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A General Tangent Operator Procedure for Implicit Elastoplastic BEM Analysis

L.S. Miers and J.C.F. Telles1

Abstract: Most formulations involving the use of the
so-called consistent elastoplastic tangent operator proce-
dure, in boundary element analysis, have been presented
taking in consideration only a J2-type yield criterion, like
von Mises. The present paper aims at bringing a general
consistency concept to tangent operators obtained with-
out yield criterion particularization, ready to be used in
implicit schemes for elastoplastic BEM analysis. The
ideas follows much of the second author’s physically
nonlinear implicit BEM solution procedures introduced
in the 80’s and is based on a Taylor series expansion of
the true effective stress around an equivalent stress corre-
sponding to the accumulated true stresses up to, but not
including, the current increment taken to be “elastic”. To
illustrate the efficiency of the technique, some compara-
tive results using different yield criteria are presented.

keyword: elastoplasticity, boundary elements, implicit
algorithms.

1 Introduction

The first implementation of BEM to nonlinear analysis
is due to Riccardella (1973) where a pure incremental
solution scheme was used for inviscid plasticity problems
obeying the von Mises yield criterion.

As pointed out by Telles (1985), until the mid eighties
all the developed algorithms for BEM elastoplastic anal-
ysis were mostly based on explicit schemes, which had
shown to be quite efficient until then. That work was
the first to present implicit routines to solve elastoplas-
tic problems by BEM and was continued by Telles and
Carrer (1988, 1991 and 1994) Some improvements were
made after that, mainly due to the use of modified tangent
operators included in the previous implicit schemes and
the most implemented ones are the so-called Continuum
Tangent Operator (CON) and the Consistent Tangent Op-
erator (CTO).
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Implicit CON BEM formulations have been presented
by Telles (1985) and later by Jin, Runesson and Matti-
asson (1989). It was also efficiently used in the analy-
sis of large-strain viscoplastic problems by Mukherjee
and Leu (1994). The CTO was brought to the BEM
context by Bonnet and Mukherjee (1996) from a rate-
independent plasticity FEM formulation presented by
Simo and Taylor (1985). Details about the differences
of CON and CTO can be found in Poon, Mukherjee and
Bonnet (1998) and in Paulino and Liu (2001). How-
ever, all the CTO-based implicit schemes found in the
literature were mostly based on a J2-type yield criterion,
such as von Mises’, which is not generally well suited
for all problems (e.g., soil or concrete). Additional ap-
plications on inelastic material behavior can be found
in Okada, Rajiyah and Atluri (1990), Hatzigeorgiou and
Beskos (2002) and Liu and Chang (2004).

The present work aims at introducing the concept of tan-
gent operators, obtained without any kind of yield crite-
rion particularization, to be used in implicit schemes for
elastoplastic analysis by BEM. To illustrate the efficiency
of the technique, some comparative results achieved with
other methods are presented in the end.

2 BEM formulation for elastoplastic analysis

For the solution of general inelastic problems by the BE
technique, a boundary integral equation can be obtained
through weighted residual procedures or in the light of
simple reciprocal statements as seen in Telles (1983).
Herein, only its final form is shown (body forces are ne-
glected for simplicity),

ci j(ξ)u̇ j(ξ) =
∫

Γ

u∗i j(ξ,x)ṗ j(x)dΓ(x)

−
∫

Γ

p∗i j(ξ,x)u̇ j(x)dΓ(x)+
∫

Ω

ε∗jki(ξ,x)σ̇p
jk(x)dΩ(x) (1)

where Ω represents the domain of the body, Γ its bound-
ary and ci j is the usual free coefficient found in elastic
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analysis. In addition, a dot can be associated with a pure
incremental quantity for inviscid plasticity, and the fol-
lowing notation is used:

• u∗i j, p∗i jand ε∗jki: displacement, traction and strain
components at point x due to a unit concentrated
load applied in “i” direction at point ξ (fundamental
solution).

• u̇ j, ṗ j and σ̇p
jk: displacement, traction and fic-

titious “plastic” stress increments (whose compo-
nents are presented in Section 4) of the problem to
be solved.

It is worth mentioning that Eq. (1) is meant to be valid
for general 3D and 2D problems, provided subscripts are
assumed to vary between 1-3 and 1-2 respectively.

Since in the case of material nonlinear analysis the con-
stitutive equations are functions of the stress level at ev-
ery point within the body, the computations of internal
stresses is of great importance in the solution procedure.
Therefore, the derivatives of Eq. (1), written for ξ ∈ Ω,
can be combined to represent the internal stress rates in
the form

σ̇i j(ξ) =∫

Γ

u∗i jk(ξ,x)ṗk(x)dΓ(x)−
∫

Γ

p∗i jk(ξ,x)u̇ jk(x)dΓ(x)

+
∫

Ω

ε∗i jkli(ξ,x)σ̇p
kl(x)dΩ(x)+gi j(σ̇p

kl) (2)

where the last two terms introduce the fictitious “plas-
tic” stress influence. It should be mentioned that the
derivatives of the domain integral of Eq. (1) need careful
evaluation and generate a Cauchy principal value inte-
gral (third integral on the right) together with a free term
which contributes to the coefficient gi j.

3 Spatial discretization

The surface Γ is subdivided into a series of boundary el-
ements and the parts of the domain Ω, over which plastic
zones are likely to develop, are discretized using internal
cells for integrating the inelastic strain contributions.

Also, stresses at boundary nodes are calculated employ-
ing the interpolated displacements and tractions over
each boundary element as seen in Telles (1983).

Equation (1) therefore leads to

Hu̇ = Gṗ +Qσ̇σσp (3)

and computation of stresses at selected boundary nodes
and internal points (here using Eq. (2)) can be carried out
by

σ̇σσ = G′ṗ−H′u̇ +Q∗σ̇σσp (4)

where matrices H, H’, Q, etc. are classical boundary el-
ement matrices. Note that matrix Q∗ also includes the
contributions of the free coefficient gi j.

After the application of the displacement and traction
boundary conditions, Eqs. (3) and (4) can be written as

Aẏ = ḟ+Qσ̇σσp (5)

and

σ̇σσ = −A′ẏ+ ḟ′ +Q∗σ̇σσp (6)

Equation (5) can then be solved for the boundary un-
knowns included in vector ẏ

ẏ = Kσ̇σσp +ṁ (7)

where ṁ represents the elastic solution to the boundary
problem. Substituting (7) in (6) and rearranging,

σ̇σσ = Sσ̇σσp + ṅ (8)

in which vector ṅ represents the elastic solution in terms
of stresses and

K = A−1Q
S = Q∗ −A′K
ṁ = A−1ḟ
ṅ = ḟ′ −A′ṁ

4 Constitutive equations

The incremental stress-strain relations for inviscid plas-
ticity problems can be written in the form

σ̇i j = Cep
i jkl ε̇kl (9)

Here, Cep
i jkl is the fourth-order elastoplastic tangent oper-

ator that relates total strain increments with stress incre-
ments and is defined as follows:

Cep
i jkl = Ci jkl − 1

γ ′Ci jmnamnaopCopkl (10)
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where Ci jkl is the fourth-order tensor of elastic constants
with the following form (δi j is the Kronecker delta sym-
bol):

Ci jkl =
2Gν

1−2ν
δi jδkl +G

(
δikδ jl +δilδ jk

)

and

ai j =
∂σe

∂σi j

γ ′ = ai jCi jklakl +H ′

in which H ′ is the slope of the uniaxial curve (σo) plotted
as stress versus plastic strain,

H ′ =
dσo

dεp
e

In the above equations σe is the equivalent or effective
stress defined by the yield criterion and εp

e is the equiva-
lent plastic strain. The yield condition is defined by

F(σe,σ0) ≡ σe −σ0 = 0 (11)

Introducing the fictitious “elastic” stress increment

σ̇e
i j = Ci jkl ε̇kl (12)

and the inelastic stress increment that connects σ̇e
i j with

σ̇i j

σ̇p
i j =

1
γ ′Ci jmnamnaopCopklε̇kl = Di jopCopklε̇kl (13)

Equation (9) can be rewritten as

σ̇i j = σ̇e
i j −

1
γ ′Ci jmnamnaopσ̇e

op (14)

which shows that the true stress increments can be com-
puted from the elastic stress in incremental form. In ad-
dition, the plastic strain increments ε̇p

kl can be calculated
by the relation

Ci jklε̇
p
kl =

1
γ ′Ci jmnamnaopσ̇e

op (15)

The work hardening hypothesis is

σeε̇p
e = σi j ε̇

p
i j (16)

and the normality principle for associated plasticity can
be described as

ε̇p
i j = ai jdλ (17)

where dλ is the plastic multiplier. Substituting Eq. (17)
in (16) and rearranging

dλ =
σeε̇p

e

σi j ai j
(18)

It is easy to show that σi j ai j is a homogeneous function
of degree one and this allows for the application of Eu-
ler’s theorem as follows

σi j ai j = σe (19)

Hence, substituting Eq. (19) in (18)

dλ = ε̇p
e (20)

The work hardening hypothesis can therefore be rewrit-
ten as

ε̇p
i j = ai j ε̇p

e (21)

5 Implementation procedures

The stress at any instant can be computed from the stress
related to the last change of state and the current stress
increment as follows

σi j
∣∣
now = σi j

∣∣
be f ore +∆σi j (22)

and, considering the work hardening hypothesis, the
stress increment is

∆σi j = ∆σe
i j −∆σp

i j = ∆σe
i j −Ci jklakl∆εp

e (23)

where ∆εp
e is the equivalent plastic strain increment,

which can be calculated by solving the general nonlin-
ear consistency equation

σe|(σi j+∆σi j) = σe|(σi j+∆σe
i j)
−Ci jklaklai j∆εp

e (24)

and in this case,

ai j =
∂ σe|(σi j+∆σe

i j)

∂σi j
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where σe = f (σi j +∆σe
i j) is the equivalent stress consid-

ering a pure elastic stress increment.

Equation (23) is achieved by a Taylor series expansion
of the true equivalent stress around its value calculated at
the last load step plus the pure fictitious “elastic” stress
increment. Mathematically, this is shown as

σe|(σi j+∆σi j) = σe|(σi j+∆σe
i j)

+
∂ σe|(σi j+∆σe

i j)

∂εp
i j

∆εp
i j (25)

Expanding the second term in the right of Eq. (25) leads
to

σe|(σi j+∆σi j) = σe|(σi j+∆σe
i j)

+
∂ σe|(σi j+∆σe

i j)

∂σkl
· ∂σkl

∂εp
i j

∆εp
i j

= σe|(σi j+∆σe
i j)

+akl
∂σkl

∂εp
i j

∆εp
i j (26)

Taking into consideration that the pure elastic stress and
the plastic strains are not directly dependent, the follow-
ing is readily observed:

∂σkl

∂εp
i j

=
∂σe

kl

∂εp
i j
− ∂σp

kl

∂εp
i j

= −∂σp
kl

∂εp
i j

= −Ckli j = −Ci jkl (27)

Substituting Eq. (27) in (26), leads to

σe|(σi j+∆σi j) = σe|(σi j+∆σe
i j)
−Ci jklakl∆εp

i j (28)

Considering the hypothesis of work hardening, Eq. (28)
becomes Eq. (24). Such an equation includes as a par-
ticular case the consistency equation presented by Simo
and Taylor (1985) based on von Mises’ criterion and used
in a BEM context by Bonnet and Mukherjee (1996), but
is here in a general form without any restrictions about
yield criterion.

In order to compute the elastic stress increments in the
process, the free term gi j can be substituted by gi j = gi j +
δi j , leading to the substitution of matrix S by S = S + I,
where I is the identity matrix. Equation (8) can now be
rewritten, in incremental form, as

S(∆σ∆σ∆σe −∆σ∆σ∆σ)+∆∆∆n−∆σ∆σ∆σe = 0 (29)

Which, according with Eq. (14), allows for the following
definition

ℜ(∆∆∆σσσe) ≡ SD∆∆∆σσσe +∆∆∆n−∆σ∆σ∆σe ≈ 0 (30)

where ℜ(∆∆∆σσσe) is the residual and D is a matrix of the
form

D =

⎡
⎢⎢⎢⎣

[d] 0
[d]

. . .
0 [d]

⎤
⎥⎥⎥⎦ (31)

Here, the sub-matrices d of the diagonal play the role of
Di jop, in point-wise fashion, in Eq. (13). The nonlinear
Eq. (30) can now be solved using Newton’s method. In
this case, the correction δσδσδσe = ∆σ∆σ∆σe

n+1 −∆σ∆σ∆σe
n, which is

the difference between pure elastic stress increments for
iterations “n” and “n+1” , solves

[
SD− I

]
δσδσδσe = ℜ(∆(∆(∆σσσe) (32)

where the term in square brackets define a tangent ma-
trix, first seen in Telles (1985), also called global tan-
gent operator by Poon, Mukherjee and Bonnet (1998)
and Paulino and Liu (2001). Note that the components
of the global tangent operator which multiplies the cor-
rections δσe

i j related to elastic nodes are the same as the
identity tensor, i.e., if no plasticity is developing, d = 0.
This fact is of great relevance to the performance of the
implementation, since the system of equations presented
in Eq. (32) must be solved once per iteration.

The convergence criterion, measured in terms of the dis-
crete residual norm for all nodes, is defined as

∥∥ℜ(∆σe
i j)

∥∥de f
=

√√√√∑
(

ℜ(∆σe
i j)

)2

4N
≤ TOL (33)

The structure of the implicit algorithm is the following:

1. For 0 ≤ n ≤ (NT −1):

2. Compute ∆n∆n∆n = ωn

3. Initialize ∆σ∆σ∆σe = ∆n∆n∆n

Iterative solution of Eq. (30):

2.1 i = 0

2.2 Compute residual ℜ(∆(∆(∆σσσe) from Eq. (30).

2.3 Test the convergence condition on Eq.(33) is satis-
fied: if YES, go to 3.
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2.4 i := i + 1

2.5 Compute the local tangent operators for all nodes
and determine which ones present plastic and elastic
behavior.

2.6 Set up the global tangent operator.

2.7 Solve equation (32).

2.8 Update: ∆σ∆σ∆σe = ∆σ∆σ∆σe +δσδσδσe

2.9 Go to 2.2 for new iteration

3. Update:

εp
e = εp

e +∆εp
e

σσσ = σσσ+(I−D)∆σ∆σ∆σe (34)

where ω is the load increment percentage given in terms
of load at first yield.

It is worth noticing that the application of Eq. (34) has
the same effect of the radial return algorithm (RRA) pre-
sented in Simo and Taylor (1985), Bonnet and Mukherjee
(1996), Poon, Mukherjee and Bonnet (1998) and Paulino
and Liu (2001). Here, this denomination is no longer
adequate since it comes from a particularization for von
Mises’ yield criterion, not as general as discussed here.

6 Results

In order to verify the accuracy of the technique presented,
the following examples are discussed:

• A perforated plate under uniform tension,

• A rectangular block compressed by two opposite
rigid punches,

• A flexible strip footing under uniform loading.

Even though internal cells are needed only where plas-
tic strains are likely to develop, for academic reasons, in
some examples, the internal mesh includes the complete
domain. Symmetry with respect of the two axes is con-
sidered in the first two examples and, in the last example,
symmetry is considered only with respect to the y-axis.

The results presented here are compared with the ones
obtained with a well-established (see Telles (1983)) ex-
plicit initial stress BEM technique.

6.1 Perforated plate

The first problem analyzed by the presented technique is
a plane stress analysis of a perforated steel plate under
uniform tension. Its geometry and the discretization of
its upper right quadrant are shown, respectively, in Figs.
1 and 2. The yield criterion adopted is von Mises’. The
problem characteristics are presented in Table 1.

Table 1 : problem characteristics - perforated plate

Item Quantity
Applied load (q) 11.5 kgf/mm2

Young modulus (E) 7000 kgf/mm2

Tangent modulus (ET) 217 kgf/mm2

Yield stress (Y) 24.3 kgf/mm2

Poisson ratio ( ) 0.2
Load increment 10.0%
Boundary nodes 25
Internal points 11
Boundary elements 22
Internal cells 29

q q

18 mm

5 mm

10
 m

m

Figure 1 : plate problem geometry

The plastic zone has evolved in the same way on both,
implicit and explicit methods. These results are pre-
sented in Fig. 3. Other result analyzed is the σy-stress
over points located at the x-axis, which is presented in
Fig. 4. The starting of plasticity was achieved with about
50% of the applied load.
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Figure 2 : problem discretization

Table 2 : number of iterations per load increment – per-
forated plate problem

Percentage of applied load
Method

55 60 65 70 75 80 85 90 95 100
Explicit 9 9 9 9 9 22 22 36 31 44
Implicit 4 4 4 4 4 5 5 5 6 6

Figure 3 : plastic deformation zone at certain percent-
ages of applied load;

In order to present a more illustrative comparison be-
tween the two methods, Table 2 shows the number of
iterations per load increment.

6.2 Punch problem

The second problem studied is a rectangular block com-
pressed by two opposite rigid punches. Its geometry and
upper right quadrant discretization are shown in Figs. 5
and 6. The yield criterion adopted in this problem is von
Mises’. The problem characteristics are presented in Ta-
ble 3.

0
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Explicit BEM
Implicit BEM
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σy/Y

0.0 0.2 0.4 0.6 0.8

Figure 4 : σy-stress at x-axis

d

d

13.5 in
5 in

8.
5 

in
Figure 5 : block geometry

Figure 6 : problem discretization
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Table 3 : problem characteristics – punch problem

Item Quantity
Imposed displacement (d) 0.05 in

Young modulus (E) 107 psi
Tangent modulus (ET) -

Yield stress (Y) 13000 psi 
Poisson ratio ( ) 0.33
Load increment 10.0%
Boundary nodes 12
Internal points 15

Boundary elements 9
Internal cells 31

0

0.2

0.4

0.6

0.8

1

1.2

0 0.01 0.02 0.03 0.04 0.05 0.06

Implicit
Explicit

Y
P

2
3

d (in) 

Figure 7 : mean pressure vs. punch displacement

Table 4 : iterations per load increment – punch problem

Percentage of applied displacement
Method

16.5 23.0 29.5 36.0 42.5 49.0 55.5
Explicit 32 48 55 55 55 55 58
Implicit 22 28 39 38 32 35 43

Percentage of applied displacement
Method

62.5 69.0 75.5 82.0 88.5 95.0 101.5
Explicit 65 67 70 70 74 75 75
Implicit 37 32 66 32 41 36 40

The relation between the mean pressure applied by the
rigid punch and its prescribed displacement is shown in
Fig. 7. The evolution of the plastic zone (the same on

75.0% 100.0%50.0%25.0%

Figure 8 : plastic zone development at certain percent-
ages of applied displacement;

q

24 ft
5 ft

12
 ft

Figure 9 : strip footing geometry

both methods) is presented in Fig. 8.

The accumulated number of iterations corresponding to
every 6.5% of load increment is presented in Table 4.
Plasticity starts to develop with 11% of the imposed dis-
placement in this problem.

6.3 Strip footing

The last example presented is a plane strain analysis of a
flexible strip footing under uniform loading. Its geome-
try and the discretization are seen in Figs. 9 and 10. The
BEM formulation for this problem adopted a half-space
fundamental solution found in Telles (1983). The yield
criterion adopted in this problem is Mohr-Coulomb’s.
The problem characteristics can be seen in Table 5. The
results plotted in Fig. 11 are the relation between the dis-
placement of the node at the center of the loading and
the applied load. The evolution of the plastic zone in
the problem is shown in Fig. 12 for both methods. The
growth of the plastic zone follows the same path up to the
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Figure 10 : problem discretization

Table 5 : problem characteristics – strip footing
Item Quantity

Applied load (q) 180 psi
Young modulus (E) 30000 psi
Tangent modulus (ET) -
Poisson ratio ( ) 0.3
Cohesion 10.0 psi
Friction angle 20º
Load increment 12.5%
Boundary nodes 19
Internal points 59
Boundary elements 16
Internal cells 121

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 2 4 6 8 10 12 14 16

Implicit BEM
Explicit BEM
Elastic

q/c’

ua/l

Figure 11 : displacement of the center of the loading vs.
applied load

last converged solution.

The accumulated number of iterations corresponding to
a certain percentage of load is presented in Table 6. Plas-
ticity starts to develop with 25% of the applied load in

(a)

(b)

Figure 12 : plastic zone at different applied loads – (a)
explicit BEM; (b) implicit BEM.

Table 6 : number of iterations per load increment – strip
footing problem

Percentage of applied load 
Method 

40 55 70 85 100 
Explicit 93 182 197 413 813 
Implicit 18 35 37 40 33

this problem.

7 Conclusions

The main goal of this work is to introduce a proper
criterion-independent tangent operator implicit tech-
nique for elastoplastic problems with boundary elements,
generalizing what was previously presented using just
J2-type yield criteria.

The results obtained with the multi-criteria implicit tech-
nique show its accuracy and the observed reduction in the
number of iterations per load step has been substantial in
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comparison with the explicit counterpart.
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