimum solution is nearly identical to what
other researchers have obtained using a homogenization
based method (Bendsoe (1997); Bulman et al. (2001)).
A mesh of 62×122 quadrilateral elements are used for
the finite element analysis, and the numerical width ξ for
the approximate Heaviside function is chosen to be 0.7
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(a)
(b)

(c) (d)

(e) (f)

(g) (h)

Figure 13 : A bridge type structure with fixed-simple supports. (a) Initial design. (b – g) Intermediate results. (h)
Final solution.
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Figure 14 : The mean compliance and the volume of the structure over iteration for example of Fig. 13.

times of the grid width.

Another bridge type structure is considered with multiple
loads at its bottom as shown in Fig. 15, with P1 = 40N
and P2 = 20N. Again the volume ratio is 0.3. The initial
design and some intermediate and the final optimization
results are shown. Changes in the mean compliance and
the body volume during the iterations of optimization are
shown in Fig. 16.

8 Conclusions

We have presented a level-set based method for struc-
tural shape and topology optimization. We have shown
that the level set representation is in fact a region repre-
sentation of the structure’s shape with the capability to
provide an extra “dimension” of information by allow-
ing for changes of the three-dimensional boundary in a
higher four-dimensional space constrained to embed the
original problem. This model leads naturally to a dy-
namic framework of a Hamilton-Jacobi partial differen-
tial equation governing permissible motions of the level
sets with flexibility of handling topological changes. We
have established a relationship between the velocity field
in the Hamilton-Jacobi equation to the shape derivative
of the classical shape variation. This relationship justi-
fies a proper choice of the velocity field for an optimiza-
tion process. We have studied the effect of a Hausdorff
measure (perimeter) penalty. Fundamentally, a perimeter
penalization restricts the feasible design space to elimi-
nate chattering solutions and thus ensures the existence
of smooth solutions. At the same time, the regulariza-

tion adds curvature diffusion to the optimization process.
This leads to a desirable effect of an anisotropic filtering
to smooth the geometric boundary without any “damage”
on the convergence of the optimization process. We fur-
ther described numerical techniques for efficient and ro-
bust implementation of the proposed method, by embed-
ding a rectilinear grid in a fixed finite element mesh de-
fined on a reference design domain. This would separate
the accuracy issues of numerical calculations of the phys-
ical equation and the evolution of the level-set model.
The benefit and the advantages of the developed method
are illustrated with several 2D examples that have been
extensively used in the recent literature of topology opti-
mization, especially in the homogenization based meth-
ods.

In our numerical implementation, we have used the
second order approximations of the TVD Runge-Kutta
scheme and the ENO “upwind” scheme for discrete
space-time solutions. While this implementation gives
rise to accurate and stable numerical solution as pre-
dicted, we have noticed that the convergence speed of
the method could be improved. A promising technique is
to incorporate a nonlinear velocity mapping. It has been
shown in (Wang et al. (2004)) to be able to substantially
increase the computational efficiency from the basic gra-
dient descent method.

While we demonstrated the method only with examples
of mean compliance optimization in two dimensions,
this is mainly for convenience. The approach adopted
here naturally lends itself to more general optimal design
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 15 : A bridge type structure with multiple loads. (a) Initial design. (b – g) Intermediate results. (h) Final
solution.

problems involving multi-physics and/or multi-domains.
In fact, we have extended the approach to a multi-phase
model of level set for problems of optimization of hetero-
geneous materials and/or graded materials. The results
are to be reported separately.
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Figure 16 : The mean compliance and the volume of the structure over iteration for example of Fig. 15.
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Appendix A: Material and Shape Derivatives

We present a brief description of the material and shape
derivatives relevant to the work discussed in the paper
with the following materials adapted from (Haug et al.
(1986)):

Definition: For a given velocity vector V (x) in the shape
transformation (17), the material derivative u̇(x;V) of
u(x;V ) for x ∈ Ω is defined by

u̇(x;V ) = lim
t→0

1
t
[u(x+ tV )−u(x)]

Lemma 1: For a regular function f (x) defined on Ω,
with an integral over Ω defined by

ψ1 =
∫

Ω
f (x)dΩ

the material derivative of ψ1 at Ω is given by

ψ′
1 =

∫
Ω

f ′ (x)dΩ+
∫

Γ
f (x) (V ·n)dΓ

where Γ = ∂Ω and n is the unit normal to the infinitesimal
area dΓ.

Lemma 2: Consider an integral over Γ,

ψ2 =
∫

Γ
g(x)dΓ

where g(x) is a regular scalar function defined on Γ.
Then the material derivative of ψ2 at Ω is given by

ψ′
2 =

∫
Γ

g′ (x)dΓ+
∫

Γ
(∇g ·n+κg(x)) (V ·n)dΓ

where κ = div n = ∇ · n is the curvature of Γ in R2 and
twice the mean curvature of Γ in R3.

Lemma 3: Consider an integral over Γ,

ψ3 =
∫

Γ
g(x) ·ndΓ

where g(x) is a regular vector function defined on Γ and
n is the normal vector of Γ. Then the material derivative
of ψ3 at Ω is given by

ψ′
3 =

∫
Γ

(
g′ (x) ·n+div g(x) (V ·n)

)
dΓ




