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A Cell Method (CM) Code for Modeling the Pullout Test Step-wise

E. Ferretti1

Abstract: The Cell Method (CM) code with auto-
matic remeshing for crack propagation analysis [Ferretti
(2003)] is here used for modeling the pullout test. Par-
ticular emphasis is given to the analysis in the Mohr-
Coulomb plane, since previous numerical models were
not decisive in describing failure mechanism in pullout
tests. The interpretations of experimental and analytical
studies vary widely, and none of the existing explana-
tions offer a complete description of the progressive fail-
ure of the concrete medium [Yener (1994)]. Nor do most
existing interpretations appear to be totally compatible
with the experimental evidence. Analysis of the failure
mechanism for the pullout test requires a failure criterion
accurately describing crack initiation in tension loading.
The Mohr-Coulomb criterion of the first code [Ferretti
(2003)] has therefore been abandoned in favor of a more
realistic criterion for the tensile state of stress, the Leon
criterion. The failure analysis has been performed for
several ratios between the counter pressure diameter and
the stem length (Fig. 1). Moreover, the complete crack
path has been obtained for the geometry of the Lok-test.
The evolving state of stress-strain for the Lok-test is also
provided. The identification of the directions of princi-
pal stress completes the stress analysis. Modeling is per-
formed both on the concrete specimen and on the steel
insert, showing how the CM can easily handle domains
with several materials.

keyword: Cell Method, automatic remeshing, failure
mechanism analysis, Mixed Mode propagation.

1 The pullout test procedure

The pullout test is a nondestructive test procedure which
has been suggested by many as an in-place testing proce-
dure alternative to testing field-cast cylinders in the labo-
ratory. The test procedure involves pulling out an anchor
plate embedded in concrete with the aid of a tensile jack.
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During application, a test bolt, consisting of a stem and a
circular steel disc, is mounted inside the form (Fig. 1(a)).
After curing the concrete, the form is stripped, and the
stem is unscrewed. At the time of testing, a rod having a
slightly smaller diameter than the stem is screwed into
the disc and a cylindrical counter-pressure is mounted
(Fig. 1(b)). The rod is loaded by a pullout force until
failure, where a small piece of concrete can be punched
out if sufficient displacement of the rod is applied.

Requirements for the testing configuration are given in
ASTM C 900. The embedment depths (that is, the stem
length) and head diameter must be equal, but there is
no requirement on the magnitude of these dimensions.
Commercial inserts have embedment depths about 25 to
30 mm. The inner diameter of the reaction ring can be
any size between 2.0 and 2.4 times the insert-head diam-
eter. This means that the apex angle of the conic frustum
defined by the insert-head diameter and the inside diam-
eter of the reaction ring (2α in Fig. 1) can vary between
54 and 70 deg. The test apparatus and procedure for the
Danish version of the pullout test, the Lok-Test, are illus-
trated in Fig. 1 [Ottosen (1981)]. This geometry has been
proposed by Kierkegaard-Hansen [Kierkegaard-Hansen
(1975)].

The standard pullout test is limited to use in new con-
structions because the inserts have to be embedded into
fresh concrete. However, other types of pullout test con-
figurations are available for existing constructions [Mail-
hot, Bisaillon, Carette and Malhotra (1979); Chabowski
and Bryden-Smith (1980); Petersen (1984); Domone and
Castro (1987)]. These typically involve drilling a hole
and inserting an expanding anchorage device that will
engage in the concrete and cause fracture in the concrete
when extracted. These techniques are still under devel-
opment and have not been standardized as ASTM tests
methods.

Extensive field investigations on pullout test have been
conducted in Europe, Canada, and the United States.
A detailed summary on relevant works can be found in
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Yener and Chen (1984). All laboratory tests indicate that
the failure surface is trumpet shaped (Fig. 2). The large
diameter of the fragment is determined by the inner di-
ameter of the reaction ring, and the small diameter is de-
termined by the insert-head diameter.

Figure 1 : Application and configuration of Lok-Test (all
dimensions are in millimeters)

Figure 2 : Shape of the extracted concrete portion

It was found that the pullout force can be linearly re-
lated to the compressive strength measured from standard
cylinders or cubes [Yener (1994)]. This relationship is
not significantly affected by variations in water-cement
ratio, type, shape and size of aggregates up to 40 mm
maximum aggregate size, type of cement, curing condi-
tions (water cured, cured in air and maltreated), curing
time, admixtures, flyash, and air content. Only the use
of lightweight aggregates produces a significantly dif-
fer correlation [Petersen (1997)]. Most of the existing
hypotheses seem then to describe the behavior of con-
crete in pullout tests through a uniaxial phenomenon. In
spite of that, there has been a considerable amount of
controversy regarding the property of concrete that is ac-
tually measured in pullout tests [Yener (1994)]. It is not
clear whether tension, compression, shear, or punching
shear strength of concrete is measured, and what con-
stitutes the physical mechanism of failure. Past tests,

confirmed by theoretical considerations based on plas-
tic failure of concrete, have shown that the pullout force
essentially depends upon compressive strength only for
angles α = 30◦÷35◦ [Bocca (1984)]. For angles greater
than 45◦ it depends instead, by a constant proportionality,
mostly upon tensile strength.

2 State of the art on the pullout modeling

Even if the existence of multiaxial states of stress in pull-
out tests is recognized in literature, the attribution of the
failure process to a uniaxial strength persists.

The available analytical studies on the structural behav-
ior and failure mode of concrete in a pullout test can be
summarized as follows:-

Rigid-plasticity analysis. In 1976, Jensen and Bræstrup
used the rigid-ideal plasticity theory on an extracted sec-
tion of concrete assumed to be a truncated cone, with the
failure plane running from the outer periphery of the disk
toward the inner periphery of the supporting ring (Fig.
3).

Figure 3 : Assumed Failure surface

Using a modified Coulomb criterion of sliding failure,
they derived a direct relationship between pullout force P
and compressive strength f ′c, for the geometrical dimen-
sions of the Danish pullout system [Jensen and Bræstrup
(1976)]. In 1994, Yener pointed out that the Jensen-
Bræstrup directly proportional relationship between P
and f ′c follows from the failure mechanism of concrete
under pullout force to be assumed at the outset as a conic
frustum [Yener (1994)]. He showed that once any mode
of failure is assumed as the limiting state of behavior, the
rigid body equilibrium on the corresponding free body
diagram can be used to derive an expression relatingP
and f ′c, without any reference to plasticity.
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Nonlinear finite element analysis. In 1981, Ottosen
published a nonlinear analysis on Lok-Test, using ax-
isymmetric triangular elements (Fig. 4) with linear dis-
placement functions. The progressive development of ra-
dial and circumferential cracks are illustrated in Fig. 5
[Ottosen (1981)]. The distribution of principal stresses
at 70 percent loading indicated that large compressive
forces run from the disk in a narrow band toward the re-
action ring. Hence, the reserve pullout capacity was at-
tributed to crushing of the concrete within this compres-
sion band. It is nevertheless reported [Stone and Carino
(1983)] that there was no visible evidence in the tested
specimens of a band of crushed concrete along the fail-
ure surface which would confirm compression failure.

Figure 4 : Axisymmetric finite element mesh for Lok-
Test

Moreover, Stone and Carino criticized the Ottosen bond
between the pullout disk and the surrounding concrete,
which was assumed to be perfect, since pullout inserts
are generally oil-coated prior to installation [Stone and
Carino (1983)].

Linear-elastic finite element analysis. In Stone and
Carino (1984), a linear-elastic axisymmetric finite ele-
ment analysis is reported for studying the stresses in-
duced in concrete before cracking. It was seen that before
cracking there are tensile stresses that are approximately
perpendicular to the eventual failure surface, and that
compressive stresses are directed from the insert head to-
ward the ring (Fig. 6). These principal stresses are non-
uniform and are greatest near the top edge of the insert
head.

Stone and Carino suggested that the pullout strength is
not governed directly by compressive strength, and that
an alternative explanation needs to be found for the ex-
perimentally observed close correlation between these
two strengths. The investigators concluded that failure
is governed primarily by the tensile strength of mortar,
and occurs when sufficient aggregate particles have been
pulled out of the mortar matrix.

Using linear-elastic fracture mechanics together with a
two-dimensional model, Ballarini, Shah and Keer (1986)
have concluded that ultimate load is governed by the frac-
ture toughness of the matrix.

Yener (1994) objected that an interpretation drawn from
a linear-elastic analysis does not provide sufficient infor-
mation on the concrete progressive failure, since concrete
cracking initiates at a load which is only a small fraction
of the failure load.

Nonlinear fracture mechanics analysis. The discrete
cracking model by Hellier, Sansalone, Carino, Stone and
Ingraffea (1987) shows excellent agreement between the
predicted and observed internal cracking in the pullout
test (Fig. 7). A primary circumferential crack develops
at the corner of the insert head and propagates outward at
a shallow angle. This crack ceases to grow when it pen-
etrates a tensile-free region. A secondary crack develops
subsequently, coinciding with the observed final fracture
surface. This study also concluded that failure does not
occur by uniaxial compressive failure in concrete.

Discrete cohesive crack model. An axisymmetric finite
element model, based on linear strain 6-noded triangles,
was used by Bocca, Carpinteri and Valente (1989). The
fracture process was simulated by means of a nonlinear
discrete cracking approach. The fictitious crack length is
assumed as the driving parameter in the numerical sim-
ulation. The crack propagates normally to the maximum
tensile stress. Outside of the crack the material is linear
elastic and isotropic. The interface between the upper
side of the steel disc and the concrete is assumed to be
adhesive. All other interfaces between steel rod and con-
crete are considered as non-adhesive. Therefore, the disc
only has been modeled and the pullout force has been
applied directly to the steel disc. A modification of the
mesh is required at each step of the crack propagation
process. The mesh used at step 24 is reported in Fig. 8.

An experimental programme has been performed in
Bocca, Carpinteri and Valente (1989) in order to compare



456 Copyright c© 2004 Tech Science Press CMES, vol.6, no.5, pp.453-476, 2004

Figure 5 : Crack development with increasing loading, in relation to predicted failure load (a) loading = 15%; (b)
loading = 25%; (c) loading = 64%; (d) loading = 98%

Figure 6 : Principal stress trajectory prior to cracking in
homogeneous materials Figure 7 : Predicted circumferential cracks
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Figure 8 : Finite element mesh at step 24

Figure 9 : Finite element mesh and predicted failure

results. The pullout tests were carried out by varying the
internal diameter φ of the contrast ring, whereas the rod
depth h and the rod head diameter d were maintained un-
changed. The apex angle (2α in Fig. 1) was varied from
41◦ to 143◦. A good theoretical-experimental correlation
was found in force versus displacement diagrams, for the
case of large contrast ring.

The performed experimental tests for large contrast ring
show that the crack formation is influenced only by the
material properties and not by the contrast diameter. The
failure process is dominated by tensile cracking and the

failure surface follows the aggregate contours, so that the
aggregate remains unbroken. By decreasing the apex an-
gle, the failure mechanism changes and the failure sur-
face is increasingly influenced by the contrast ring. For
small contrast ring, the failure mechanism is complex,
as the mortar versus aggregate interaction and interlock
prevail. The aggregate shearing is accompanied by a cap-
illary mortar crushing.

Plastic-fracture finite element analysis. This analy-
sis was performed by Yener, in 1994. The assump-
tions used in post-fracture analysis are: the crack direc-
tion is normal to the direction of the maximum princi-
pal strain; the fracture mode consists of cracking and
crushing; the post-fracture constitutive relationship is
anisotropic elastic. Moreover, the pure crushing zone has
no strength and the pure cracking zone has no strength
in the cracked plane when the crack is open. The post-
fracture model permits shear transfer through the cracked
plane by means of aggregate interlock. The strain soft-
ening of the material is not considered. The modified
von Mises and dual-function material constitutive mod-
els were used in combination with the five-parameter
failure criterion, and linear quadrilateral finite elements
were employed. The axisymmetric finite element mesh
is shown in Fig. 9. The behavior of concrete is described
by referring to the scheme in Fig. 10.

Failure is said to occur by outward crushing of concrete
around the perimeter of the failure cone near the reaction
ring. In agreement with experimental results, depending
upon the values of h, d, and d1 (Fig. 3), the failure surface
of the extracted concrete may resemble a trumpet shape,
rather than a conic frustum. Moreover, it was found that
the behavior of concrete is primarily controlled by com-
bined compression and bending actions. The bending ac-
tion becomes pronounced during the latter stages of load-
ing.

While the conclusions of the reported studies differed,
it is generally agreed that circumferential cracking (pro-
ducing the failure cone) begins at highly stressed regions
next to the insert head at a pullout load that is a fraction
of the ultimate value. With increasing load, the circum-
ferential cracking propagates toward the reaction ring.
However, there is no agreement on the nature of the fi-
nal failure mechanism governing the magnitude of the
ultimate pullout load.

The failure mechanism was further investigated experi-
mentally by Krenchel [Krenchel (1985)]. He loaded sam-
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Figure 10 : Complete failure surface (a) stresses and deformations; (b) load-carrying mechanism

Figure 11 : Crack analysis after de-loading

Tensile crack, stage 1 Tensile/shear crack, stage 3

Multi micro-cracking 
from compression 
straining, stage 2 

Figure 12 : The three different stages of internal cracking

ples to different levels on the load-displacement curve.
Afterwards, the samples were saw-cut through their axis,
the surfaces were ground smooth and impregnated with
epoxy containing a fluorescent dye to reveal cracks un-
der ultraviolet light (Fig. 11). It was found that the in-
ternal rupture is a multistage process where three differ-

ent stages, each with different fracture mechanism, can
be clearly separated (Fig. 12). In the first stage, tensile
cracks begin, starting from the notch formed by the upper
edge of the pullout disc. In the second stage, a multitude
of stable microcracks are formed in the above mentioned
truncated zone. Even after the load has stabilized at the
peak point, the third stage occurs. This forms a tensile-
shear crack running all the way around from the outside
edge of the disc to the inside edge of the counterpressure
ring.

3 General remarks on the remeshing CM code

The theoretical basics of the Cell Method (CM) have
been developed by Tonti [Tonti (2001)]. The essence of
the CM is to provide a direct finite formulation of field
equations, without requiring a differential formulation,
such as shown in Fig. 13.

The main differences between variational and discrete
formulation are summarized in Fig. 14. In particular,
it will be showed here how heterogeneities do not repre-
sent an obstacle with the CM, and how it is possible to
easily treat domains with several materials.

The CM uses two meshes, the one the dual of the
other. Here, a Delaunay/Voronoi mesh generator [George
(1995)] is used to generate the two meshes in two-
dimensional domains (Fig. 15).

In crack propagation problems, the geometry of the mesh
must be modified as the crack propagates. The ability of
the CM code with remeshing to take a general change in
the mesh topology easily into account has been shown
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Closed 
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Figure 13 : Way to achieve the solution thought the Cell and Variational formulation

Discrete formulation by the CM 
(Prof. Tonti) 

Field variables

Variational formulation 

( ), , ,f f x y z t=

Global variables ( ), , , , , ,g g x y z L A V t=

The solution is not obtained for the mesh nodes 
directly, but extrapolated to them. 

It’s not possible to attain convergence greater 
than the second order. 

Singularities of the domain contour represent an 
obstacle.

Heterogeneities represent an obstacle.  

Convergences of the fourth order can be reached.

The constitutive matrix can vary from one cell to 
another.

Singularities of the domain contour are no longer 
an obstacle. 

Punctual forces represent an obstacle.  Punctual forces are no longer an obstacle.  

The solution is obtained for the mesh nodes 
directly. 

The definition of a model for treating the zone 
ahead of the crack edge is needed.

The model for treating the zone ahead of the 
crack edge is no longer needed.  

Figure 14 : Main differences between the variational and the discrete formulation by the CM

in Ferretti (2003). This ability is all the more relevant
since changes in mesh topology are rarely supported by
classical finite element method (FEM) numerical codes.

Of the two strategies available for studying fracture me-
chanics (FM) using the FEM (Fig. 16), the one describ-
ing the crack as a displacement discontinuity has been
chosen in the CM code with remeshing. For model-
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Figure 15 : Mesh of Delaunay/Voronoi
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Figure 16 : Stratagies available to study fracture me-
chanics using FEM; sharp drop in normal stress and dis-
placement discontinuity

ing the crack propagation through the mesh, as required
by this strategy, the nodal relaxation technique has been

Inter element 
propagation 

Propagation 
direction 

crack

Intra element 
propagation 

Computed
direction 

crack

Computed 
direction 

Propagation 
direction 

Figure 17 : Inter and intra element propagation for the
nodal relaxation technique
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Figure 18 : Special element for stress analysis

adopted. This technique can be achieved using inter-
element propagation or intra-element propagation (Fig.
17). Inter-element propagation is mesh dependent, since
the crack propagates along the mesh side nearest to the
computed propagation direction. On the contrary, intra-
element propagation is mesh independent, since the crack
propagates along the computed propagation direction.
This takes more computational time for regenerating the
mesh, but leads to more accurate results. The code here
employed uses the nodal relaxation with intra-element
propagation technique.

Finally, a special hexagonal element has been inserted
at the crack tip (Fig. 18), for regularizing the shape of
the mesh surrounding the tip. Since the CM associates
geometrical objects of the dual mesh to source variables,
this regularization allows description of the stress field in
a finite neighborhood of the tip [Ferretti (2003)]. In the



CM Code for Modeling the Pullout Test Step-wise 461

0

50
100

150
200

250

300
350

400

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Displacement   [mm]

Lo
ad

   
[k

N
]

1
20

t

c

R
R

=
effσ

effε

Figure 19 : Numerical load-displacement diagram for plain concrete specimens

remainder of the domain, the mesh generator is allowed
to generate the mesh automatically.

Further details on the remeshing CM code are collected
in Ferretti (2003).

4 Constitutive assumptions

The concrete constitutive law adopted in this study is
monotonically non-decreasing (Fig. 19), in accordance
with the identification procedure for concrete in mono-
axial load provided by Ferretti (2001). The main effort
of this procedure is to separate the actual material be-
havior from the structural behavior, always affecting ex-
perimental data. This results in a constitutive law char-
acterizing the behavior of the material in the specimen
internal core, the resistant structure carrying load even at
the very end of the compressive test (Fig. 19). The idea
underlying this procedure is that strain-softening is not
a material property, but is essentially due to scaling the
applied force by the original cross-sectional area rather
than the actual cross-sectional area. Through microseis-
mic measurements and energetic considerations, the pro-
cedure identifies the actual cross-sectional area, leading
to a material monotone behavior.

From the beginning of the 20th century forth, a number
of researchers have questioned whether strain-softening

is a real material property or merely the result of in-
homogeneous deformation caused by the experimental
technique [Hadamard (1903); Bishop and Green (1965);
Kirkpatrick and Belshaw (1968); Hudson Brown and
Fairhurst (1971); Deman (1975); Hettler (1981); Dresher
A. and Vardoulakis (1982); Bergan (1983); Hegemier
and Read (1983); Sandler and Wright (1983); Wu and
Freud (1983)].

They produced a series of studies, all sharing the com-
mon idea of non constitutive nature of the softening be-
haviour. Nevertheless, they were not able to provide
an identifying procedure from the experimental data to
a monotone constitutive law for concrete. They only
treated the problem under the theoretical point of view,
since it was estimated [Hegemier and Read (1983)] to be
extremely difficult, if not impossible, to experimentally
track the effective cross-sectional area at each stage of
the failure process. The impossibility to achieve a new
constitutive proposal is the main reason why this field of
research fell rapidly out of favour. In Ferretti (2001), the-
oretical considerations on the non-constitutive nature of
strain-softening were supported by a new identification
proposal for material properties, and this led to a revival
of the research field.

It was shown [Ferretti (2001), Ferretti and Bastianini
(2002)] how the monotone law identified by Ferretti
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Figure 20 : Numerical load-displacement diagram for
plain concrete specimens

0

200

400

600

800

1000

1200

1400

1600

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

Displacement   [mm]

[
]

Unwrapped
1 layer CFRP wrapped
3 layers CFRP wrapped

N

N
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(2001) turns out to be size and failure mechanism insen-
sitive for mono-axial compressive load. This result made
it possible to formulate a new concrete law in mono-axial
compressive loading, the effective law, which can be con-
sidered to be more representative of the material physical
properties than the softening laws are.

The effective law was used as input datum in the remesh-
ing CM code for modeling the compressive tests on six
specimens with varying slenderness [Ferretti (2001)].

In agreement with the experimental results, the numeri-
cal load-displacement diagrams turns out to be softening
(Fig. 20). Moreover, the size-effect on the six geome-
tries is well reproduced. As concerns the numerical crack
path, it is very close to the experimental crack path, for

each geometry.

The extension of the effective law to the triaxial compres-
sive field [Ferretti (2001); Ferretti and Di Leo (2003)]
made it possible to model compressive tests on wrapped
concrete cylinders. In Fig. 21, the numerical load-
displacement diagrams for cylinders wrapped with car-
bon fiber sheets are provided.

Finally, the extension of the effective law to the tensile
field was made on the assumption that the ratio between
tensile and compressive strength, Rt and Rc, is equal to
1
/

20 (Fig. 19). This made it possible to test the effective
law for applications in bi-axial tensile load [Ferretti Viola
and Di Leo (2002-a); Ferretti Viola and Di Leo (2002-b)].
The stress field analysis provided by the remeshing CM
code for a cracked plate in bi-axial tension is plotted in
Fig. 22.

5 Numerical results

Numerical results concerning the pullout test modeling
through the remeshing CM code will be presented here.

Since the dimensions of the concrete specimen are very
large in comparison to the dimensions of the steel in-
sert, they can be assumed to be infinite. Because of axial
symmetry (Fig. 23), only one half of the domain has
been modeled. Although physically the problem is three-
dimensional, the axisymmetry allows mathematical treat-
ment of the problem in two-dimensions.

One analysis on the extinction zone of the load trans-
ferred by the steel insert has been performed (Fig. 23), in
order to identify the minimum finite geometry correctly
reproducing the stress-strain field around the steel insert.
For simplicity, the minimum finite geometry has been as-
sumed to be square shaped (Fig. 23). This geometry has
then been used as modeling domain in the CM remeshing
code.

5.1 Identification of the unknown boundary condi-
tions

The pullout test is a typical example of crack propa-
gation in Mixed Mode loading, since the load is ap-
plied obliquely both to the crack propagation direction
and to the crack opening direction. For such a type of
load, the combination of loading and boundary condi-
tions forces the edges of the crack to close at some point.
At those points, Mode II loading prevails. At the remain-
ing points, the two edges of the crack separate and Mode
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Figure 22 : 2D and 3D stress field analysis for a cracked plate in bi-axial loading

Figure 23 : Geometry to model and stress extinction
zone of the load transferred by the steel insert

I loading prevails. Points separating the zones in which
Mode I loading prevails from those in which Mode II
loading prevails are a function of the load step and crack
length. They thus represent an unknown of the Mixed-
Mode problem and must be identified before the numeri-
cal stress analysis takes place.

Not only the crack edges are subjected to Mixed-Mode
loading in the pullout test. There are indeed other sur-
faces which can separate or slide over each other, devel-
oping constraint reactions. They are the surfaces separat-
ing the steel insert from the concrete specimen. In this
second case, the surfaces cannot evolve, but the point
separating the Mode I loading zone from the Mode II
loading zone is still an unknown of the Mixed-Mode
loading problem.

As has been shown in Ferretti (2003), the CM remesh-
ing code is automatically able to estimate which part of
the boundary is subjected to Mode I loading, and which
part is subjected to Mode II loading. A friction model
has been used there to assess the forces acting across the
crack surfaces. The code presented in Ferretti (2003) rep-
resents the first case for which a sliding contact problem
is solved by means of the CM. It can be considered as the
equivalent in the discrete formulation of the FEM contact
elements for the variational formulation [Har (1998), Pa-
padopoulos, Jones and Solberg (1995), Zhong (1993)].
The result of the boundary condition identification on
the surfaces separating the steel insert from the concrete
specimen is shown in Figs. 24÷26 for the geometry of
the Lok-Test.

5.2 Analysis of the stress field

As shown in Fig. 23, the geometrical domain to be mod-
eled can be considered as semi-infinite. The impossibil-
ity for a numerical code to operate on a semi-infinite ge-
ometry, obliges us to reduce the analysis to a geometry
of finite dimensions. This finite geometry is delimited by
the symmetry axis, the external boundaries of the steel
insert and concrete specimen, and an internal concrete
boundary, consisting of one horizontal and one vertical
side of equal dimensions (Fig. 23). The boundary condi-
tions on the symmetry axis are represented by horizontal
double pendulum constraints (constrained horizontal dis-
placements and free vertical displacements). Horizontal
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Constrained components of
horizontal displacement 

Free components of  
horizontal displacement 

Figure 24 : Deformed configuration and detail of the identified boundary conditions on the disk thickness

Constrained components 
of horizontal displacement

Free components 
of horizontal displacement

Figure 25 : Deformed configuration and detail of the identified boundary conditions on the rod
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Constrained components 
of vertical displacement

Solution with a given tolerance

Figure 26 : Deformed configuration and detail of the identified boundary conditions on the disk lower edge

and vertical displacements on the external boundary are
constrained for the nodes lying on the counterpressure
ring and are free elsewhere. The simulation has been per-
formed in displacement-control, by imposing the relative
displacement between the rod lower edge and the coun-
terpressure ring upper edge. The counterpressure ring
has been assumed to be perfectly rigid. It has been con-
sidered as an external constraint, and it does not belong to
the modeled domain. The zero value of absolute vertical
displacements on the external boundary has been fixed on
the lower right corner of the extinction zone (assumption
of zero displacement at infinity). For this choice of abso-
lute displacement, it was possible to estimate the punch-
ing effect on the concrete-counterpressure ring interface
(Fig. 27).

Boundary conditions on the internal boundary are func-
tions of the internal boundary dimensions. These were
identified as those dimensions for which the stresses on
the internal boundary approach zero value (within a cer-
tain tolerance). That is to say, the internal boundary has
been placed on the contour of the stress extinction zone.

Finally, the bond between the pullout disk and the con-
crete above the disk has been assumed to be monolat-

Figure 27 : Deformed and undeformed configuration
near the counterpresuure ring

eral, with the steel nodes free to move downward with
regard to the concrete nodes, from the beginning of the
test forth.

A number of graphical tools were developed together
with the CM remeshing code [Ferretti (2001)], in order to
draw the stress-strain field in the modeled domain. The
graphical tool for the principal directions drawing pro-
vides each Delaunay element with a segment centered
on the element circumcenter, whose direction is that of
the principal direction, and whose length is scaled by
the principal stress (Fig. 28). Principal directions and
principal values are computed in the element circumcen-
ter. From Fig. 28, one can appreciate how the principal
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Figure 28 : Numerical principal and principal stresses
for the geometry of the Lok-test

Figure 29 : Tangent to the principal trajectories for the
geometry of the Lok-test

stresses approach zero value on the internal boundary, for
the chosen dimensions of the modeling domain in the
Lok-test case. The behavior of the principal directions

before cracking can be appreciated in Fig. 29, obtained
from Fig. 28 by providing each element loaded above
a certain value of stress with a segment of fixed length.
These directions are tangent to tensile and compressive
stress trajectories, quite similar to those provided by the
linear-elastic finite element analysis of Stone and Carino
(Fig. 6, [Stone and Carino (1984)]).

The CM analysis of the stress field between the steel in-
sert and the counterpressure ring (Fig. 28) exhibits very
large a stress transferring zone of compressive forces.

As will be discussed in the following, the stress trans-
ferring zone grows thin as the crack propagates from the
disk toward the counterpressure ring. Approaching the
ultimate load, a narrow compressed band of stress trans-
ferring can be identified, as in the analysis of Ottosen
[Ottosen (1981)]. The large portion of specimen inter-
ested by the stress transferring mechanism before crack-
ing is also given by the graphic tool for the stress discrete
drawing in the axial direction (Fig. 30). Fig. 30 also
shows the pouncing effect on the stress field at the disk-
specimen and counterpressure ring-specimen interfaces.

Figure 30 : Discrete stress analysis for the geometry of
the Lok-test

The analysis of the stress field is completed by the tool
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Mohr’s pole 

First tangent point 

Second
tangent point

Figure 31 : Limit condition and directions of first prop-
agation for geometry of the Lok-test

for computing the crack propagation direction proposed
in Ferretti (2003). The analysis in the Mohr-Coulomb
plane and the crack geometry updating before remesh-
ing activation are the same as in Ferretti (2003). The
difference between the present numerical simulation and
the one presented in Ferretti (2003) concerns the failure
criterion, since, this second time, the Leon criterion was
used:

τ2
n =

c
fc

(
ftb
fc

+σn

)
. (1)

In Eq. 1, c is the cohesion, fc the compressive strength,
and ftb the tensile strength.

The choice of the Leon criterion is due to the mechanism
of failure activation, which can manifest themselves both
in the compressive and tensile field. The Mohr-Coulomb
criterion used in Ferretti (2003) is sufficiently adequate
to describe the propagation direction for failure mecha-
nism in the compressive field, while it is not adequate in
the case of failure mechanisms in the tensile field. On the
contrary, the Leon criterion is quite adequate for describ-
ing the direction of propagation both in the compressive
and in the tensile field.

The two directions of first propagation for the Lok-test
geometry are shown in Fig. 31. They are given by the
directions of the lines that join the Mohr’s pole to the
two tangent points. When the limit condition is reached,

both the directions activate, and two cracks then enucle-
ate. The direction with the minimum slope (in magni-
tude) with regard to the σ axis was denoted as first di-
rection of propagation, and the direction with the maxi-
mum slope (in magnitude) with regard to the σ axis was
denoted as second direction of propagation (Fig. 31).
Since experimental results show that the crack along the
first direction of propagation stops soon after its initiation
[Krenchel (1985)], only the second direction of propa-
gation has been considered in the numerical simulation.
The crack paths presented in the following are then rela-
tive to the second direction of propagation.

5.3 Analysis of the mechanism of crack initiation

Experimental results show that the crack initiation mech-
anism in the pullout test depends on the geometry of
the pullout apparatus [Bocca, Carpinteri and Valente
(1989)]. In particular, the ratio between the internal di-
ameter of the counterpressure ring and the rod depth is
decisive in establishing the type of failure process. That
is, the failure mechanism depends on the angle α, defined
as in Fig. 1. Nevertheless, experimental results are not
exhaustive in describing the dependence of the initiation
mechanism from α. This leads to the impossibility of
identifying a unified model, able to correctly describe the
failure mechanism for varying values of α. Such a type
of model is of fundamental importance when a numeri-
cal analysis based on the equilibrium of the concrete to
be extracted is attempted [Jensen and Bræstrup (1976)].
In this work, the CM remeshing code is proposed as
an analysis instrument for identifying the correlation be-
tween initiation mechanism and α. This is possible since
the CM remeshing code operates on both the steel and
concrete domains, automatically computing the bound-
ary conditions on the steel-concrete interface. The def-
inition of a steel-concrete behavior model is not needed
and the simplified numerical analysis of equilibrium on
the concrete to be extracted is not required. No a-priori
assumptions have then been done on the steel-concrete
interaction. This last has been identified a-posteriori, as
an output of the numerical simulation.

The angle α (Fig. 1) has been chosen as the geometrical
parameter of the steel-concrete interaction. In the follow-
ing, all values of α will be provided in degrees.

The analysis of the initiation mechanism has been per-
formed in the Mohr-Coulomb plane, such as in Ferretti
(2003). The failure criterion adopted is the Leon crite-
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rion. For this criterion, the limit surface in the Mohr-
Coulomb plane is parabolic (Fig. 31).

Initiation point 

Figure 32 : Meshed domain and initiation point

Figure 33 : Special element for stress analysis on the
domain contour (detail of fig 32)

The initiation point has been fixed on the right-bottom
corner of the disk (Fig. 32), in agreement with exper-
imental [Krenchel (1985)] and previous numerical re-
sults [Ottosen (1981); Stone and Carino (1984); Hellier,

Sansalone, Carino and Ingraffea (1987); Bocca, Carpin-
teri and Valente (1989); Yener (1994)]. On this point, the
special element for stress analysis has been inserted (Fig.
32). The special element used here is a refinement of the
special hexagonal element used in Ferretti (2003) (Fig.
18), which was studied to be inserted at the crack tip of
pre-cracked specimens. Pre-cracking specimens is very
common in numerical simulations, since it is difficult
to determine where the crack will start. Micro-failures
and inclusions always induce local stress concentrations,
from which failures and cracks originate. These defects
cannot realistically be taken into account numerically in
large-scale models.

Consequently, one must either assume the material to be
perfect or impose the point of crack initiation by pre-
cracking the specimen. In Ferretti (2003) specimens
were pre-cracked, assuming a crack initiation direction in
accordance with the experimental direction of first prop-
agation. Here, the direction of first propagation is an un-
known of the problem, since it is one of the quantities
affected by the dependence from α. Consequently, pre-
cracking was not possible in the pullout test modeling.

The special element for stress analysis was then inserted
on the known point of initiation, which is a point of the
steel-concrete interface. To prevent the special element
from intersecting the steel-concrete interface, the geom-
etry of the special element for the first propagation step
has been modified as shown in Fig. 33. For further propa-
gation steps, the same hexagonal element as the one used
in Ferretti (2003) has been inserted at the crack tip.

The special element positioning tool for the first and the
further propagation steps operates as follows:-

• The input file for the mesh generator, which defines
the geometry of the domain, is modified to add four
(six) new nodes, equidistant from the element inser-
tion point;

• The desired element dimension [Ferretti (2003)] for
the four (six) new nodes and for the tip node is set
equal to the distance between the new nodes and the
element insertion point;

• The input file for the mesh generator is modified
to add seven new sides which join the new nodes
and the insertion point in a counter-clockwise sense,
without crossing the surface of the crack;
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• A marker is associated with the seven new sides,
indicating that the polygon that starts and ends with
the insertion point, and touches all the new points,
is a false hole [Ferretti (2003)].

• As in Ferretti (2003), the mesh generator treats the
boundary chain of a false hole as a closed internal
interface between two parts of the domain. This
leads to specifying a particular mesh geometry in
the neighborhood of the element insertion point,
with four (five) equilateral triangles. The Voronoi
mesh which follows from the special element inser-
tion presents a semi-regular (regular) Voronoi poly-
gon centered on the element insertion point. The
association between the sides of this Voronoi cell
which are equidistant from the element insertion
point and the stress field around the element inser-
tion point itself is shown in Ferretti (2003).

The load of crack initiation has been computed from the
step-wise identification of the (relative) displacement of
crack initiation (simulation in displacement-control):-

• A displacement of first approximation is considered,
and the Mohr’s circle of first approximation is iden-
tified for the neighborhood of the initiation point.

• If the Mohr’s circle of first approximation intersects
the limit surface, the displacement of first approxi-
mation is greater than the displacement of crack ini-
tiation. Thus, the displacement is halved, giving the
displacement of second approximation.

• If the Mohr’s circle of first approximation is internal
to the limit surface, the displacement of first approx-
imation is smaller than the displacement of crack
initiation. Thus, the displacement is doubled, giv-
ing the displacement of second approximation.

• Step two and step three establish upper and lower
bounds on the displacement of crack initiation. In-
terval halving is used to determine the actual dis-
placement of crack initiation, for which the upper
and lower bounds are equal (to within a particular
tolerance).

Once the load of crack initiation has been identified, the
intersection points between the corresponding Mohr’s
circle and the limit surface give the mechanism of fail-
ure initiation. Figs. 34÷38 provide the Mohr’s circle at

the limit condition for five values of the angle α. In Fig.
34, the two intersection points lie in the negative semi-
plane of the normal stress. Both the corresponding val-
ues of shear and normal stresses are not negligible. One
can then conclude that the value of the angle α equal to
26.5651◦ corresponds to a mechanism of failure initia-
tion for shear-compression.

Figure 34 : Mohr limit analysis for a = 26.5651

Figure 35 : Mohr limit analysis for a = 50.1944

An inspection of Fig. 31 clearly shows that also for the
geometry of the Lok-Test (α = 30.9638◦) the mechanism
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Figure 36 : Mohr limit analysis for a = 63.4349

Figure 37 : Mohr limit analysis for a = 68.1986

of failure initiation is that of shear-compression.

Analogously, one can conclude that the values of the
angle α equal to 50.1944◦, 63.4349◦, 68.1986◦ and
71.5651◦ correspond, respectively, to a mechanism of
failure initiation for shear-compression (Fig. 35), pure
shear (Fig. 36), shear-traction (Fig. 37), and pure trac-
tion (Fig. 38). This failure mechanism variability with α
is in good accordance with the findings of the experimen-
tal programme of Bocca, Carpinteri and Valente (1989).

Figure 38 : Mohr limit analysis for a = 71.5651

5.4 Values of first propagation for varying diameter of
the counterpressure ring

The numerically computed values of the radius of the
Mohr’s circle, the directions of first propagation, the
load of first propagation, and the displacement of first
propagation are given in Figs. 39÷42 for the angle α
varying from the lower limit required by ASTM C 900
(27◦ ≤ α ≤ 35◦) and a value close to the upper limit of
the experimental programme of Bocca, Carpinteri and
Valente (1989) (20.5◦ ≤ α ≤ 71.5◦). The filled in re-
gions in Figs. 39÷42 correspond to the ASTM C 900
requirements for α. As can be appreciated, the radius of
the Mohr’s circle, the first angle of first propagation, and
the load of first propagation are decreasing with the angle
α. The second angle of first propagation, lower than the
first angle of first propagation, is increasing with the an-
gle α, and equals the first angle of first propagation from
the value of α corresponding to the mechanism of pure
traction on (α ∼= 71◦). Actually, when the failure mech-
anism is of pure traction the two intersection points and,
then, the two propagation direction, coincide (Fig. 38).
Finally, the displacement of first propagation is decreas-
ing in the ASTM C 900 range of α. Then, it reaches a
minimum for a value of α of about 38◦. For greater val-
ues of α, the displacement of first propagation increases,
reaching a maximum in correspondence of the pure shear
failure mechanism (α ∼= 63◦). From this point on, the be-
havior is decreasing with the angle α again.
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Figure 39 : Mohr radius at crack initiation for variable
value of the apex angle
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Figure 40 : Propagation directions at crack initiation for
variable value of the apex angle

5.5 Crack propagation analysis

A step-wise analysis of crack propagation has been per-
formed for the pullout geometry of the Lok-Test.

According to the discrete crack approach, a modification
of the mesh is required at each step of the crack propaga-
tion process. The tool here adopted for crack geometry
updating and remeshing is described in Ferretti (2003).

The numerical crack path and the stress analysis pre-
dicted by the numerical model are shown in Fig. 43 for
four failure stages. In accordance with the experimen-
tal results (Fig. 2), the numerical direction of propaga-
tion changes at every stage. In particular, after a sub-
vertical propagation the propagation direction changes
abruptly and the crack propagates towards the counter-
pressure ring. The intra-element propagation technique
and reduction of the mesh size near the crack tip allow
the crack path to be accurately predicted.
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Figure 41 : Load at crack initiation for variable value of
apex angle
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Figure 42 : Displacement at crack initiation for variable
value of the apex angle

From the stress and principal directions analysis in Fig.
43 one can conclude that the static scheme of the resistant
structure changes at each propagation step. In particular,
at first the resistant structure is subjected to compressive
stresses in the disk-counterpressure ring direction. For
this stage, the principal stresses are nonuniform and the
principal directions are not parallel to each other, as in the
linear-elastic finite element analysis of Stone and Carino
(1984). As the crack propagates, bending actions super-
impose to the compressive stresses. As a consequence,
the transferring zone of compressive stresses becomes
thinner and thinner, and the non-uniform stress behav-
ior is enhanced. The comparison of a neutral axis in the
concrete to be extracted arises simultaneously to the rad-
ical changing in the crack propagation direction. In the
stress analysis for the third stage of Fig. 43, changing
of the crack propagation direction and comparison of a
tension zone near the stem are well recognizable. Dur-
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Figure 43 : Mesh, stress and strain analysis for four failure stages (geometry of Lok-Test)
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ing the latter stages of crack propagation the bending ac-
tions become dominant. It can than be concluded that
crack propagation also involves progressive bending of
the compressed concrete within the concrete to be ex-
tracted. This result agrees with the plastic-fracture finite
element analysis of Yener (1994).

The third stage of Fig. 43 also shows a modification of
the stress field in front of the crack tip. In particular, a
tensile state of stress with principal direction perpendic-
ular to the crack last edge is well recognizable. Since
the crack direction will remain unchanged from this mo-
ment forth, it is reasonable to conclude that the tensile
state of stress contributes to crack propagation in this last
phase of the pullout test. Also opening of the crack edges
behind the crack tip confirms this assumption (Fig. 43,
deformed configuration of third stage).

Figure 44 : Details of the deformed configuration above
the disk shortly before crack initiation

Figure 45 : Details of the deformed configuration above
the disk soon after crack initiation

In Fig. 44, the zoom of the steel disk deformation is pro-
vided at the upper steel-concrete interface, soon before

the crack starts to propagate. As in Yener (1994), the
steel disk bends pronouncedly, while the concrete is quite
undeformed.

At this point, the concrete within the eventual failure sur-
face is compressed in the insert-support ring direction.
When the crack activates, the decrease of concrete stiff-
ness under the steel disk due to crack propagation leads
to a steel disk bending close to zero (Fig. 45). From
this moment forth, the stiffness of the steel disk can be
assumed to be infinite.

With reference to the node numeration in Fig. 9, the fol-
lowings are further similarities between the present and
Yener’s analysis:-

• The vertical downward displacement of node 1, δ1

is always greater than that of node 2, δ2.

• Both δ1 and δ2 are always greater than δ4.

• The concrete to be extracted pushes against the
main body of the concrete near the support ring and
against the steel stem near point 1.

• High compressive interacion exists between the
stem and the concrete direcly below the steel disk
in the vicinity of the periphery near to point 1.

6 Conclusions

A CM code has been used here both for crack initiation
and crack propagation analysis in the pullout test model-
ing. Several ratios between the internal diameter of the
counterpressure ring and the rod length have been taken
into account for the crack initiation analysis. The crack
propagation analysis has been performed for the geom-
etry of the Lok-Test. The adopted CM code combines
nodal relaxation, intra-element propagation and remesh-
ing. It also permits the mesh dimensions to be refined
at specific locations, so as to improve the accuracy of
the solution. The mesh generator ability to operate on
multiple domains has been used to provide the evolving
stress field both in the steel insert and concrete specimen.
Finally, the code automatically estimates which part of
the boundary is subjected to Mode I loading, and which
part is subjected to Mode II loading. Consequently, no a-
priori assumptions are needed on the steel-concrete inter-
action. The computation is then performed on the whole
domain, without having to reduce the analysis on the
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equilibrium condition of the extracted concrete. The sim-
ulation is displacement-controlled. The agreement be-
tween CM results and results of previous FEM analysis
further states that the CM can give good predictions for
fracture mechanics problems. Also the experimental re-
sults are well reproduced. The step-wise analysis of the
state of stress allows us to describe the progressive fail-
ure of the concrete medium. It was found that the crack
initiation mechanism depends upon the ratio between the
internal diameter of the counterpressure ring and the rod
length. A changing in the crack initiation mechanism
from shear-compression to shear-tension was found to
occur for the angle α equal to about 63◦. Moreover, the
crack propagation mechanism changes as the crack prop-
agates. At first, the concrete between the steel disk and
the conterpressure ring is compressed in the disk-ring di-
rection. Subsequently, bending actions develop in the
concrete fragment to be extracted. They become more
and more relevant with the evolving of the failure pro-
cess and a neutral axis arises in the concrete fragment.
Compressive interactions between steel rod and concrete
specimen and the punching effect at the disk-concrete in-
terface cause the neutral axis to intersect the rod-concrete
interface, never arriving at the disk-concrete interface.
The direction of the neutral axis is more or less paral-
lel to the crack direction. The comparison of the neu-
tral axis seems to be correlated to the abrupt change of
the crack propagation direction, also experimentally ob-
served. From the moment in which the crack direction
changes on, a tensile state of stress develops in front of
the crack tip. It may then be reasonable to assume that
tensile strength of the concrete has some kind of indirect
influence on the pullout strength. It can be concluded that
it may be not appropriate to describe the complex state of
stress induced in pullout test by a uniaxial mode of fail-
ure. As in the conclusions of the linear-elastic finite ele-
ment analysis of Stone and Carino, it can also be asserted
that an alternative explanation needs to be found for the
experimentally observed close correlation between com-
pressive and pullout strength.

The analysis of the stress field provides a detailed de-
scription of the stress redistribution with the crack prop-
agation. It seems then that the CM code is able to pro-
vide a substantial contribution to the comprehension of
the physical mechanism of failure in pullout tests.

The analysis performed has been carried out by following
only one of the two experimentally observed crack paths.

Numerical results can improve if the second crack path
is modeled as well. Further studies are currently being
undertaken to activate the second propagation and study
the mutual influence between the two cracks. Moreover,
an extension of the code in such a way as to take into
account the friction between the nodes lying on the crack
edges is being studied at the present time. Finally, also
combination of concrete crushing and concrete cracking
is under study at the moment, so as to derive the complete
load-displacement diagram in pullout tests.
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