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Direct and Indirect Approach of a Desingularized Boundary Element Formulation
for Acoustical Problems

S. Callsen1, O. von Estorff1, O. Zaleski2

Abstract: In standard boundary element formulations,
singular integrals need to be solved as soon as the con-
sidered sources coincide with the collocation points at
the boundary. Using a desingularized boundary element
approach, the sources are distributed on a surface outside
the acoustic domain which means that they are never lo-
cated at the boundary. Consequently, all the resulting ker-
nels are nonsingular which reduces the complexity of the
numerical treatment of the boundary integral equations
considerably. In the current contribution a desingularized
formulation is given for both, the direct and the indirect
boundary element method used to solve acoustical prob-
lems. Three basic examples are shown which demon-
strate how the new approach can be used and which ac-
curacy can be expected.
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Singular Integral, Numerical Acoustics

1 Introduction

The Boundary Element Method (BEM) is one of the
most popular methods used in numerical acoustics. Em-
ploying a so-called “fundamental solution” [von Estorff
(2000)], it allows the representation of a harmonic acous-
tical problem, usually described by the Helmholtz equa-
tion, by means of boundary integrals. The acoustic fun-
damental solution describes analytically the pressure dis-
tribution in a fullspace due to a unique sound source. In
general, it can be handled conveniently for most parts of
the considered domain. However, as soon as the obser-
vation point (where the pressure is calculated) and the
source point are identical, the solution becomes singular
and a special treatment of the resulting singular integrals
is needed, which usually leads to rather expensive nu-
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merical calculations. More details of the problem can be
found in the references [von Estorff (2000), Chen and Liu
(1999), Koopmann and Cunefare (1988), Beskos (1997),
Sladek, V. and Sladek, J. (1998)].

In the literature, several approaches have been presented
which try to reduce the order of the singularity before
hand. An interesting approach, for instance, has been
proposed by Qian, Han and Atluri (2004), where the
gradients of the fundamental solution are used as vec-
tor test functions in order to obtain the weak form of the
original Helmholtz equation for potential. In this way,
the third order singularity of the boundary integral equa-
tion is reduced to a second order singularity. Other ap-
proaches handle the singularities by special numerical in-
tegrations. Thus Agnantiaris and Polyzos (2003) propose
a method which allows to perform a rather accurate nu-
merical integration of nearly singular integrals. Particu-
larly, it has been shown that an accurate solution can be
obtained using a special way of selecting Gaussian inte-
gration points. The number of Gaussian points depends
on the minimum distance between the field points and the
boundary element in which the integration is performed
in relation to the biggest edge of an element.

A very promising way to avoid singularities can be seen
in so-called ,,desingularized formulations“ of the BEM,
where the sources are placed in such a way that they
cannot coincide with the observation points. For the
well known Laplace equation, various investigations are
available. For steady flow about arbitrary three dimen-
sional bodies, Webster (1975) has examined a finite el-
ement method where triangular patches of sources are
“submerged” inside the body surface. He concludes that
the “submergence” of the triangular singularity patches
greatly improves the accuracy as long as the “submer-
gence” is not too far. Schultz and Hong (1988) have
employed the method for the two dimensional flow and
mainly discuss numerical convergence. The three dimen-
sional case has been examined by Cao, Schultz and Beck
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(1991). In this work, the flow due to a resting dipole
and due to a moving dipole source underneath a free sur-
face has been investigated, respectively. Also the numer-
ical aspects of the resulting sets of equations have been
discussed. In particular a desingularization distance of
Ld = ld ·Dα

m has been proposed where ld is a parameter
determining how far the integral is desingularized. Dm

denotes the local mesh size and α is a chosen param-
eter. For a modified Gram Schmidt procedure, α must
be in the range 0<α<1. It was found that in terms of
computational effort the indirect method is significantly
more efficient than the direct approach. Mahrenholtz and
Markiewicz (1999) show that the desingularized Euler-
Lagrange approach is a robust method well suited for
nonlinear water wave problems as well for deep as for
shallow water. Ochmann (2000) presented a multipole
method by using spherical wave functions. It has been
employed for acoustical radiation and scattering prob-
lems and a weighted residual technique has been used
to minimize the error.

With respect to the investigations of the authors men-
tioned above, the current study applies a desingularized
boundary element formulation to acoustical problems
governed by the Helmholtz equation. It is based on a po-
sitioning of the source points outside of the considered
acoustic fluid and its boundary. For the direct BEM the
sought boundary values are evaluated by solving a set of
linear equations with square dimensions. For the indirect
BE approach the respective source properties are evalu-
ated such that the quantities at the boundaries are satis-
fied. Furthermore, a case study where numerical aspects
are discussed has been performed.

2 Desingularized Boundary Element Formulation

The distribution of the acoustic pressure p in an acoustic
fluid (domain) V , which is bounded by the boundary Γ
can be described by the Helmholtz equation

∇2 p+k2 p = 0, (1)

where k = ω/c is the wave number. The sound wave
velocity is denoted by c and the angular frequency by
ω. Considering the general case of a mixed boundary
value problem, the boundary conditions for the solution
of equation (1) can be written as

p = p on Γ1 and
∂p
∂n

= −iρω vn on Γ2. (2)

The normal vector of the boundary Γ, is denoted by n
and ”-” marks the known boundary values on Γ1 and Γ2,
respectively.

The boundary integral equation of the Direct BEM for-
mulation (DBEM) can be derived from equation (1) by
using the Green’s identity [von Estorff (2000)]. One ob-
tains

∫ ∫
Γ

[
p(Y )

∂G(X ,Y)
∂n

−G (X ,Y )
∂p(Y )

∂n

]
dΓ

=
∫ ∫ ∫

V

p(Y ) δ (X ,Y )dV , (3)

where G(X ,Y) is the 3D fundamental solution, given by

G(X ,Y ) =
e−ikr

4πr
with r = ‖X −Y‖ . (4)

If the source point Y is placed outside the domain V and
the computation point X is located on the boundary Γ the
volume integral in (3) vanishes due to the definition of
the Dirac function

δ(X ,Y) = 0 if X �= Y and δ(X ,Y) = ∞ if X = Y. (5)

Substituting the boundary conditions (2) and the funda-
mental solution (4) into (3), one obtains

∫ ∫
Γ1

[
p(Y )

∂
∂n

(
e−ik‖X−Y‖

4π ‖X −Y‖

)

− e−ik‖X−Y‖

4π ‖X −Y‖
∂p(Y )

∂n

]
dΓ1

+
∫ ∫

Γ2

[
p(Y )

∂
∂n

(
e−ik‖X−Y‖

4π ‖X −Y‖

)

− e−ik‖X−Y‖

4π ‖X −Y‖
∂p(Y )

∂n

]
dΓ2 = 0. (6)

The kernels in equation (6) are nonsingular since X and
Y never coincide. In order to find the solution of a given
problem, the integral equation (6) must be solved for
∂p/∂n on Γ1 and for p on Γ2.

Once the boundary values are known, the pressure at any
location XD inside the domain D can be determined by
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using

4π p(XD) =
∫ ∫

Γ1

[
p (Y )

∂
∂n

(
e−ik‖XD−Y‖

‖XD −Y‖

)

−e−ik‖XD−Y‖

‖XD −Y‖
∂p (Y )

∂n

]
dΓ1

+
∫ ∫

Γ2

[
p (Y )

∂
∂n

(
e−ik‖XD−Y‖

‖XD −Y‖

)

−e−ik‖XD−Y‖

‖XD −Y‖
∂p (Y )

∂n

]
dΓ2. (7)

By discretizing the surface Γ by means of boundary el-
ements, the following expression is obtained from equa-
tion (6)

mmax

∑
m=1

αmax

∑
α=1

Am

αmax
· pmα

∂
∂nmα

(
e−ik‖Xmα−Yj‖

4π
∥∥Xmα −Yj

∥∥
)

=
mmax

∑
m=1

αmax

∑
α=1

Am

αmax
· ∂pmα

∂nmα

(
e−ik‖Xmα−Yj‖

4π
∥∥Xmα −Yj

∥∥
)

. (8)

Where index m is the corresponding element number and
index α denotes the four corner nodes of the quadrilat-
eral elements employed here. Therefore the subscript mα
refers to each corner node of element m. The summation
over each element in equation (8) leads to a simple New-
ton Cotes quadrature. For each source point Yj equation
(8) is obtained. In order to derive an appropriate set of
linear equations, the number of source locations must be
equal to the number of nodes at the surface.

The Indirect BEM formulation (IBEM) introduced
next, is based on an integration of a source distribution
over a surface Ω, which is defined outside the acoustic
domain D (see Figure 1)

p(X) =
∫ ∫

Ω

σ(Y ) G(X ,Y ) dΩ, (9)

where σ(Y) denotes the unknown strengths of sim-
ple sources on Ω. In contrast to the direct method,
where only physical quantities are deployed, the indirect
method uses the source strengths σ(Y) as useful auxiliary
variable [Brebbia and Butterfield (1978)]. It should be
pointed out that the integration of equation (9) has to be
performed with respect to surface Ω, where the sources

desingularization 
distance Ld

sources on 
surface 

domain D 

boundary 
of the domain 

Figure 1 : Definition of an infinite acoustic domain D
with sources located on the surface Ω.

σ(Y) are distributed, while the integration of equation (6)
needs to be conducted with respect to the boundary Γ
[Cao, Schultz and Beck (1991)]. Taking into account the
general boundary conditions (2) and the fundamental so-
lution (4), the σ(Y) values can be calculated using

p(X) =
∫ ∫

Ω

σ(Y )
e−ik‖X−Y‖

4π‖X −Y‖ dΩ on Γ1, (10)

∂p(X)
∂n

=
∫ ∫

Ω

σ(Y )
∂
∂n

(
e−ik‖X−Y‖

4π‖X −Y‖

)
dΩ on Γ2.

(11)

By distributing collocation points on the surface Γ and
using an array of isolated sources on the surface Ω, equa-
tions (10) and (11) are reduced to a simple summation
over the influences of each source

N1

∑
j=1

σ(1)
j

e−ik‖XΓ i−Yj‖∥∥XΓ i −Yj

∥∥ +
N2

∑
j=1

σ(2)
j

e−ik‖XΓ i−Yj‖∥∥XΓ i −Yj

∥∥
= 4π · p(X (1)

Γ i ), (12)

N1

∑
j=1

σ (1)
j

∂
∂n i

e−ik ‖X Γ i−Yj‖∥∥X Γ i −Yj

∥∥ +
N2

∑
j=1

σ (2)
j

∂
∂n i

e−ik ‖X Γ i−Y j‖∥∥X Γ i −Yj

∥∥
= 4π · ∂p(X (2)

Γ i )
∂n i

. (13)

To obtain the unknown source strengths σ(1,2)
j , the corre-

sponding matrix equation is assembled. The superscript
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denotes the boundary condition at the associated surface
points XΓi. After employing equations (12) and (13), the
system of linear equations takes the form(

A(1,1) A(1,2)

A(2,1) A(2,2)

)
·
(

σ(1)

σ(2)

)
=
(

b(1)

b(2)

)
, (14)

where the right hand side consists of the known boundary
values and the unknown values are the source strengths.
Depending on the chosen number of sources, the corre-
sponding matrix A is not necessarily quadratic. Once the
strengths σ(Y) of the sources are determined, the acoustic
pressure p(XD) can be obtained from (9) for any location
of XD ∈ D. Whereby the summation form of equation (9)
is given by equation (12).

Using QR-decomposition, the sets of equations obtained
from the direct and the indirect method represented by
equations (8) and (14) respectively, are solved. The ac-
companied orthogonal transformations of the system ma-
trix lead to a numerically rather stable solution process
and also permit to solve over determined systems of lin-
ear equations which may be obtained from the indirect
method if the number of sources is less than the num-
ber of nodes on the surface. The computational cost for
QR-decomposition amounts to (u2·v) operations, where
the parameter u denotes the number of unknowns and the
parameter v refers to the number of equations available.
Thus, the computational effort for the solution process
of the source strengths for the indirect method depends
quadratically, on the number of sources used.

From the literature dedicated to the desingularized inte-
gral methods for the Laplace equation [Mahrenholtz and
Markiewicz (1999), Cao, Schultz and Beck (1991)], it is
known, that the distance between the surface Ω of the
sources and the domain boundary Γ, the desingulariza-
tion distance Ld (see Figure (1)), has a significant influ-
ence on the accuracy of the derived desingularized in-
tegral equations. Therefore, the proper location of Ω is
investigated next solving three numerical examples.

3 Numerical Applications

The performance of the desingularized BEM for acousti-
cal problems will be discussed by means of three general
examples including sound radiation into an unbounded
domain. In the first example a “breathing sphere” with
a radius of l m is investigated by applying the indirect
and the direct BE formulation. In the second and third

examples, only the indirect method has been considered.
They deal with a cube, whose edges are 2 m long. For the
second example an eccentric monopole source is placed
halfway between the center and the top face of the cube.
The results from this calculation are used for an accord-
ing Neumann boundary condition at the surface of the
cube. For the third example the Neumann boundary con-
dition is set to zero for all nodes except for one node
located in the center of the top face. Thus, the third ex-
ample deals with a boundary condition of interest for the
calculation of Acoustic Transfer Vectors (ATV) as de-
scribed by Tournour, Cremers, Guisset, Augusztinovicz,
Márki (2000) and Zaleski, Cremers, von Estorff (2001).

The desingularized BEM is applied in a frequency range
from 10 to 550 Hz. If not deviantly stated, the number
of nodal points at the surface is 2402 for all numerical
examples. The desingularization distance Ld is varied in
a range from 0.05 to 0.95 m and it is assumed that the
surfaces of the sources build a sphere and a cube, respec-
tively.

To generate reference solutions, analytical approaches
are used for the first two examples. For the third exam-
ple, the commercial software SYSNOISE has been em-
ployed. The reference solutions are used to determine the
relative error, which helps to judge about the accuracy of
the desingularized BE approach. It is defined by

Error rel =
1

# o f nodes
#o f nodes

∑
i=1

|pde singularized.(node i)− pexact(node i) |
| pexact(node i) | . (15)

Figures (2), (3), (4) and (6) depict the relative error over
frequency and desingulization distance Ld . In the first
case, Figure (2), the direct method was employed. In
contrast to the direct method, where the number of source
locations needs to be identical to the number of nodes
on the surface, Figure (3) and (4) show the relative er-
ror for the indirect method. While Figure (3) deals with
the same number of equations as in the case of the direct
method, Figure (4) shows the relative error for a signif-
icantly reduced number of sources leading to an over-
determined set of equations. Thereby, the computational
effort has been reduced by a factor of four.

From Figure (2) and Figure (3) it is observed, that the
relative errors for the direct and the indirect formulation
show a similar behavior. However, the error level is ap-
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Figure 2 : Relative error for the “breathing sphere” (ra-
dius =1m).
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Figure 3 : Relative error for the “breathing sphere” (ra-
dius =1m).

proximately two orders of magnitude larger for the direct
formulation. Independently from the formulation it can
be observed, that for the whole frequency range the best
desingularization distance is about Ld = 0.3 m. If the
sources are too far away from the surface the system of
linear equations (14) for the indirect method, as well as
the set of equations resulting from the direct method (8),
are poorly conditioned. This leads to uniqueness prob-
lems and a drastic increase of the error with increasing
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Figure 4 : Relative error for the “breathing sphere” (ra-
dius =1m).
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Figure 5 : Local relative errors on the surface of a
“breathing sphere” at 250 Hz.

Ld. Figure (7) shows how the condition of matrix A of
equation (14) depends on the desingularization distance
Ld and on the ratio of the numbers of nodes to the number
of sources. The phenomena depicted in Figure (7) hold
for the indirect method in all three examples discussed.

For a constant number of nodes, Figure (7) suggests to
decrease the number of sources in order to improve the
matrix condition. Even for symmetrical geometries as
used here, the matrix looses symmetry as the desingular-
ization Ld distance increases. Comparing Figure (3) and
Figure (4) confirms for the indirect method that the qual-
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Figure 6 : Relative error for the “breathing sphere” (ra-
dius =1m).
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Figure 7 : Matrix condition for varying source number
and desingularization distance.

ity of the results achieved even for Ld values up to 0.95
can be improved significantly, if the number of sources is
much smaller than the number of nodes.

Figures (2), (3), (4) and (6) show, that for sources too
close to the surface of the sphere, problems within the
numerical integration can be observed, leading to less
accurate results with decreasing Ld . So-called irregular
frequencies of the interior acoustic problem occur only
if a multiple of the wave length is equal to the opposing
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Figure 8 : Irregular frequencies for the “breathing
sphere”.
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Figure 9 : Relative error for the “cube” (edge
length = 2m) with eccentric monopole b.c..

source distance. For all four cases discussed above, the
according errors are observed, when a rather small desin-
gularization distance is chosen. As depicted in Figure
(9), this phenomenon is not observed if the desingulariza-
tion distance is chosen larger than 0.2 while employing a
reasonable mesh density.

The above clearly shows that the error is depending on
the desingularization distance as well as on the number
of sources taken into account. An interesting result is
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shown in the Figure (5), where in this particular case the
desingularized BEM is even more accurate than the re-
sults from a commercial software package where the con-
ventional BEM formulation is implemented [von Estorff
(2000) and LMS International (2000)].

For a rather coarse grid consisting of half the number of
nodes as for all other cases investigated, Figure (6) shows
the relative error. The error level ranges around the same
level as for the finer grid shown in Figure (3) and shows
the same characteristics. Therefore, it could not be found
that the coarseness of the mesh surface has a significant
influence on the proper desingularization distance to be
chosen.

Next, the second model which deploys a cube is inves-
tigated. It should be noted that a cube is, with respect
to its acoustic radiation, more complex than the sphere,
since its surface is not smooth anymore. Moreover,
the given boundary conditions (eccentric monopole) are
more complicated than in the previous example. In Fig-
ures (9) and (10) again the relative error over frequency
and distance Ld is plotted. One can observe that the rela-
tive error evaluated for Ld = 0.3 m reaches the same sat-
isfying low level as obtained for the “breathing sphere”
(see Figures (3) and (4)). By comparing Figures (9) and
(10) it is also interesting to observe, that the results can
be improved by decreasing the number of sources taken
into account. Figure (11) shows that the method yields as
expected, a symmetric sound pressure distribution which
is almost identical with the analytical solution.

Finally, the relative error for the third example is shown
in Figure (12). Due to geometry and the boundary con-
dition, this is the most challenging of the examples de-
picted here. In accordance with the previous examples,
the lowest error level is reached for Ld = 0.3 m. Any-
how, the magnitude of the error is significantly higher
than for the previously discussed examples. By further
tuning the desingularization distance and the number of
sources, further optimization is possible. If the ratio of
the number of nodes to the number of sources is set to
3/2, (see Figure (13)), the relative error can be reduced
by more than 15 % at Ld = 0.3 m. Figure (14) yields an
example for the distribution of the sound pressure level
and the local relative error across the cube.
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Figure 10 : Relative error for the “cube” (edge
length = 2m) with monopole b.c..

sound pressure[Pa]         local relative error 
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Figure 11 : Results of a desingularized IBEM calcula-
tion with eccentric monopole b.c. at 250 Hz.

4 Conclusion

A desingularized boundary element formulation, which
was known for the solution of problems governed by the
Laplace equation, has been extended to acoustical inves-
tigations. Locating the source points on an additional sur-
face outside the acoustic domain, the evaluation of singu-
lar integrals could be avoided completely.

By means of three examples, using a sphere and a cube
as basic geometries, it could be shown that the desingu-
larized BEM leads to very accurate results as long as the
distances between the source points and the boundary are
chosen properly. An error calculation has been employed
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Figure 12 : Relative error for the “cube” (edge
length = 2m) with a single “vibrating” node.
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Figure 13 : Relative error for the “cube” with a single
“vibrating” node.

in order to find the optimal configuration.

By applying the indirect desingularized method, the
number of source locations could be reduced signif-
icantly without a loss in the accuracy of the results.
Thereby, the computational effort could be reduced.
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Figure 14 : Results of a desingularized IBEM calcula-
tion with a single “vibrating” node at 250 Hz.
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