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Analysis of Wrinkling Behavior of Anisotropic Membrane

K. Woo1, H. Igawa2, and C.H. Jenkins3

Abstract: This paper presents the development
and evaluation of a wrinkling analysis procedure for
anisotropic membranes. The procedure is based on a
penalty-parameter modified material model and a non-
linear root finding to simulate the uni-axial stress state.
The procedure was implemented in the ABAQUS finite
element code as a user subroutine, and then applied to
annular and square membranes. The wrinkle problems
were also solved by shell element post-buckling analysis
and the results were compared. The effect of anisotropy
and unsymmetric loading on the wrinkling behavior was
investigated.

keyword: Membrane, wrinkle, anisotropic, penalty-
parameter.

1 Introduction

There has been growing interest in the application of
membrane materials to gossamer space structures. This
is mainly due to the fact that the membrane structures
can be made exceptionally low in mass and packaged
into very small volumes [Jenkins (2001)]. Typical space
membranes consist of a very thin load-bearing layer with
metallic coating layers for reflection and thermal control.
While these were widely considered as isotropic, there
can be some sources of anisotropy resulting from packag-
ing creases or the way the membranes are manufactured.
The thin membranes have zero or very small bending
rigidity and are buckled almost immediately under com-
pression, which is called wrinkling. The wrinkling, along
with the inherently large deformation accompanied dur-
ing loading, makes the analysis of membrane structures
a challenging task.

Recently, a number of numerical analyses have been per-
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formed to study wrinkling. The wrinkling algorithms
employed in these studies can be categorized into two
approaches: deformation tensor modification [Rodde-
man, Drukker, and Oomens (1987a and 1987b); Rod-
deman (1991); Kang and Im (1997); Lu, Accorsi, and
Leonard (2001); Nakashino and Natori, (2003)] and stiff-
ness/compliance modification [Miller, Hedgepeth, Wein-
garten, and Das (1985); Miyazaki and Nakamura (1998);
Liu, Jenkins, and Schur (2000 and 2001)]. While the for-
mer approach provides rigorous mathematical formula-
tion of the wrinkling mechanism, the latter is physically
motivated and much simpler, and can be easily imple-
mented to existing finite element codes for the analysis
of isotropic membrane structures with wrinkles. Detailed
wrinkled shapes were predicted by other researchers,
where geometrically non-linear post-buckling analyses
were performed for rectangular solar sail membranes
with refined shell element meshes seeded with a random
[Tessler, Sleight, and Wang (2003)], or a combination of
selected bifurcation eigenmodes [Wong, Pellegrino, and
Park (2003); Su, Abdi, Taleghani, and Blandino (2003)],
geometrical imperfections to instigate out-of-plane wrin-
kling deformation. In these analyses, high mesh refine-
ment was necessary to represent high spatial frequency
wrinkle deformation reasonably, as well as to avoid el-
ement locking. Lee, Cho and Lee (2002) developed a
specially formulated shell element to alleviate the lock-
ing problem for thin shells. The bulk of the above refer-
enced works has been concerned only with the isotropic
membrane case.

There are several reasons to motivate the analysis of
anisotropic membranes, however. Most real membrane
structures are fabricated from thin polymer sheets, many
of which have oriented polymer chains due to the man-
ufacturing process (e.g., calendaring); often this orienta-
tion is referred to as the “machine” and “transverse” di-
rections. Even in cases where the sheets may be initially
isotropic, creases resulting from handling and packaging,
and seams required to fabricate large areas, can all lead
to an “effective anisotropy”. Analysis of wrinkling in
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anisotropic membranes presents special challenges that
will be subsequently discussed.

In this study, a membrane wrinkle analysis procedure
was developed for anisotropic membranes. The proce-
dure consists of a penalty-parameter modified material
(PPMM) model and a non-linear root finding to simu-
late the uni-axial stress state. The algorithm was imple-
mented in the ABAQUS finite element code as a user sub-
routine. In the following, the procedure is described in
detail. Next, it is applied to partly wrinkled anisotropic
annular and square membranes (that may be, for exam-
ple, considered as prototypes of solar sail membranes).
The same wrinkle problems are also solved by shell el-
ement post-buckling analysis and the results are com-
pared. Lastly, the effect of anisotropy and unsymmetric
loading on the wrinkling behavior is investigated.

2 Description of wrinkling model

The basic principle of the penalty-parameter based wrin-
kling algorithm is to numerically simulate the uni-axial
stress state for wrinkled membranes by modifying the
constitutive relation [Liu, Jenkins, and Schur (2000,
2001)].
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Figure 1 : Definition of element (x1,x2), principal
(Ω1,Ω2), and wrinkle coordinate systems (ω1,ω2).

Consider an isotropic membrane element where
stresses/strains are given for the unwrinkled config-
uration. Fig. 1 shows coordinate systems: element
coordinate system (x1,x2) where the material properties
are defined, principal stress coordinate system (Ω1,Ω2),
and wrinkle coordinate system (ω1,ω2). The wrinkle
coordinate system is defined in such a way that, when
wrinkles occur in an element, the element is in a
uni-axial stress state in the ω2-direction. The angles

ψ and φ define the positive rotations from the element
coordinates to the principal and the wrinkle coordinates,
respectively. The principal stresses and direction are
calculated as
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The principal stresses and strains are used to determine
whether the element is taut, wrinkled, or slack. This can
be done by applying the mixed criterion [Kang and Im,
(1997)] where

(i) if σma j > 0 ⇒ taut,

(ii) if σmin ≤ 0 and εma j > 0 ⇒ wrinkled,

(iii) if εma j ≤ 0 ⇒ slack. (3)

If the membrane is taut, no modification is necessary
in the stress-strain relation. If it is slack, all stiffness
components are reduced to near zero values (i.e., D∗

i j =
Di j/P, where P is a penalty number). If it is wrinkled,
wrinkling occurs in the principal coordinate directions
where the shear stress is zero. Thus, the principal and
wrinkle coordinate systems coincide for isotropic mate-
rials, i.e., φ = ψ. To eliminate the minor principal stress
and thus have the uni-axial stress state, the S 11 of the
compliance matrix is penalized to PS11 in the principal
coordinate system, where P is the large penalty number.
The resulting modified stress-strain relations are written
as⎧⎨
⎩
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where
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Here the superscript ∗ was used to denote variables mod-
ified by the penalization. From Eqs.4 and 5, one can see
that σ∗

min vanishes and, thus, the uni-axial stress state has
been achieved with σ∗

ma j in the ω2-direction. The modi-
fied stress and stiffness in the principal coordinate system
are then transformed to the element coordinate system,
which are used to calculate the new element stiffness ma-
trix and force vector.

It should be noted that the vanishing of a diagonal term in
the tangent stiffness is troublesome since in that case the
stiffness matrix can be singular. To avoid this numerical
problem, the size of the penalty number (P) is controlled
to provide the necessary stiffness but small enough not to
affect the final solution.

In the case of anisotropic membranes, the wrinkling
does not necessarily occur in the principal directions.
Since there is coupling between the normal and shear
stress/strain components, the [D] and [S] matrices are
fully populated. Penalizing S11 →PS11 to eliminate the
minor principal stress in the principal stress coordinates
would result in non-zero shear stress values and thus the
uni-axial stress condition is not achieved. This can be
illustrated from a simple example. Fig. 2 shows the
stress/strain variation versus coordinate system rotation
angle (θ) for a given orthotropic material properties and
strain state. The unwrinkled principal stress direction oc-
curs at θ = 0.831 rad where σ22 is maximum with zero
σ12. However, after penalization to eliminate σ11, the
shear stress becomes non-zero in this direction and it
does not become the uni-axial stress state. Instead, the
shear stress vanishes at a slightly different direction of
θ = 0.653 rad as shown in Fig. 2(b) which is the correct
wrinkle direction. (σ22 is maximum in this case at θ =
0.888 rad.)

The wrinkling direction for the anisotropic membranes
can be found by a combination of the penalization and
a root-finding procedure. Assume that the wrinkling oc-
curs in a coordinate direction (ω1,ω2) rotated by φ from
the element coordinates (x1,x2). (Superscripts tilde are
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Figure 2 : Variation of stresses versus coordinate system
rotation angle for an orthotropic membrane: (a) unpe-
nalized, and (b) penalized. Elastic constants and strains
are given as E11 = 105Pa,E22 = 106 Pa, v12 = 0.03, G12 =
0.385x105Pa, ε11 = 0.0003, ε22 = 0, and γ12 =−0.0003.

used to denote variables in the wrinkle coordinates.) To
test whether this is the correct wrinkling direction, the
following steps are performed.

• Step 1: Calculate {ε̃(φ)} and [S̃(φ)] by transforma-
tion.

• Step 2: Penalize S̃11 →PS̃11 and compute [D̃∗(φ,P)]
and {σ̃∗(φ,P)}.

• Step 3: Check if the following conditions are satis-
fied.

σ̃∗
12(φ,P)

= D̃∗
23(φ,P)ε̃22(φ,P)+ D̃∗

33(φ,P)γ̃12(φ,P) = 0

σ̃∗
22(φ,P)

= D̃∗
22(φ,P)ε̃22(φ,P)+ D̃∗

23(φ,P)γ̃12(φ,P) > 0 (6)

If the two conditions in Step 3 are satisfied simultane-
ously, the current φ is the wrinkling direction and the
modified stiffness and stress are back-transformed to the
element coordinates. If not, Steps 1-3 are repeated.
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3 Numerical results

3.1 Annular membrane

The wrinkling algorithm developed in this study was first
applied for verification to Mikulas’ annulus membrane
[Mikulas (1964)] and Stein and Hedgepeth’s rectangular
membrane [Stein and Hegepeth (1961)] with isotropic
properties. It was found that the present algorithm was
able to predict the wrinkling behavior accurately. The
results of this verification were explained in detail in a
separate paper (see Hossain, Jenkins, Woo, and Igawa
(2004)] and thus not included herein.

To further verify the wrinkling algorithm for anisotropic
properties, Roddeman’s annular membrane problem was
considered [Roddeman (1991)], in which the annular
membrane is attached to a rigid disk at the inner hub and
to a boundary ring at the outer edge. The inner radius of
the membrane is 5 m and the outer radius 12.5 m. The
material properties used are:

E11 = 105 Pa, E22 = 106 Pa, ν21 = 0.3,

G = 0.385x105Pa (7)

The problem was solved by geometrically non-linear
membrane analysis with the present wrinkle algorithm
and by shell element post-buckling analysis, both using
ABAQUS. The meshes were modeled with M3D4 ele-
ments with wrinkle algorithm for the membrane analysis
and S4 elements for shell analysis. In the shell analysis,
a random geometrical imperfection with the magnitude
of 0.1% of the thickness was applied to instigate the out-
of-plane deformation, and *STATIC, STABILIZE option
was used to stabilize the solution procedure with the
default value of damping parameter in ABAQUS. The
thickness of the membrane was 0.01 m. This thickness
was selected for numerical purposes in which a small
thickness was necessary for shell element analysis for the
buckling to occur at a relatively lower load level, while
too small a thickness could cause severe convergence
problems from the large differences between the mem-
brane and bending stiffnesses. In the analysis, the rigid
inner hub was subjected to a 5 o rotation. The amount
of the rotation was selected also for numerical purposes
to limit the extensive computation time for the shell post-
buckling analysis. The applied boundary conditions were
such that all degrees of freedom were fixed at the outer
hub, and the in-plane displacements for the rigid rota-
tion were specified at the inner hub. In the shell analysis,

the out-of-plane displacement and the rotations were also
fixed at the inner hub.
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Figure 3 : Prediction of wrinkle shape by membrane
analysis subjected to a rigid torque at the inner hub
(NE=200): (a) tensile stress vector, and (b) wrinkled el-
ements.

Fig. 3(a) shows the deformed mesh with direction of the
major principal stress by the membrane analysis with a
coarse mesh. The length of the line indicates the relative
magnitude of the stress. Due to the anisotropy, a skewed
stress distribution was found which agreed well with the
result by Lu, Accorsi, and Leonard (2001). Shown in
Fig. 3(b) is the predicted wrinkled region by the criterion
given in Eq.3. Here, an element is denoted as wrinkled
when wrinkling occurs for all integration points of the
element, and partly wrinkled when wrinkling occurs for
at least one integration point but not all. When all in-
tegration points are taut, the element is denoted as taut.
The figure shows that wrinkling occurred in a cyclic pat-
tern which agrees well with that of the experimental re-
sult by Miyamura (2000). It can be seen that all the el-
ements near the inner hub where the rigid rotation was
applied were wrinkled, while the cyclic partial wrinkling
occurred at the outer region.

This wrinkling pattern can be understood considering the
stress distribution. Figs. 4 and 5 show the distribution of
the initial unwrinkled and final wrinkled major and minor
principal stresses, respectively. The arrows indicate the
region where the maximum stresses were occurred. Note
that while there was little change between the initial and
final major stress distributions, the initially all negative
minor principal stresses became positive in the final dis-
tribution, and the region with near zero minor principal
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Figure 4 : Distribution of unwrinkled principal stresses:
(a) σma j and (b) σmin. The arrows indicate stress concen-
tration points.
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Figure 5 : Distribution of wrinkled principal stresses: (a)
σma j and (b) σmin. The arrows indicate stress concentra-
tion points.

stresses in Fig. 5(b) coincides with the wrinkled region
in Fig. 3(b). Comparing the wrinkle shape with the stress
distribution, one can see that there occurred two tension
wrinkles at θ=117 o and -63o, and two compression wrin-
kles at θ=36 o and -144o, approximately. The wrinkling
was thought to initiate at the stress concentrated region
at the inner hub indicated by arrows in Fig. 4, and then
proceed to the outer hub.

For comparison of membrane and shell analysis results,
a series of mesh convergence tests were performed. The
considered mesh sizes were varied to model the annu-
lus with from 200 to 20,000 elements. Fig. 6 shows
the variation of the maximum tensile stress (σmax) and
the tensile stress at an arbitrary point xo (σxo) versus the
number of elements. The maximum tensile stress oc-
curred at two points of the inner hub rotated approxi-
mately by 150 o and -30o from the x1-axis. The point x o,
located at a mid point in the wrinkled region (r=8.75m,

θ=117o), was selected only for comparison purposes. As
can be seen in the figure, the tensile stress σxo by both the
membrane and shell analyses converged quickly as the
number of elements increased. Compared respectively to
the σxo’s calculated using 20,000 element meshes, 3,200
membrane elements and 7,400 shell elements produced
the converged results with less than 1% differences. In
addition, the σxo’s by the membrane and shell analyses
agreed well to each other. The difference in σxo was
1.7% when 20,000 elements were used. In the case of
the maximum tensile stress, the membrane analysis also
showed a good convergence. The σmax with 3,200 ele-
ments was different only by 1.2% from that with 20,000
elements. However, the convergence by the shell analy-
sis was much slower for the σmax. When using 20,000
elements, the shell analysis underestimated the σmax by
7.0% compared to the membrane result.

Fig. 7 compares the predicted wrinkled region by the
membrane element analysis with the out-of-plane defor-
mation shape by the shell element post-bucklinganalysis.
The plotted results were obtained by 3,200 membrane
elements and 20,000 shell elements. The figure shows
that the membrane element wrinkled region agreed well
with the region having the non-zero out-of-plane dis-
placements by the shell analysis, although it was diffi-
cult to specify the exact wrinkle boundary from the shell
element deformed shape. While the shell analysis was
able to provide more visual wrinkle information includ-
ing crests and troughs, it required a much higher mesh
density to capture the detailed post-buckled wrinkle pat-
tern. For the shell models considered in this study, a
reasonable wrinkle deformation was obtained only when
more than 12,800 elements were used.

To investigate the effect of anisotropy on wrinkling, anal-
yses were performed for the annular membrane with
various properties. While keeping the values shown
in Eq.6 for E11, ν21, and G12, the values in the range
of 1 to 15 times E11 were considered for E22, i.e.,
E22/E11=1∼15, with E22/E11=1 being isotropic. The cal-
culations were performed using the present wrinkling al-
gorithm with 3,200 membrane elements. Fig. 8 shows
the wrinkled shape versus the anisotropic modulus ra-
tio (E22/E11). As expected, a circumferentially uniform
wrinkled shape occurred when the isotropic properties
were used (E22/E11=1). Note that a strip region at the
outer boundary was unwrinkled (a 3 element strip was
taut bounded by a partly wrinkled 1 element strip), while
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Figure 6 : Convergence of tensile stress versus number of elements: (a) σmax, and (b) σxo . σmax is the maximum
tensile stress achieved at point xmax indicated by arrows in Figure 5(a), and σxo the tensile stress at point xo(rxmax =
5m,θxmax = 153o, rxo = 8.75m, and θxo = 117o).
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Figure 7 : Comparison of wrinkle shape: (a) membrane
wrinkled elements (NE=3,200), and (b) distribution of
shell out-of-plane displacement (NE=20,000).

a linear elastic solution without wrinkling algorithm pre-
dicted full wrinkling where the whole membrane region
wrinkled immediately after applying the rigid rotation.
The unwrinkled strip is due to the induced stretching near
the outer region, which gives the effect of a radial tension
applied at the outer boundary and, thus, results in the par-
tial wrinkling [Miller, Hedgepeth, Weingarten, and Das
(1985)]. As the anisotropy ratio increased, the wrinkling
pattern became uneven and gradually narrowed. It can
be seen that the two upper left and lower right wrinkle
bands coincided to the higher tensile stress region shown

in Fig. 5(a). The other wrinkle bands were thought to
initiate at the compressive stress concentrated region of
the inner hub indicated by the arrows in Fig. 4(b), and
propagate in the radial direction. Fig. 9 shows the varia-
tion of percent wrinkled area versus the anisotropy ratio.
For the isotropic properties, 77.9% of the membrane was
wrinkled, which was reduced as the anisotropy ratio in-
creased. When E22/E11=15, the wrinkle area was 43%.

3.2 Square membrane

Fig. 10 shows a 500 mm square membrane loaded at
the corners through cables. The thickness is 0.0254 mm.
To apply the load, the corners are cut-off with the edge
length of 14 mm and connected at the edge center to 1
mm radius cables with the elastic modulus of 70.3 GPa.
The length of the cables is 57 mm. The material prop-
erties considered for the membrane are shown in Tab.
1. The anisotropic modulus ratio (E22/E11) is 0.67 and
0.2 for the low and high anisotropic membranes, respec-
tively. The positive material coordinate orientation angle
(θ) is defined as the counter-clock-wise rotation from the
global x1-axis.

The membrane was modeled with 10,000 membrane el-
ements (M3D4/M3D3) with wrinkle algorithm, and the
cables with rod elements (T3D2). Rigid bar elements
were added to the cut-off edges to distribute the applied
load. Analyses were also performed for comparison us-
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Figure 8 : Variation of wrinkled shape versus anisotropy ratio (E 22/E11).
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Figure 9 : Percent wrinkled area versus anisotropy ratio.

ing 19,208 shell elements (S4R5/S3R) with a random ini-
tial geometrical imperfection (applied at the interior re-
gion of the membrane) and *STATIC, STABILZE option.
Loading was applied in such a way that T1 = T2=0.49N
was applied symmetrically in the first load step, and then
T2 was increased up to 1.96N while T1 remained at 0.49N
in the second step.

Table 1 : Elastic properties considered for square solar
sail membrane.

E11

(GPa) 

E22

(GPa) 
12 G12

(GPa) 

Low anisotropic 2.59 1.727 0.34 0.704 

High anisotropic 2.59 0.518 0.34 0.243 

Isotropic 2.59 – 0.34 – 

Figs. 11 and 12 compare the tip displacement history
and the wrinkle shapes versus the load ratio for the
case when E22/E11=0.67 and the orientation angle θ=0 o.
Good agreements were obtained between the results by
the membrane element and shell element analyses. The
agreement was better for d2 in the direction where the
higher load T2 was applied. The figure shows that the
displacements varied almost linearly at the beginning,
and then the variation changed abruptly as the load ratio
increased. The abrupt curving of the variation trend in
the tip displacements is due to the forming of the global
wrinkles from small local corner wrinkles. As can be
seen in Fig. 12, only the areas near the corners were
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Figure 10 : Corner-loaded square membrane.

wrinkled when T2/T1=1 and the rest of the membrane
was in the taut state. When the load ratio was increased
to T2/T1=2, the wrinkled region grew at the T2 corners
where the higher load was applied. As the load ratio con-
tinued to increase, the local wrinkles at the T2 corners
merged into global wrinkles at about T2/T1=2.6, which
approximately coincided to the curving point. In Fig. 12,
the wrinkled shape for T2/T1=3 clearly shows the global
wrinkles were formed. Note that the curving point oc-
curred slightly later for the shell element analysis. This
was expected and thought to be due to the small bend-
ing stiffness the shell elements had, which resisted the
snapping merge of the wrinkle.

Fig. 13 shows the variation of the wrinkled region ver-
sus orientation angle predicted by the membrane analy-
sis for E22/E11=0.67 and 0.2 when the load was applied
symmetrically, i.e., T2/T1=1. As can be seen in the fig-
ure, for both membrane properties the wrinklingoccurred
mostly near the corners where the load was applied, with
the much larger area wrinkled for the higher anisotropic
case of E22/E11=0.2. As the material orientation angle
changed, the wrinkling pattern was consistently follow-
ing the material axis, in which the taut region tended to
align with the major material direction and more wrin-
kling occurred near the corners in the minor material
direction. The variation of the wrinkled region when
T2/T1=3 is plotted in Fig. 14. In this case, the wrinkle
pattern was dominated by the global wrinkling due to the
high load ratio. The wrinkle shapes were again strongly
dependant on the orientation angles for both cases of
anisotropy ratios, however, the effect was more apparent
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Figure 11 : Comparison of corner displacements.

for the higher anisotropic case.

The variation of percent wrinkled area is plotted in Fig.
15 versus the orientation angle. The results for the
isotropic membrane are also indicated for comparison.
The figure shows that the maximum wrinkling occurred
for all cases at θ =-45o, where the minor material direc-
tion coincided with the higher load application direction.
However, the minimum wrinkling occurred at different
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Figure 12 : Wrinkled shape of sail membrane: (a) membrane analysis, and (b) shell post-buckling analysis.
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Figure 13 : Comparison of wrinkled shapes for T2/T1 = 1 : (a) E22/E11 = 0.67, and (b) E22/E11 = 0.2.

orientation angles depending on the load ratios (T2/T1)
and the anisotropy ratios (E22/E11). When T2/T1=1 and
2, the minimum wrinkling orientation angle was 0 o re-
gardless of the anisotropy ratio, where the minor ma-
terial axis was aligned away from either corners where
the loads were applied and where most local wrinkles

were concentrated. In contrast, when T2/T1=4 the high
load ratio had dominating effect with global wrinkles,
and the minimum wrinkling occurred at θ=45 o where the
major material axis oriented with the higher load direc-
tion. When T2/T1=3, the minimum wrinkling occurred
at the intermediate angle of θ=22.5 o for E22/E11=0.67,
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Figure 14 : Comparison of wrinkled shapes for T2/T1 = 3: (a) E22/E11 = 0.67, and (b) E22/E11 = 0.2.
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Figure 15 : Variation of % wrinkled area versus orientation angle: (a) E 22/E11 = 0.67, and (b) E22/E11 = 0.2.

while it occurred still at θ=0 o for E22/E11=0.2. In the
latter case, the % wrinkled area had local peaks between
θ=0o and 45o for T2/T1=3 and 4, which was thought to
be due to the interplay of the higher load and anisotropy
ratios. It was also found that the amount of the wrinkled
area showed higher dependency on the anisotropy ratio
as the orientation angle changed when the load ratio was
smaller. Compared to the isotropic membrane results,
when T2/T1=1 the maximum wrinkled area was increased

by 26.5% for E22/E11=0.67, and significantly (by 145%)
for E22/E11=0.2. The dependency reduced for the higher
load ratio cases. When T2/T1=4, the maximum difference
was 4.1% for E22/E11=0.67, and 11.1% for E22/E11=0.2.

When the high anisotropy properties (E 22/E11=0.2) were
used, a small portion of the membrane became slack
depending on the orientation angle. As the slack area
started to develop, the analysis suffered a severe conver-
gence problem due to the lack of diagonal stiffness terms
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Figure 16 : Wrinkled/slack shape for the higher anisotropic membrane (E 22/E11 = 0.2) at T2/T1 = 4.

at the slack nodes. This resulted in large displacement
corrections during iterations, though the residual forces
were kept small. In this study, the *STATIC, STABILZE
option was also used for the convergence in which a
small amount of artificial damping was added that pro-
vided the needed resistance to the large displacement cor-
rections. Fig. 16 shows the wrinkle/slack regions for
θ=-22.5o, 0o, and 22.5o when T2/T1=4. The slack re-
gion occurred at and moved along the upper and lower
free edges as the orientation angle changed. It started to
appear at the load ratio of T2/T1=3.48 for θ=-22.5 o, and
much earlier at T2/T1=2.81 for θ=0o. The amount of slack
area increased as the load ratio increased, and 1.78% for
θ=-22.5o and 3.56% for θ=0 o of the total membrane area
became slack when the load ratio reached 4. The slack
region also occurred for θ=22.5 o, but only 0.64% was
slack atT2/T1=4. For other orientation angles, no slack
area was found for the considered load ranges.

4 Conclusion

In this study, a reliable finite element procedure was de-
veloped for the analysis of wrinkles for anisotropic mem-
branes. The wrinkling algorithm was based on a penalty-
parameter modified material model and a non-linear root
finding, and was implemented as a user subroutine to the
general finite element analysis code ABAQUS. The pro-
cedure was first used to solve isotropic membrane wrin-
kle problems with known solutions and then applied to
anisotropic annular and square membranes. The latter
membrane problems were also solved by shell element
post-buckling analysis with random geometrical imper-
fection and the results were compared. It was found that
the present wrinkle algorithm produced accurate wrinkle
results compared to those published in the literature, and
the wrinkled region predicted for the anisotropic mem-
branes was in good agreement with that by the shell ele-

ment post-buckling analysis, but with less computational
cost. It was also found that both the material anisotropy
and the load ratio had significant effect on the wrinkling
behavior for the square membrane.

Acknowledgement: This work was supported by the
2003 Foreign Study Program of Chungbuk National Uni-
versity, and NASA. The financial support is gratefully
acknowledged.

References

Adler, A.; Mikulas, M. M.; Hedgepeth, J. M.
(2000): Static and Dynamic Analysis of Par-
tially Wrinkled Membrane Structures. Proc. 41st
AIAA/ASME/ASCE/AHS SDM Conf., AIAA 2000-1810,
Atlanta, GA.

Hossain, N. M. A.; Jenkins, C. H.; Woo, K.; Igawa,
H. (2004): Penalty Parameter Material Model for Static
and Dynamic Analysis of Partly Wrinkled Membranes.
submitted to Int. J. Numerical Methods in Engineering.

Jenkins, C. H. (2001): Gossamer Spacecraft: Membrane
and Inflatable Structures Technology for Space Applica-
tions, AIAA, Inc., Reston, Virginia.

Kang, S.; Im, S. (1997): Finite Element Analysis of
Wrinkling Membranes. J. Applied Mechanics, vol. 64,
pp. 263-269.

Lee, K.; Cho, C.; Lee, S. W. (2002): A Geometrically
Nonlinear Nine-Node Solid Element Formulation with
Reduced Sensitivity to Mesh Distortion. CMES: Com-
puter Modeling in Engineering & Science, vol. 3, no. 2,
pp. 339-349.

Liu, X.; Jenkins, C. H.; Schur, W. W. (2000): Fine
Scale Analysis of Wrinkled Membranes. Int. J. Compu-
tational Science, vol. 1, no. 2, pp. 281-298.



408 Copyright c© 2004 Tech Science Press CMES, vol.6, no.4, pp.397-408, 2004

Liu, X., Jenkins; C. H.; Schur, W. W. (2001): Large
Deflection Analysis of Pneumatic Envelopes using a
Penalty Parameter Modified Material Model. Finite Ele-
ments in Analysis and Design, vol. 37, pp. 223-251.

Lu, K.; Accorsi, M.; Leonard, J. (2001): Finite Ele-
ment Analysis of Membrane Wrinkling. Int. J. Numeri-
cal Methods in Engineering, vol. 50, pp. 1017-1038.

Mikulas, M. M. (1964): Behavior of a Flat Stretched
Membrane Wrinkled by the Rotation of an Attached Hub.
NASA TN D-2456.

Miller, R. K; Hedgepeth, J. M.; Weingarten, V. I.;
Das, P. (1985): Finite Element Analysis of Partly Wrin-
kled Membranes. Computers and Structures, vol. 20, pp.
631-639.

Miyamura, T. (2000): Wrinkling on Stretched Circular
Membrane under In-plane Torsion: Bifurcation Analysis
and Experiments. Engineering Structures, vol. 23, pp.
1407-1425.

Miyazaki, Y.; Nakamura, Y. (1998): Dynamic Analysis
of Deployable Cable-Membrane Structures with Slack-
ening Membrane. Proc. 21st Int. Symp. on Space Tech-
nology and Science, Omiya, Japan.

Nakashino, K.; Natori, M. C. (2003): Efficient Mod-
ification Scheme of Stress-Strain Tensor for Finite El-
ement Analysis of Wrinkled Membranes. Proc. 44th
AIAA/ASME/ASCE/AHS SDM Conf., AIAA 2003-1981,
Norfolk, Virginia.

Roddeman, D. G.; Drukker, J.; Oomens, C. W. J.;
Janssen, J. D. (1987a): The Wrinkling of Thin Mem-
branes: Part I – Theory. J. Applied Mechanics, vol. 54,
pp. 884-887.

Roddeman, D. G.; Drukker, J.; Oomens, C. W. J.;
Janssen, J. D. (1987b): The Wrinkling of Thin Mem-
branes: Part II - Numerical Analysis. J. Applied Mechan-
ics, vol. 54, pp. 888-892.

Roddeman, D. G. (1991): Finite-Element Analysis of
Wrinkling Membranes. Communications in Applied Nu-
merical Methods, vol. 7, pp. 299-307.

Stein, M.; Hedgepeth, J. M. (1961): Analysis of Partly
Wrinkled Membrane. NASA TN D-813.

Su, X.; Abdi, F.; Taleghani, B.; Blandino, J. (2003):
Wrinkling Analysis of A Kapton Square Membrane un-
der Tensile Loading. Proc. 44th AIAA/ASME/ASCE/AHS
SDM Conf., AIAA 2003-1981, Norfolk, Virginia.

Tessler, A.; Sleight, D. W.; Wang, J. T. (2003):

Nonlinear Shell Modeling of Thin Membranes with
Emphasis on Structural Wrinkling. Proc. 44th
AIAA/ASME/ASCE/AHS SDM Conf., AIAA 2003-1981,
Norfolk, Virginia.

Wong, Y. W.; Pellegrino, S.; Park, K. C. (2003): Pre-
diction of Wrinkle Amplitudes in Square Solar Sails.
Proc. 44th AIAA/ASME/ASCE/AHS SDM Conf., AIAA
2003-1981, Norfolk, Virginia.


